Skip to main content

Advertisement

Log in

Failure of Placebo Analgesia Model in Rats with Inflammatory Pain

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

With the shifting role of placebos, there is a need to develop animal models of placebo analgesia and elucidate the mechanisms underlying the effect. In the present study, male Sprague-Dawley rats with chronic inflammatory pain caused by complete Freund’s adjuvant (CFA) underwent a series of conditioning procedures, in which morphine was associated with different cues, but they failed to induce placebo analgesia. Then, conditioning with the conditioned place preference apparatus successfully induced analgesic expectancy and placebo analgesia in naïve rats but only induced analgesic expectancy and no analgesic effect in CFA rats. Subsequently, we found enhanced c-fos expression in the nucleus accumbens and reduced expression in the anterior cingulate cortex in naïve rats while c-fos expression in the anterior cingulate cortex in CFA rats was not altered. In summary, the behavioral conditioning model demonstrated the difficulty of establishing a placebo analgesia model in rats with a pathological condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Andrews P, Steultjens M, Riskowski J. Chronic widespread pain prevalence in the general population: a systematic review. Eur J Pain 2018, 22: 5–18.

    CAS  PubMed  Google Scholar 

  2. Voon P, Karamouzian M, Kerr T. Chronic pain and opioid misuse: a review of reviews. Subst Abuse Treat Prev Policy 2017, 12: 36.

    PubMed  PubMed Central  Google Scholar 

  3. Duenas M, Ojeda B, Salazar A, Mico JA, Failde I. A review of chronic pain impact on patients, their social environment and the health care system. J Pain Res 2016, 9: 457–467.

    PubMed  PubMed Central  Google Scholar 

  4. Buchel C, Geuter S, Sprenger C, Eippert F. Placebo analgesia: a predictive coding perspective. Neuron 2014, 81: 1223–1239.

    PubMed  Google Scholar 

  5. Klinger R, Colloca L, Bingel U, Flor H. Placebo analgesia: clinical applications. Pain 2014, 155: 1055–1058.

    PubMed  Google Scholar 

  6. Tuttle AH, Tohyama S, Ramsay T, Kimmelman J, Schweinhardt P, Bennett GJ, et al. Increasing placebo responses over time in U.S. clinical trials of neuropathic pain. Pain 2015, 156: 2616–2626.

    PubMed  Google Scholar 

  7. Petersen GL, Finnerup NB, Grosen K, Pilegaard HK, Tracey I, Benedetti F, et al. Expectations and positive emotional feelings accompany reductions in ongoing and evoked neuropathic pain following placebo interventions. Pain 2014, 155: 2687–2698.

    PubMed  Google Scholar 

  8. Kaptchuk TJ, Friedlander E, Kelley JM, Sanchez MN, Kokkotou E, Singer JP, et al. Placebos without deception: a randomized controlled trial in irritable bowel syndrome. PLoS One 2010, 5: e15591.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Arakawa A, Kaneko M, Narukawa M. An investigation of factors contributing to higher levels of placebo response in clinical trials in neuropathic pain: a systematic review and meta-analysis. Clin Drug Investig 2015, 35: 67–81.

    PubMed  Google Scholar 

  10. Enck P, Bingel U, Schedlowski M, Rief W. The placebo response in medicine: minimize, maximize or personalize? Nat Rev Drug Discov 2013, 12: 191–204.

    CAS  PubMed  Google Scholar 

  11. Doering BK, Rief W. Utilizing placebo mechanisms for dose reduction in pharmacotherapy. Trends Pharmacol Sci 2012, 33: 165–172.

    CAS  PubMed  Google Scholar 

  12. Benedetti F, Carlino E, Piedimonte A. Increasing uncertainty in CNS clinical trials: the role of placebo, nocebo, and Hawthorne effects. Lancet Neurol 2016, 15: 736–747.

    PubMed  Google Scholar 

  13. Tracey I. Getting the pain you expect: mechanisms of placebo, nocebo and reappraisal effects in humans. Nat Med 2010, 16: 1277–1283.

    CAS  PubMed  Google Scholar 

  14. Tetreault P, Mansour A, Vachon-Presseau E, Schnitzer TJ, Apkarian AV, Baliki MN. Brain connectivity predicts placebo response across chronic pain clinical trials. PLoS Biol 2016, 14: e1002570.

    PubMed  PubMed Central  Google Scholar 

  15. Benedetti F, Amanzio M, Thoen W. Disruption of opioid-induced placebo responses by activation of cholecystokinin type-2 receptors. Psychopharmacology (Berl) 2011, 213: 791–797.

    CAS  Google Scholar 

  16. Zubieta JK, Bueller JA, Jackson LR, Scott DJ, Xu Y, Koeppe RA, et al. Placebo effects mediated by endogenous opioid activity on mu-opioid receptors. J Neurosci 2005, 25: 7754–7762.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Dodd S, Dean OM, Vian J, Berk M. A review of the theoretical and biological understanding of the nocebo and placebo phenomena. Clin Ther 2017, 39: 469–476.

    PubMed  Google Scholar 

  18. Klinger R, Flor H. Clinical and ethical implications of placebo effects: enhancing patients’ benefits from pain treatment. Handb Exp Pharmacol 2014, 225: 217–235.

    PubMed  Google Scholar 

  19. Hrobjartsson A. What are the main methodological problems in the estimation of placebo effects? J Clin Epidemiol 2002, 55: 430–435.

    PubMed  Google Scholar 

  20. Ben-Shaanan TL, Azulay-Debby H, Dubovik T, Starosvetsky E, Korin B, Schiller M, et al. Activation of the reward system boosts innate and adaptive immunity. Nat Med 2016, 22: 940–944.

    CAS  PubMed  Google Scholar 

  21. Wendt L, Albring A, Schedlowski M. Learned placebo responses in neuroendocrine and immune functions. Handb Exp Pharmacol 2014, 225: 159–181.

    CAS  PubMed  Google Scholar 

  22. Bryant CD, Roberts KW, Culbertson CS, Le A, Evans CJ, Fanselow MS. Pavlovian conditioning of multiple opioid-like responses in mice. Drug Alcohol Depend 2009, 103: 74–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang RR, Zhang WC, Wang JY, Guo JY. The opioid placebo analgesia is mediated exclusively through mu-opioid receptor in rat. Int J Neuropsychopharmacol 2013, 16: 849–856.

    CAS  PubMed  Google Scholar 

  24. Nolan TA, Price DD, Caudle RM, Murphy NP, Neubert JK. Placebo-induced analgesia in an operant pain model in rats. Pain 2012, 153: 2009–2016.

    PubMed  PubMed Central  Google Scholar 

  25. Guo JY, Yuan XY, Sui F, Zhang WC, Wang JY, Luo F, et al. Placebo analgesia affects the behavioral despair tests and hormonal secretions in mice. Psychopharmacology (Berl) 2011, 217: 83–90.

    CAS  Google Scholar 

  26. Guo JY, Wang JY, Luo F. Dissection of placebo analgesia in mice: the conditions for activation of opioid and non-opioid systems. J Psychopharmacol 2010, 24: 1561–1567.

    CAS  PubMed  Google Scholar 

  27. Xu L, Wan Y, Ma L, Zheng J, Han B, Liu FY, et al. A context-based analgesia model in rats: involvement of prefrontal cortex. Neurosci Bull 2018, 34: 1047–1057.

    PubMed  PubMed Central  Google Scholar 

  28. McNabb CT, White MM, Harris AL, Fuchs PN. The elusive rat model of conditioned placebo analgesia. Pain 2014, 155: 2022–2032.

    CAS  PubMed  Google Scholar 

  29. Lee IS, Lee B, Park HJ, Olausson H, Enck P, Chae Y. A new animal model of placebo analgesia: involvement of the dopaminergic system in reward learning. Sci Rep 2015, 5: 17140.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bushnell MC, Ceko M, Low LA. Cognitive and emotional control of pain and its disruption in chronic pain. Nat Rev Neurosci 2013, 14: 502–511.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wiech K. Deconstructing the sensation of pain: the influence of cognitive processes on pain perception. Science 2016, 354: 584–587.

    CAS  PubMed  Google Scholar 

  32. Fiorio M, Recchia S, Corra F, Simonetto S, Garcia-Larrea L, Tinazzi M. Enhancing non-noxious perception: behavioural and neurophysiological correlates of a placebo-like manipulation. Neuroscience 2012, 217: 96–104.

    CAS  PubMed  Google Scholar 

  33. Deuis JR, Dvorakova LS, Vetter I. Methods used to evaluate pain behaviors in rodents. Front Mol Neurosci 2017, 10: 284.

    PubMed  PubMed Central  Google Scholar 

  34. Benedetti F. Placebo responses in animals. Pain 2012, 153: 1983–1984.

    PubMed  Google Scholar 

  35. Pecina M, Zubieta JK. Molecular mechanisms of placebo responses in humans. Mol Psychiatry 2015, 20: 416–423.

    CAS  PubMed  Google Scholar 

  36. Gregory NS, Harris AL, Robinson CR, Dougherty PM, Fuchs PN, Sluka KA. An overview of animal models of pain: disease models and outcome measures. J Pain 2013, 14: 1255–1269.

    Google Scholar 

  37. Jaggi AS, Jain V, Singh N. Animal models of neuropathic pain. Fundamental & Clinical Pharmacology 2011, 25: 1–28.

    CAS  Google Scholar 

  38. Manchikanti L, Boswell MV, Kaye AD, Helm Ii S, Hirsch JA. Therapeutic role of placebo: evolution of a new paradigm in understanding research and clinical practice. Pain Physician 2017, 20: 363–386.

    PubMed  Google Scholar 

  39. Watkins LR, Maier SF, Goehler LE. Immune activation: the role of pro-inflammatory cytokines in inflammation, illness responses and pathological pain states. Pain 1995, 63: 289–302.

    CAS  PubMed  Google Scholar 

  40. Benedetti F, Amanzio M, Rosato R, Blanchard C. Nonopioid placebo analgesia is mediated by CB1 cannabinoid receptors. Na Med 2011, 17: 1228–1230.

    CAS  Google Scholar 

  41. Weimer K, Enck P. Traditional and innovative experimental and clinical trial designs and their advantages and pitfalls. Handb Exp Pharmacol 2014, 225: 237–272.

    PubMed  Google Scholar 

  42. Rutherford BR, Mori S, Sneed JR, Pimontel MA, Roose SP. Contribution of spontaneous improvement to placebo response in depression: a meta-analytic review. J Psychiatr Res 2012, 46: 697–702.

    PubMed  PubMed Central  Google Scholar 

  43. Quessy SN, Rowbotham MC. Placebo response in neuropathic pain trials. Pain 2008, 138: 479–483.

    PubMed  Google Scholar 

  44. He JH, Xu L, Shen Y, Kong MJ, Shi LY, Ma ZL. The changes of monocarboxylate transporter-2 in spinal cord horn in a rat model of chronic inflammatory pain. Zhongguo Ying Yong Sheng Li Xue Za Zhi 2015, 31: 19–22.

    CAS  PubMed  Google Scholar 

  45. Miller FG, Kaptchuk TJ. The power of context: reconceptualizing the placebo effect. J R Soc Med 2008, 101: 222–225.

    PubMed  PubMed Central  Google Scholar 

  46. Allen JW, Yaksh TL. Assessment of acute thermal nociception in laboratory animals. Methods Mol Med 2004, 99: 11–23.

    PubMed  Google Scholar 

  47. Lavich TR, Cordeiro RS, Silva PM, Martins MA. A novel hot-plate test sensitive to hyperalgesic stimuli and non-opioid analgesics. Braz J Med Biol Res 2005, 38: 445–451.

    CAS  PubMed  Google Scholar 

  48. Mehalick ML, Ingram SL, Aicher SA, Morgan MM. Chronic inflammatory pain prevents tolerance to the antinociceptive effect of morphine microinjected into the ventrolateral periaqueductal gray of the rat. J Pain 2013, 14: 1601–1610.

    CAS  PubMed  Google Scholar 

  49. Beaudry H, Gendron L, Moron JA. Implication of delta opioid receptor subtype 2 but not delta opioid receptor subtype 1 in the development of morphine analgesic tolerance in a rat model of chronic inflammatory pain. Eur J Neurosci 2015, 41: 901–907.

    CAS  PubMed  Google Scholar 

  50. Bekhit MH. Opioid-induced hyperalgesia and tolerance. Am J Ther 2010, 17: 498–510.

    PubMed  Google Scholar 

  51. Atlas LY, Wager TD. How expectations shape pain. Neurosci Lett 2012, 520: 140–148.

    CAS  PubMed  Google Scholar 

  52. Schwarz KA, Pfister R, Buchel C. Rethinking explicit expectations: connecting placebos, social cognition, and contextual perception. Trends Cogn Sci 2016, 20: 469–480.

    PubMed  Google Scholar 

  53. Carlino E, Benedetti F. Different contexts, different pains, different experiences. Neuroscience 2016, 338: 19–26.

    CAS  PubMed  Google Scholar 

  54. Vase L, Norskov KN, Petersen GL, Price DD. Patients’ direct experiences as central elements of placebo analgesia. Philos Trans R Soc Lond B Biol Sci 2011, 366: 1913–1921.

    PubMed  PubMed Central  Google Scholar 

  55. Hall KT, Loscalzo J, Kaptchuk TJ. Genetics and the placebo effect: the placebome. Trends Mol Med 2015, 21: 285–294.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Colagiuri B, Schenk LA, Kessler MD, Dorsey SG, Colloca L. The placebo effect: From concepts to genes. Neuroscience 2015, 307: 171–190.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Colloca L, Grillon C. Understanding placebo and nocebo responses for pain management. Curr Pain Headache Rep 2014, 18: 419.

    PubMed  PubMed Central  Google Scholar 

  58. Qiu YH, Wu XY, Xu H, Sackett D. Neuroimaging study of placebo analgesia in humans. Neurosci Bull 2009, 25: 277–282.

    PubMed  PubMed Central  Google Scholar 

  59. Wager TD, Atlas LY. The neuroscience of placebo effects: connecting context, learning and health. Nat Rev Neurosci 2015, 16: 403–418.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Faria V, Fredrikson M, Furmark T. Imaging the placebo response: a neurofunctional review. Eur Neuropsychopharmacol 2008, 18: 473–485.

    CAS  PubMed  Google Scholar 

  61. de la Fuente-Fernandez R, Schulzer M, Stoessl AJ. Placebo mechanisms and reward circuitry: clues from Parkinson’s disease. Biol Psychiatry 2004, 56: 67–71.

    PubMed  Google Scholar 

  62. Bush G, Luu P, Posner MI. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 2000, 4: 215–222.

    CAS  PubMed  Google Scholar 

  63. Bush G, Vogt BA, Holmes J, Dale AM, Greve D, Jenike MA, et al. Dorsal anterior cingulate cortex: a role in reward-based decision making. Proc Natl Acad Sci U S A 2002, 99: 523–528.

    CAS  PubMed  Google Scholar 

  64. Devinsky O, Morrell MJ, Vogt BA. Contributions of anterior cingulate cortex to behaviour. Brain 1995, 118: 279–306.

    PubMed  Google Scholar 

  65. Stuber GD, Sparta DR, Stamatakis AM, van Leeuwen WA, Hardjoprajitno JE, Cho S, et al. Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature 2011, 475: 377–380.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Baliki MN, Geha PY, Fields HL, Apkarian AV. Predicting value of pain and analgesia: nucleus accumbens response to noxious stimuli changes in the presence of chronic pain. Neuron 2010, 66: 149–160.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Linde K, Fassler M, Meissner K. Placebo interventions, placebo effects and clinical practice. Philos Trans R Soc Lond B Biol Sci 2011, 366: 1905–1912.

    PubMed  PubMed Central  Google Scholar 

  68. Kabadi R, Kouya F, Cohen HW, Banik RK. Spontaneous pain-like behaviors are more sensitive to morphine and buprenorphine than mechanically evoked behaviors in a rat model of acute postoperative pain. Anesth Analg 2015, 120: 472–478.

    CAS  PubMed  Google Scholar 

  69. Tappe-Theodor A, Kuner R. Studying ongoing and spontaneous pain in rodents–challenges and opportunities. Eur J Neurosci 2014, 39: 1881–1890.

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (31720103908, 31530028, and 81821092) and the National Basic Research Development Program of the Ministry of Science and Technology of China (2017YFA0701300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 183 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, XS., Yang, JY., Cao, S. et al. Failure of Placebo Analgesia Model in Rats with Inflammatory Pain. Neurosci. Bull. 36, 121–133 (2020). https://doi.org/10.1007/s12264-019-00420-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-019-00420-6

Keywords

Navigation