Advertisement

NLRP3 Deficiency Attenuates Secondary Degeneration of Visual Cortical Neurons Following Optic Nerve Injury

  • Zhou Zhang
  • Wenyi Liu
  • Yubin Huang
  • Linlin Luo
  • Xiaofeng Cai
  • Yunjia Liu
  • Liqianyu Ai
  • Jun Yan
  • Sen LinEmail author
  • Jian YeEmail author
Original Article
  • 52 Downloads

Abstract

In the visual pathway, optic nerve (ON) injury may cause secondary degeneration of neurons in distal regions, such as the visual cortex. However, the role of the neuroinflammatory response in regulating secondary impairment in the visual cortex after ON injury remains unclear. The NOD-like receptor family pyrin domain containing 3 (NLRP3) is an important regulator of neuroinflammation. In this study, we established a mouse model of unilateral ON crush (ONC) and showed that the expression of NLRP3 was significantly increased in the primary visual cortex (V1) as a response to ONC and that the NLRP3 inflammasome was activated in the contralateral V1 1 days–14 days after ONC. Ablation of the NLRP3 gene significantly decreased the trans-neuronal degeneration within 14 days. Visual electrophysiological function was improved in NLRP3−/− mice. Taken together, these findings suggest that NLRP3 is a potential therapeutic target for protecting visual cortical neurons against degeneration after ON injury.

Keywords

NLRP3 Visual cortex Optic nerve injury Visual cortical degeneration 

Notes

Acknowledgements

We would like to thank Prof. Yuan-Guo Zhou from the Army Medical Center of the People’s Liberation Army and Prof. Feng Mei from the Army Medical University (AMU) for project consultation and data evaluation, and thank Prof. Bo Peng from Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, for technical support. This work was supported by the National Natural Science Foundation of China (81570840 and 81200926), the Academician-Led Science and Technological Innovation of Chongqing (cstc2017jcyj-yszxX0006), and the Research Foundation of the Department of Ophthalmology in Daping Hospital, AMU (9-2543).

Conflict of interest

The authors claim that there are no conflicts of interest.

Supplementary material

12264_2019_445_MOESM1_ESM.pdf (790 kb)
Supplementary material 1 (PDF 791 kb)

References

  1. 1.
    Shou TD. Visual functional changes during acute elevation of intraocular pressure. Neurosci Bull 2006, 22: 235–238.PubMedPubMedCentralGoogle Scholar
  2. 2.
    You Y, Gupta VK, Graham SL, Klistorner A. Anterograde degeneration along the visual pathway after optic nerve injury. PLoS One 2012, 7: e52061.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Smith NM, Giacci MK, Gough A, Bailey C, McGonigle T, Black AMB, et al. Inflammation and blood-brain barrier breach remote from the primary injury following neurotrauma. J Neuroinflamm 2018, 15: 201.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Dengler-Crish CM, Smith MA, Inman DM, Wilson GN, Young JW, Crish SD. Anterograde transport blockade precedes deficits in retrograde transport in the visual projection of the DBA/2J mouse model of glaucoma. Front Neurosci 2014, 8: 290.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    David S, Kroner A. Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 2011, 12: 388–399.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Bourgeois C, Kuchler K. Fungal pathogens-a sweet and sour treat for toll-like receptors. Front Cell Infect Microbiol 2012, 2: 142.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 2002, 10: 417–426.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Latz E, Xiao TS, Stutz A. Activation and regulation of the inflammasomes. Nat Rev Immunol 2013, 13: 397–411.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Vladimer GI, Marty-Roix R, Ghosh S, Weng D, Lien E. Inflammasomes and host defenses against bacterial infections. Curr Opin Microbiol 2013, 16: 23–31.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Abulafia DP, de Rivero Vaccari JP, Lozano JD, Lotocki G, Keane RW, Dietrich WD. Inhibition of the inflammasome complex reduces the inflammatory response after thromboembolic stroke in mice. J Cereb Blood Flow Metab 2009, 29: 534–544.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 2015, 526: 660–665.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 2008, 9: 857–865.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Liu SB, Mi WL, Wang YQ. Research progress on the NLRP3 inflammasome and its role in the central nervous system. Neurosci Bull 2013, 29: 779–787.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Carlos D, Costa FR, Pereira CA, Rocha FA, Yaochite JN, Oliveira GG, et al. Mitochondrial DNA activates the NLRP3 inflammasome and predisposes to type 1 diabetes in murine model. Front Immunol 2017, 8: 164.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Lee J, Wan J, Lee L, Peng C, Xie H, Lee C. Study of the NLRP3 inflammasome component genes and downstream cytokines in patients with type 2 diabetes mellitus with carotid atherosclerosis. Lipids Health Dis 2017, 16: 217.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Lu A, Li H, Niu J, Wu S, Xue G, Yao X, et al. Hyperactivation of the NLRP3 inflammasome in myeloid cells leads to severe organ damage in experimental lupus. J Immunol 2017, 198: 1119–1129.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Inoue M, Chen PH, Siecinski S, Li QJ, Liu C, Steinman L, et al. An interferon-beta-resistant and NLRP3 inflammasome-independent subtype of EAE with neuronal damage. Nat Neurosci 2016, 19: 1599–1609.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Ma MW, Wang J, Dhandapani KM, Brann DW. NADPH oxidase 2 regulates NLRP3 inflammasome activation in the brain after traumatic brain injury. Oxid Med Cell Longev 2017, 2017: 6057609.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Lee SW, de Rivero Vaccari JP, Truettner JS, Dietrich WD, Keane RW. The role of microglial inflammasome activation in pyroptotic cell death following penetrating traumatic brain injury. J Neuroinflamm 2019, 16: 27.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    de Rivero Vaccari JP, Lotocki G, Marcillo AE, Dietrich WD, Keane RW. A molecular platform in neurons regulates inflammation after spinal cord injury. J Neurosci 2008, 28: 3404–3414.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Albalawi F, Lu W, Beckel JM, Lim JC, McCaughey SA, Mitchell CH. The P2X7 receptor primes IL-1beta and the NLRP3 inflammasome in astrocytes exposed to mechanical strain. Front Cell Neurosci 2017, 11: 227.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Puyang Z, Feng L, Chen H, Liang P, Troy JB, Liu X. Retinal ganglion cell loss is delayed following optic nerve crush in NLRP3 knockout mice. Sci Rep 2016, 6: 20998.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Xu Z, Fouda AY, Lemtalsi T, Shosha E, Rojas M, Liu F, et al. Retinal neuroprotection from optic nerve trauma by deletion of arginase 2. Front Neurosci 2018, 12: 970.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Zou J, Crews FT. Inflammasome-IL-1beta signaling mediates ethanol inhibition of hippocampal neurogenesis. Front Neurosci 2012, 6: 77.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Chen P, He L, Pang X, Wang X, Yang T, Wu H. NLRP3 is expressed in the spiral ganglion neurons and associated with both syndromic and nonsyndromic sensorineural deafness. Neural Plast 2016, 2016: 3018132.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Fann DY, Lim YA, Cheng YL, Lok KZ, Chunduri P, Baik SH, et al. Evidence that NF-kappaB and MAPK signaling promotes NLRP inflammasome activation in neurons following ischemic stroke. Mol Neurobiol 2018, 55: 1082–1096.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    von Herrmann KM, Salas LA, Martinez EM, Young AL, Howard JM, Feldman MS, et al. NLRP3 expression in mesencephalic neurons and characterization of a rare NLRP3 polymorphism associated with decreased risk of Parkinson’s disease. NPJ Parkinsons Dis 2018, 4: 24.CrossRefGoogle Scholar
  28. 28.
    Lin S, Liang Y, Zhang J, Bian C, Zhou H, Guo Q, et al. Microglial TIR-domain-containing adapter-inducing interferon-beta (TRIF) deficiency promotes retinal ganglion cell survival and axon regeneration via nuclear factor-kappaB. J Neuroinflamm 2012, 9: 39.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Zhou JX, Liu YJ, Chen X, Zhang X, Xu J, Yang K, et al. Low-intensity pulsed ultrasound protects retinal ganglion cell from optic nerve injury induced apoptosis via Yes associated protein. Front Cell Neurosci 2018, 12: 160.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Ismael S, Nasoohi S, Ishrat T. MCC950, the selective inhibitor of nucleotide oligomerization domain-like receptor protein-3 inflammasome, protects mice against traumatic brain injury. J Neurotrauma 2018, 35: 1294–1303.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Ye X, Shen T, Hu J, Zhang L, Zhang Y, Bao L, et al. Purinergic 2X7 receptor/NLRP3 pathway triggers neuronal apoptosis after ischemic stroke in the mouse. Exp Neurol 2017, 292: 46–55.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Leamey CA PD, Dreher B. Comparative survey of the mammalian visual system with reference to the mouse. In: Chalupa,Williams RW (Eds). Eye, Retina, and Visual System of the Mouse. MIT Press, 2008: 35–60.Google Scholar
  33. 33.
    Cusack CL, Swahari V, Hampton Henley W, Michael Ramsey J, Deshmukh M. Distinct pathways mediate axon degeneration during apoptosis and axon-specific pruning. Nat Commun 2013, 4: 1876.Google Scholar
  34. 34.
    Schmued L. Fluoro-Jade C results in ultra high resolution and contrast labeling of degenerating neurons. Brain Res 2005, 1035: 24–31.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Block F, Dihne M, Loos M. Inflammation in areas of remote changes following focal brain lesion. Prog Neurobiol 2005, 75: 342–365.PubMedCrossRefGoogle Scholar
  36. 36.
    Lawlor M, Danesh-Meyer H, Levin LA, Davagnanam I, De Vita E, Plant GT. Glaucoma and the brain: Trans-synaptic degeneration, structural change, and implications for neuroprotection. Surv Ophthalmol 2018, 63: 296–306.PubMedCrossRefGoogle Scholar
  37. 37.
    Lam DY, Kaufman PL, Gabelt BT, To EC, Matsubara JA. Neurochemical correlates of cortical plasticity after unilateral elevated intraocular pressure in a primate model of glaucoma. Invest Ophthalmol Vis Sci 2003, 44: 2573–2581.PubMedCrossRefGoogle Scholar
  38. 38.
    Vasalauskaite A, Morgan JE, Sengpiel F. Plasticity in adult mouse visual cortex following optic nerve injury. Cereb Cortex 2019, 29: 1767–1777.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Dekeyster E, Aerts J, Valiente-Soriano FJ, De Groef L, Vreysen S, Salinas-Navarro M, et al. Ocular hypertension results in retinotopic alterations in the visual cortex of adult mice. Curr Eye Res. 2015, 40: 1269–1283.PubMedCrossRefGoogle Scholar
  40. 40.
    Yu L, Xie L, Dai C, Xie B, Liang M, Zhao L, et al. Progressive thinning of visual cortex in primary open-angle glaucoma of varying severity. PLoS One 2015, 10: e0121960.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Lindsey JD, Scadeng M, Dubowitz DJ, Crowston JG, Weinreb RN. Magnetic resonance imaging of the visual system in vivo: transsynaptic illumination of V1 and V2 visual cortex. Neuroimage 2007, 34: 1619–1626.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Chan KC, So KF, Wu EX. Proton magnetic resonance spectroscopy revealed choline reduction in the visual cortex in an experimental model of chronic glaucoma. Exp Eye Res 2009, 88: 65–70.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Li X, Li X. The antidepressant effect of light therapy from retinal projections. Neurosci Bull 2018, 34: 359–368.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Duan J, Fu H, Zhang J. Activation of parvalbumin-positive neurons in both retina and primary visual cortex improves the feature-selectivity of primary visual cortex neurons. Neurosci Bull 2017, 33: 255–263.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    de Zoete MR, Palm NW, Zhu S, Flavell RA. Inflammasomes. Cold Spring Harb Perspect Biol 2014, 6: a016287.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Janowski AM, Sutterwala FS. Atypical inflammasomes. Methods Mol Biol 2016, 1417: 45–62.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Freeman L, Guo H, David CN, Brickey WJ, Jha S, Ting JP. NLR members NLRC4 and NLRP3 mediate sterile inflammasome activation in microglia and astrocytes. J Exp Med 2017, 214: 1351–1370.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Irrera N, Pizzino G, Calo M, Pallio G, Mannino F, Fama F, et al. Lack of the Nlrp3 inflammasome improves mice recovery following traumatic brain injury. Front Pharmacol 2017, 8: 459.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Ma Q, Chen S, Hu Q, Feng H, Zhang JH, Tang J. NLRP3 inflammasome contributes to inflammation after intracerebral hemorrhage. Ann Neurol 2014, 75: 209–219.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Tong Y, Ding ZH, Zhan FX, Cai L, Yin X, Ling JL, et al. The NLRP3 inflammasome and stroke. Int J Clin Exp Med 2015, 8: 4787–4794.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Frank MG, Weber MD, Fonken LK, Hershman SA, Watkins LR, Maier SF. The redox state of the alarmin HMGB1 is a pivotal factor in neuroinflammatory and microglial priming: A role for the NLRP3 inflammasome. Brain Behav Immun 2016, 55: 215–224.PubMedCrossRefGoogle Scholar
  52. 52.
    Minutoli L, Puzzolo D, Rinaldi M, Irrera N, Marini H, Arcoraci V, et al. ROS-mediated NLRP3 inflammasome activation in brain, heart, kidney, and testis ischemia/reperfusion injury. Oxid Med Cell Longev 2016, 2016: 2183026.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Rubartelli A. DAMP-mediated activation of NLRP3-inflammasome in brain sterile inflammation: the fine line between healing and neurodegeneration. Front Immunol 2014, 5: 99.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Kaushal V, Dye R, Pakavathkumar P, Foveau B, Flores J, Hyman B, et al. Neuronal NLRP1 inflammasome activation of Caspase-1 coordinately regulates inflammatory interleukin-1-beta production and axonal degeneration-associated Caspase-6 activation. Cell Death Differ 2015, 22: 1676–1686.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Wang PF, Li ZG, Zhang Y, Ju XH, Liu XW, Zhou AM, et al. NLRP6 inflammasome ameliorates brain injury after intracerebral hemorrhage. Front Cell Neurosci 2017, 11: 206.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Adamczak SE, de Rivero Vaccari JP, Dale G, Brand FJ, 3rd, Nonner D, Bullock MR, et al. Pyroptotic neuronal cell death mediated by the AIM2 inflammasome. J Cereb Blood Flow Metab 2014, 34: 621–629.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Denes A, Coutts G, Lenart N, Cruickshank SM, Pelegrin P, Skinner J, et al. AIM2 and NLRC4 inflammasomes contribute with ASC to acute brain injury independently of NLRP3. Proc Natl Acad Sci U S A 2015, 112: 4050–4055.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 2009, 458: 509–513.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS 2019

Authors and Affiliations

  • Zhou Zhang
    • 1
  • Wenyi Liu
    • 1
  • Yubin Huang
    • 2
  • Linlin Luo
    • 1
  • Xiaofeng Cai
    • 1
  • Yunjia Liu
    • 1
  • Liqianyu Ai
    • 1
  • Jun Yan
    • 3
  • Sen Lin
    • 1
    Email author
  • Jian Ye
    • 1
    Email author
  1. 1.Department of Ophthalmology, Research Institute of Surgery and Daping Hospital, Army Medical Center of the People’s Liberation Army (PLA)Army Medical UniversityChongqingChina
  2. 2.Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
  3. 3.Department 1, Research Institute of Surgery and Daping Hospital, Army Medical Center of the PLAArmy Medical UniversityChongqingChina

Personalised recommendations