Neuroprotective Effects of Brain-Gut Peptides: A Potential Therapy for Parkinson’s Disease

  • Dong Dong
  • Junxia XieEmail author
  • Jun WangEmail author


Parkinson’s disease (PD) is the second most common neurodegenerative disease and is typically associated with progressive motor and non-motor dysfunctions. Currently, dopamine replacement therapy is mainly used to relieve the motor symptoms, while its long-term application can lead to various complications and does not cure the disease. Numerous studies have demonstrated that many brain-gut peptides have neuroprotective effects in vivo and in vitro, and may be a promising treatment for PD. In recent years, some progress has been made in studies on the neuroprotective effects of some newly-discovered brain-gut peptides, such as glucagon-like peptide 1, pituitary adenylate cyclase activating polypeptide, nesfatin-1, and ghrelin. However, there is still no systematic review on the neuroprotective effects common to these peptides. Thus, here we review the neuroprotective effects and the associated mechanisms of these four peptides, as well as other brain-gut peptides related to PD, in the hope of providing new ideas for the treatment of PD and related clinical research.


Parkinson’s disease Glucagon-like peptide 1 Pituitary adenylate cyclase activating polypeptide Nesfatin-1 Ghrelin 



This review was supported by grants from the National Natural Science Foundation of China (31571054 and 81430024), and the Excellent Innovative Team of Shandong Province and Taishan Scholars Construction Project, China. We thank Dr. Hailong Huang (China Medical University) for providing us with relevant knowledge and literature.

Conflict of interest

The authors claim that there are no conflicts of interest.


  1. 1.
    Lotankar S, Prabhavalkar KS, Bhatt LK. Biomarkers for Parkinson’s disease: recent advancement. Neurosci Bull 2017, 33: 585–597.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Chen L, Xie J. Dopamine in Parkinson’s disease: precise supplementation with motor planning. Neurosci Bull 2018, 34: 873–874.CrossRefPubMedGoogle Scholar
  3. 3.
    Gan-Or Z, Alcalay RN, Rouleau GA, Postuma RB. Sleep disorders and Parkinson disease; lessons from genetics. Sleep Med Rev 2018.Google Scholar
  4. 4.
    Cersosimo MG, Benarroch EE. Pathological correlates of gastrointestinal dysfunction in Parkinson’s disease. Neurobiol Dis 2012, 46: 559–564.CrossRefPubMedGoogle Scholar
  5. 5.
    Lee S, Lee DY. Glucagon-like peptide-1 and glucagon-like peptide-1 receptor agonists in the treatment of type 2 diabetes. Ann Pediatr Endocrinol Metab 2017, 22: 15–26.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Athauda D, Foltynie T. Protective effects of the GLP-1 mimetic exendin-4 in Parkinson’s disease. Neuropharmacology 2017.Google Scholar
  7. 7.
    Kim DS, Choi HI, Wang Y, Luo Y, Hoffer BJ, Greig NH. A new treatment strategy for Parkinson’s disease through the gut-brain axis: the glucagon-like peptide-1 receptor pathway. Cell Transpl 2017, 26: 1560–1571.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Yildirim Simsir I, Soyaltin UE, Cetinkalp S. Glucagon like peptide-1 (GLP-1) likes Alzheimer’s disease. Diabet Metab Syndr 2018, 12: 469–475.CrossRefPubMedGoogle Scholar
  9. 9.
    Cantini G, Mannucci E, Luconi M. Perspectives in GLP-1 research: new targets, new receptors. Trends Endocrinol Metab 2016, 27: 427–438.CrossRefPubMedGoogle Scholar
  10. 10.
    Santiago JA, Potashkin JA. System-based approaches to decode the molecular links in Parkinson’s disease and diabetes. Neurobiol Dis 2014, 72 (Pt A):84–91.CrossRefPubMedGoogle Scholar
  11. 11.
    De Pablo-Fernandez E, Goldacre R, Pakpoor J, Noyce AJ, Warner TT. Association between diabetes and subsequent Parkinson disease: a record-linkage cohort study. Neurology 2018, 91: e139–e142.CrossRefPubMedGoogle Scholar
  12. 12.
    Egan AG, Blind E, Dunder K, de Graeff PA, Hummer BT, Bourcier T, et al. Pancreatic safety of incretin-based drugs–FDA and EMA assessment. N Engl J Med 2014, 370: 794–797.CrossRefPubMedGoogle Scholar
  13. 13.
    Aksoy D, Solmaz V, Cavusoglu T, Meral A, Ates U, Erbas O. Neuroprotective effects of eexenatide in a rotenone-induced rat model of Parkinson’s disease. Am J Med Sci 2017, 354: 319–324.CrossRefPubMedGoogle Scholar
  14. 14.
    Badawi GA, Abd El Fattah MA, Zaki HF, El Sayed MI. Sitagliptin and liraglutide reversed nigrostriatal degeneration of rodent brain in rotenone-induced Parkinson’s disease. Inflammopharmacology 2017, 25:369–382.CrossRefPubMedGoogle Scholar
  15. 15.
    Nader MA, Ateyya H, El-Shafey M, El-Sherbeeny NA. Sitagliptin enhances the neuroprotective effect of pregabalin against pentylenetetrazole-induced acute epileptogenesis in mice: Implication of oxidative, inflammatory, apoptotic and autophagy pathways. Neurochem Int 2018, 115: 11–23.CrossRefPubMedGoogle Scholar
  16. 16.
    Gault VA, Holscher C. GLP-1 receptor agonists show neuroprotective effects in animal models of diabetes. Peptides 2018, 100: 101–107.CrossRefPubMedGoogle Scholar
  17. 17.
    Spielman LJ, Gibson DL, Klegeris A. Incretin hormones regulate microglia oxidative stress, survival and expression of trophic factors. Eur J Cell Biol 2017, 96: 240–253.CrossRefPubMedGoogle Scholar
  18. 18.
    Khasnavis S, Jana A, Roy A, Mazumder M, Bhushan B, Wood T, et al. Suppression of nuclear factor-kappaB activation and inflammation in microglia by physically modified saline. J Biol Chem 2012, 287: 29529–29542.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Athauda D, Foltynie T. The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson’s disease: mechanisms of action. Drug Discov Today 2016, 21: 802–818.CrossRefPubMedGoogle Scholar
  20. 20.
    Bao Y, Jiang L, Chen H, Zou J, Liu Z, Shi Y. The Neuroprotective effect of liraglutide is mediated by glucagon-like peptide 1 receptor-mediated activation of cAMP/PKA/CREB pathway. Cell Physiol Biochem 2015, 36: 2366–2378.CrossRefPubMedGoogle Scholar
  21. 21.
    An FM, Chen S, Xu Z, Yin L, Wang Y, Liu AR, et al. Glucagon-like peptide-1 regulates mitochondrial biogenesis and tau phosphorylation against advanced glycation end product-induced neuronal insult: Studies in vivo and in vitro. Neuroscience 2015, 300: 75–84.CrossRefPubMedGoogle Scholar
  22. 22.
    Liu JH, Yin F, Guo LX, Deng XH, Hu YH. Neuroprotection of geniposide against hydrogen peroxide induced PC12 cells injury: involvement of PI3 kinase signal pathway. Acta Pharmacol Sin 2009, 30: 159–165.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Liu J, Yin F, Zheng X, Jing J, Hu Y. Geniposide, a novel agonist for GLP-1 receptor, prevents PC12 cells from oxidative damage via MAP kinase pathway. Neurochem Int 2007, 51: 361–369.CrossRefPubMedGoogle Scholar
  24. 24.
    Fernandez-Millan E, Martin MA, Goya L, Lizarraga-Mollinedo E, Escriva F, Ramos S, et al. Glucagon-like peptide-1 improves beta-cell antioxidant capacity via extracellular regulated kinases pathway and Nrf2 translocation. Free Radic Biol Med 2016, 95: 16–26.CrossRefPubMedGoogle Scholar
  25. 25.
    Abdelsalam RM, Safar MM. Neuroprotective effects of vildagliptin in rat rotenone Parkinson’s disease model: role of RAGE-NFkappaB and Nrf2-antioxidant signaling pathways. J Neurochem 2015, 133: 700–707.CrossRefPubMedGoogle Scholar
  26. 26.
    Zhu H, Zhang Y, Shi Z, Lu D, Li T, Ding Y, et al. The neuroprotection of liraglutide against ischaemia-induced apoptosis through the activation of the PI3K/AKT and MAPK pathways. Sci Rep 2016, 6: 26859.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Li Y, Tweedie D, Mattson MP, Holloway HW, Greig NH. Enhancing the GLP-1 receptor signaling pathway leads to proliferation and neuroprotection in human neuroblastoma cells. J Neurochem 2010, 113: 1621–1631.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Li M, Li S, Li Y. Liraglutide Promotes cortical neurite outgrowth via the MEK-ERK pathway. Cell Mol Neurobiol 2015, 35: 987–993.CrossRefPubMedGoogle Scholar
  29. 29.
    Aviles-Olmos I, Dickson J, Kefalopoulou Z, Djamshidian A, Ell P, Soderlund T, et al. Exenatide and the treatment of patients with Parkinson’s disease. J Clin Invest 2013, 123: 2730–2736.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Aviles-Olmos I, Dickson J, Kefalopoulou Z, Djamshidian A, Kahan J, Ell P, et al. Motor and cognitive advantages persist 12 months after exenatide exposure in Parkinson’s disease. J Parkinsons Dis 2014, 4: 337–344.CrossRefPubMedGoogle Scholar
  31. 31.
    Athauda D, Maclagan K, Skene SS, Bajwa-Joseph M, Letchford D, Chowdhury K, et al. Exenatide once weekly versus placebo in Parkinson’s disease: a randomised, double-blind, placebo-controlled trial. Lancet 2017, 390: 1664–1675.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Holscher C. Novel dual GLP-1/GIP receptor agonists show neuroprotective effects in Alzheimer’s and Parkinson’s disease models. Neuropharmacology 2018,136(Pt B): 251–259.CrossRefPubMedGoogle Scholar
  33. 33.
    Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, et al. Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev 2009, 61: 283–357.CrossRefPubMedGoogle Scholar
  34. 34.
    Amin FM, Schytz HW. Transport of the pituitary adenylate cyclase-activating polypeptide across the blood-brain barrier: implications for migraine. J Headache Pain 2018, 19: 35.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Reglodi D, Illes A, Opper B, Schafer E, Tamas A, Horvath G. Presence and effects of pituitary adenylate cyclase activating polypeptide under physiological and pathological conditions in the stomach. Front Endocrinol (Lausanne) 2018, 9: 90.CrossRefGoogle Scholar
  36. 36.
    Watson MB, Nobuta H, Abad C, Lee SK, Bala N, Zhu C, et al. PACAP deficiency sensitizes nigrostriatal dopaminergic neurons to paraquat-induced damage and modulates central and peripheral inflammatory activation in mice. Neuroscience 2013, 240: 277–286.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Reglodi D, Kiss P, Lubics A, Tamas A. Review on the protective effects of PACAP in models of neurodegenerative diseases in vitro and in vivo. Curr Pharm Des 2011, 17: 962–972.CrossRefPubMedGoogle Scholar
  38. 38.
    Reglodi D, Renaud J, Tamas A, Tizabi Y, Socias SB, Del-Bel E, et al. Novel tactics for neuroprotection in Parkinson’s disease: Role of antibiotics, polyphenols and neuropeptides. Dis Model Mech 2017, 155: 120–148.Google Scholar
  39. 39.
    Reglodi D, Tamas A, Jungling A, Vaczy A, Rivnyak A, Fulop BD, et al. Protective effects of pituitary adenylate cyclase activating polypeptide against neurotoxic agents. Neurotoxicology 2018, 66: 185–194.CrossRefPubMedGoogle Scholar
  40. 40.
    Poujol de Molliens M, Letourneau M, Devost D, Hebert TE, Fournier A, Chatenet D. New insights about the peculiar role of the 28–38 C-terminal segment and some selected residues in PACAP for signaling and neuroprotection. Biochem Pharmacol 2018, 154:193–202.CrossRefPubMedGoogle Scholar
  41. 41.
    Lamine A, Letourneau M, Doan ND, Maucotel J, Couvineau A, Vaudry H, et al. Characterizations of a synthetic pituitary adenylate cyclase-activating polypeptide analog displaying potent neuroprotective activity and reduced in vivo cardiovascular side effects in a Parkinson’s disease model. Neuropharmacology 2016, 108: 440–450.CrossRefPubMedGoogle Scholar
  42. 42.
    Lee EH, Seo SR. Neuroprotective roles of pituitary adenylate cyclase-activating polypeptide in neurodegenerative diseases. BMB Rep 2014, 47: 369–375.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Wang G, Qi C, Fan GH, Zhou HY, Chen SD. PACAP protects neuronal differentiated PC12 cells against the neurotoxicity induced by a mitochondrial complex I inhibitor, rotenone. FEBS Lett 2005, 579: 4005–4011.CrossRefPubMedGoogle Scholar
  44. 44.
    Bhave SV, Hoffman PL. Phosphatidylinositol 3′-OH kinase and protein kinase A pathways mediate the anti-apoptotic effect of pituitary adenylyl cyclase-activating polypeptide in cultured cerebellar granule neurons: modulation by ethanol. J Neurochem 2004, 88: 359–369.CrossRefPubMedGoogle Scholar
  45. 45.
    Cabezas R, Baez-Jurado E, Hidalgo-Lanussa O, Echeverria V, Ashrad GM, Sahebkar A, et al. Growth factors and neuroglobin in astrocyte protection against neurodegeneration and oxidative stress. Mol Neurobiol 2019, 56: 2339–2351.CrossRefPubMedGoogle Scholar
  46. 46.
    Masmoudi-Kouki O, Douiri S, Hamdi Y, Kaddour H, Bahdoudi S, Vaudry D, et al. Pituitary adenylate cyclase-activating polypeptide protects astroglial cells against oxidative stress-induced apoptosis. J Neurochem 2011, 117: 403–411.CrossRefPubMedGoogle Scholar
  47. 47.
    Douiri S, Bahdoudi S, Hamdi Y, Cubi R, Basille M, Fournier A, et al. Involvement of endogenous antioxidant systems in the protective activity of pituitary adenylate cyclase-activating polypeptide against hydrogen peroxide-induced oxidative damages in cultured rat astrocytes. J Neurochem 2016, 137: 913–930.CrossRefPubMedGoogle Scholar
  48. 48.
    Cheng HH, Ye H, Peng RP, Deng J, Ding Y. Inhibition of retinal ganglion cell apoptosis: regulation of mitochondrial function by PACAP. Neural Regen Res 2018, 13: 923–929.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Joshi N, Singh S. Updates on immunity and inflammation in Parkinson disease pathology. J Neurosci Res 2018, 96: 379–390.CrossRefPubMedGoogle Scholar
  50. 50.
    Waschek JA. VIP and PACAP: neuropeptide modulators of CNS inflammation, injury, and repair. Br J Pharmacol 2013, 169: 512–523.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Elekes K, Sandor K, Moricz A, Kereskai L, Kemeny A, Szoke E, et al. Pituitary adenylate cyclase-activating polypeptide plays an anti-inflammatory role in endotoxin-induced airway inflammation: in vivo study with gene-deleted mice. Peptides 2011, 32: 1439–1446.CrossRefPubMedGoogle Scholar
  52. 52.
    Nedvig K, Szabo G, Csukas D, Sandor J, Nemeth J, Kovacs K, et al. Examination of cytoprotective and anti-inflammatory effect of PACAP-38 on small bowel autotransplantation. Magy Seb 2013, 66: 250–255.CrossRefPubMedGoogle Scholar
  53. 53.
    Sakamoto K, Kuno K, Takemoto M, He P, Ishikawa T, Onishi S, et al. Pituitary adenylate cyclase-activating polypeptide protects glomerular podocytes from inflammatory injuries. J Diabetes Res 2015, 2015: 727152.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Brown D, Tamas A, Reglodi D, Tizabi Y. PACAP protects against inflammatory-mediated toxicity in dopaminergic SH-SY5Y cells: implication for Parkinson’s disease. Neurotox Res 2014, 26: 230–239.CrossRefPubMedGoogle Scholar
  55. 55.
    Qin X, Sun ZQ, Dai XJ, Mao SS, Zhang JL, Jia MX, et al. Toll-like receptor 4 signaling is involved in PACAP-induced neuroprotection in BV2 microglial cells under OGD/reoxygenation. Neurol Res 2012, 34: 379–389.CrossRefPubMedGoogle Scholar
  56. 56.
    Brown D, Tamas A, Reglodi D, Tizabi Y. PACAP protects against salsolinol-induced toxicity in dopaminergic SH-SY5Y cells: implication for Parkinson’s disease. J Mol Neurosci 2013, 50: 600–607.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Fukuchi M, Tabuchi A, Kuwana Y, Watanabe S, Inoue M, Takasaki I, et al. Neuromodulatory effect of Galphas- or Galphaq-coupled G-protein-coupled receptor on NMDA receptor selectively activates the NMDA receptor/Ca2+/calcineurin/cAMP response element-binding protein-regulated transcriptional coactivator 1 pathway to effectively induce brain-derived neurotrophic factor expression in neurons. J Neurosci 2015, 35: 5606–5624.CrossRefPubMedGoogle Scholar
  58. 58.
    Oh IS, Shimizu H, Satoh T, Okada S, Adachi S, Inoue K, et al. Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature 2006, 443: 709–712.CrossRefGoogle Scholar
  59. 59.
    Goebel-Stengel M, Wang L. Central and peripheral expression and distribution of NUCB2/nesfatin-1. Curr Pharm Des 2013, 19: 6935–6940.CrossRefPubMedGoogle Scholar
  60. 60.
    Price TO, Samson WK, Niehoff ML, Banks WA. Permeability of the blood-brain barrier to a novel satiety molecule nesfatin-1. Peptides 2007, 28: 2372–2381.CrossRefPubMedGoogle Scholar
  61. 61.
    Ozcan M, Gok ZB, Kacar E, Serhatlioglu I, Kelestimur H. Nesfatin-1 increases intracellular calcium concentration by protein kinase C activation in cultured rat dorsal root ganglion neurons. Neurosci Lett 2016, 619: 177–181.CrossRefPubMedGoogle Scholar
  62. 62.
    Ishida E, Hashimoto K, Shimizu H, Okada S, Satoh T, Kato I, et al. Nesfatin-1 induces the phosphorylation levels of cAMP response element-binding protein for intracellular signaling in a neural cell line. PLoS ONE 2012, 7: e50918.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Dore R, Levata L, Lehnert H, Schulz C. Nesfatin-1: functions and physiology of a novel regulatory peptide. J Endocrinol 2017, 232: R45–R65.CrossRefPubMedGoogle Scholar
  64. 64.
    Li C, Zhang F, Shi L, Zhang H, Tian Z, Xie J, et al. Nesfatin-1 decreases excitability of dopaminergic neurons in the substantia nigra. J Mol Neurosci 2014, 52: 419–424.CrossRefPubMedGoogle Scholar
  65. 65.
    Sulzer D. Multiple hit hypotheses for dopamine neuron loss in Parkinson’s disease. Trends Neurosci 2007, 30: 244–250.CrossRefPubMedGoogle Scholar
  66. 66.
    Shen XL, Song N, Du XX, Li Y, Xie JX, Jiang H. Nesfatin-1 protects dopaminergic neurons against MPP(+)/MPTP-induced neurotoxicity through the C-Raf-ERK1/2-dependent anti-apoptotic pathway. Sci Rep 2017, 7: 40961.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Tang CH, Fu XJ, Xu XL, Wei XJ, Pan HS. The anti-inflammatory and anti-apoptotic effects of nesfatin-1 in the traumatic rat brain. Peptides 2012, 36: 39–45.CrossRefPubMedGoogle Scholar
  68. 68.
    Ozsavci D, Ersahin M, Sener A, Ozakpinar OB, Toklu HZ, Akakin D, et al. The novel function of nesfatin-1 as an anti-inflammatory and antiapoptotic peptide in subarachnoid hemorrhage-induced oxidative brain damage in rats. Neurosurgery 2011, 68: 1699–1708.CrossRefPubMedGoogle Scholar
  69. 69.
    Kowaltowski AJ, Castilho RF, Vercesi AE. Mitochondrial permeability transition and oxidative stress. FEBS Lett 2001, 495: 12–15.CrossRefPubMedGoogle Scholar
  70. 70.
    Tan Z, Xu H, Shen X, Jiang H. Nesfatin-1 antagonized rotenone-induced neurotoxicity in MES23.5 dopaminergic cells. Peptides 2015, 69:109–114.CrossRefPubMedGoogle Scholar
  71. 71.
    Erfani S, Moghimi A, Aboutaleb N, Khaksari M. Protective effects of Nesfatin-1 peptide on cerebral ischemia reperfusion injury via inhibition of neuronal cell death and enhancement of antioxidant defenses. Metab Brain Dis 2018.Google Scholar
  72. 72.
    Brailoiu GC, Dun SL, Brailoiu E, Inan S, Yang J, Chang JK, et al. Nesfatin-1: distribution and interaction with a G protein-coupled receptor in the rat brain. Endocrinology 2007, 148: 5088–5094.CrossRefPubMedGoogle Scholar
  73. 73.
    Ge JF, Xu YY, Qin G, Pan XY, Cheng JQ, Chen FH. Nesfatin-1, a potent anorexic agent, decreases exploration and induces anxiety-like behavior in rats without altering learning or memory. Brain Res 2015, 1629: 171–181.CrossRefPubMedGoogle Scholar
  74. 74.
    Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999, 402: 656–660.CrossRefPubMedGoogle Scholar
  75. 75.
    Müller TD, Nogueiras R, Andermann ML, Andrews ZB, Anker SD, Argente J, et al. Ghrelin. Mol Metab 2015, 4: 437–460.CrossRefPubMedGoogle Scholar
  76. 76.
    Hosoda H, Kojima M, Matsuo H, Kangawa K. Ghrelin and des-acyl ghrelin: two major forms of rat ghrelin peptide in gastrointestinal tissue. Biochem Biophys Res Commun 2000, 279: 909–913.CrossRefPubMedGoogle Scholar
  77. 77.
    Banks WA, Tschop M, Robinson SM, Heiman ML. Extent and direction of ghrelin transport across the blood-brain barrier is determined by its unique primary structure. J Pharmacol Exp Ther 2002, 302: 822–827.CrossRefPubMedGoogle Scholar
  78. 78.
    Suda Y, Kuzumaki N, Sone T, Narita M, Tanaka K, Hamada Y, et al. Down-regulation of ghrelin receptors on dopaminergic neurons in the substantia nigra contributes to Parkinson’s disease-like motor dysfunction. Mol Brain 2018, 11: 6.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Unger MM, Moller JC, Mankel K, Eggert KM, Bohne K, Bodden M, et al. Postprandial ghrelin response is reduced in patients with Parkinson’s disease and idiopathic REM sleep behaviour disorder: a peripheral biomarker for early Parkinson’s disease? J Neurol 2011, 258: 982–990.CrossRefPubMedGoogle Scholar
  80. 80.
    Song N, Wang W, Jia F, Du X, Xie A, He Q, et al. Assessments of plasma ghrelin levels in the early stages of parkinson’s disease. Mov Disord 2017, 32: 1487–1491.CrossRefPubMedGoogle Scholar
  81. 81.
    Karasawa H, Pietra C, Giuliano C, Garcia-Rubio S, Xu X, Yakabi S, et al. New ghrelin agonist, HM01 alleviates constipation and L-dopa-delayed gastric emptying in 6-hydroxydopamine rat model of Parkinson’s disease. Neurogastroenterol Motil 2014, 26: 1771–1782.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Shi L, Bian X, Qu Z, Ma Z, Zhou Y, Wang K, et al. Peptide hormone ghrelin enhances neuronal excitability by inhibition of Kv7/KCNQ channels. Nat Commun 2013, 4: 1435.CrossRefPubMedGoogle Scholar
  83. 83.
    Liu H, Jia L, Chen X, Shi L, Xie J. The Kv7/KCNQ channel blocker XE991 protects nigral dopaminergic neurons in the 6-hydroxydopamine rat model of Parkinson’s disease. Brain Res Bull 2018, 137: 132–139.CrossRefPubMedGoogle Scholar
  84. 84.
    Bayliss JA, Lemus M, Santos VV, Deo M, Elsworth JD, Andrews ZB. Acylated but not des-acyl ghrelin is neuroprotective in an MPTP mouse model of Parkinson’s disease. J Neurochem 2016, 137: 460–471.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Bayliss JA, Lemus MB, Stark R, Santos VV, Thompson A, Rees DJ, et al. Ghrelin-AMPK signaling mediates the neuroprotective effects of calorie restriction in Parkinson’s disease. J Neurosci 2016, 36: 3049–3063.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Moon M, Kim HG, Hwang L, Seo JH, Kim S, Hwang S, et al. Neuroprotective effect of ghrelin in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease by blocking microglial activation. Neurotox Res 2009, 15: 332–347.CrossRefPubMedGoogle Scholar
  87. 87.
    Jiang H, Li LJ, Wang J, Xie JX. Ghrelin antagonizes MPTP-induced neurotoxicity to the dopaminergic neurons in mouse substantia nigra. Exp Neurol 2008, 212: 532–537.CrossRefPubMedGoogle Scholar
  88. 88.
    Chung H, Seo S, Moon M, Park S. Phosphatidylinositol-3-kinase/Akt/glycogen synthase kinase-3 beta and ERK1/2 pathways mediate protective effects of acylated and unacylated ghrelin against oxygen-glucose deprivation-induced apoptosis in primary rat cortical neuronal cells. J Endocrinol 2008, 198: 511–521.CrossRefPubMedGoogle Scholar
  89. 89.
    Chung H, Kim E, Lee DH, Seo S, Ju S, Lee D, et al. Ghrelin inhibits apoptosis in hypothalamic neuronal cells during oxygen-glucose deprivation. Endocrinol 2007, 148: 148–159.CrossRefGoogle Scholar
  90. 90.
    Ishii N, Tsubouchi H, Miura A, Yanagi S, Ueno H, Shiomi K, et al. Ghrelin alleviates paclitaxel-induced peripheral neuropathy by reducing oxidative stress and enhancing mitochondrial anti-oxidant functions in mice. Eur J Pharmacol 2018, 819: 35–42.CrossRefPubMedGoogle Scholar
  91. 91.
    Andrews ZB, Erion D, Beiler R, Liu ZW, Abizaid A, Zigman J, et al. Ghrelin promotes and protects nigrostriatal dopamine function via a UCP2-dependent mitochondrial mechanism. J Neurosci 2009, 29: 14057–14065.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Lopez NE, Gaston L, Lopez KR, Coimbra RC, Hageny A, Putnam J, et al. Early ghrelin treatment attenuates disruption of the blood brain barrier and apoptosis after traumatic brain injury through a UCP-2 mechanism. Brain Res 2012, 1489: 140–148.CrossRefPubMedGoogle Scholar
  93. 93.
    Liu L, Xu H, Jiang H, Wang J, Song N, Xie J. Ghrelin prevents 1-methyl-4-phenylpyridinium ion-induced cytotoxicity through antioxidation and NF-kappaB modulation in MES23.5 cells. Exp Neurol 2010, 222: 25–29.CrossRefPubMedGoogle Scholar
  94. 94.
    Morgan AH, Rees DJ, Andrews ZB, Davies JS. Ghrelin mediated neuroprotection—A possible therapy for Parkinson’s disease? Neuropharmacology 2018, 136: 317–326.CrossRefPubMedGoogle Scholar
  95. 95.
    Srivastava S, Haigis MC. Role of sirtuins and calorie restriction in neuroprotection: implications in Alzheimer’s and Parkinson’s diseases. Curr Pharm Des 2011, 17: 3418–3433.CrossRefPubMedGoogle Scholar
  96. 96.
    Ferreira-Marques M, Aveleira CA, Carmo-Silva S, Botelho M, Pereira de Almeida L, Cavadas C. Caloric restriction stimulates autophagy in rat cortical neurons through neuropeptide Y and ghrelin receptors activation. Aging (Albany NY) 2016, 8: 1470–1484.CrossRefGoogle Scholar
  97. 97.
    Mao Y, Cheng J, Yu F, Li H, Guo C, Fan X. Ghrelin attenuated lipotoxicity via autophagy induction and nuclear factor-kappaB inhibition. Cell Physiol Biochem 2015, 37: 563–576.CrossRefPubMedGoogle Scholar
  98. 98.
    Wan SX, Shi B, Lou XL, Liu JQ, Ma GG, Liang DY, et al. Ghrelin protects small intestinal epithelium against sepsis-induced injury by enhancing the autophagy of intestinal epithelial cells. Biomed Pharmacother 2016, 83: 1315–1320.CrossRefPubMedGoogle Scholar
  99. 99.
    Xu M, Liu L, Song C, Chen W, Gui S. Ghrelin improves vascular autophagy in rats with vascular calcification. Life Sci 2017, 179: 23–29.CrossRefPubMedGoogle Scholar
  100. 100.
    Bayliss JA, Andrews ZB. Ghrelin is neuroprotective in Parkinson’s disease: molecular mechanisms of metabolic neuroprotection. Ther Adv Endocrinol Metab 2013, 4: 25–36.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 2011, 13: 132–141.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Han K, Wang QY, Wang CX, Luan SY, Tian WP, Wang Y, et al. Ghrelin improves pilocarpineinduced cerebral cortex inflammation in epileptic rats by inhibiting NFkappaB and TNFalpha. Mol Med Rep 2018, 18: 3563–3568.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Beynon AL, Brown MR, Wright R, Rees MI, Sheldon IM, Davies JS. Ghrelin inhibits LPS-induced release of IL-6 from mouse dopaminergic neurones. J Neuroinflamm 2013, 10: 40.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Frago LM, Chowen JA. Involvement of astrocytes in mediating the central effects of ghrelin. Int J Mol Sci 2017, 18: E536. Scholar
  105. 105.
    Kent BA, Beynon AL, Hornsby AK, Bekinschtein P, Bussey TJ, Davies JS, et al. The orexigenic hormone acyl-ghrelin increases adult hippocampal neurogenesis and enhances pattern separation. Psychoneuroendocrinology 2015, 51: 431–439.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Sato M, Nakahara K, Goto S, Kaiya H, Miyazato M, Date Y, et al. Effects of ghrelin and des-acyl ghrelin on neurogenesis of the rat fetal spinal cord. Biochem Biophys Res Commun 2006, 350: 598–603.CrossRefPubMedGoogle Scholar
  107. 107.
    Maswood N, Young J, Tilmont E, Zhang Z, Gash DM, Gerhardt GA, et al. Caloric restriction increases neurotrophic factor levels and attenuates neurochemical and behavioral deficits in a primate model of Parkinson’s disease. Proc Natl Acad Sci U S A 2004, 101: 18171–18176.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Korkmaz OT, Tuncel N. Advantages of Vasoactive Intestinal peptide for the future treatment of Parkinson’s disease. Curr Pharm Des 2018, 24: 4693–4701.CrossRefPubMedGoogle Scholar
  109. 109.
    Hirabayashi T, Nakamachi T, Shioda S. Discovery of PACAP and its receptors in the brain. J Headache Pain 2018, 19: 28.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Lonovics J, Devitt P, Watson LC, Rayford PL, Thompson JC. Pancreatic polypeptide. A review. Arch Surg 1981, 116: 1256–1264.CrossRefPubMedGoogle Scholar
  111. 111.
    Knudsen K, Hartmann B, Fedorova TD, Ostergaard K, Krogh K, Moller N, et al. Pancreatic polypeptide in Parkinson’s disease: A potential marker of parasympathetic denervation. J Parkinsons Dis 2017, 7: 645–652.CrossRefPubMedGoogle Scholar
  112. 112.
    Unger MM, Ekman R, Bjorklund AK, Karlsson G, Andersson C, Mankel K, et al. Unimpaired postprandial pancreatic polypeptide secretion in Parkinson’s disease and REM sleep behavior disorder. Mov Disord 2013, 28: 529–533.CrossRefPubMedGoogle Scholar
  113. 113.
    Kulinska-Niedziela I, Paluszak J. Neurotensin–structure, origin and biological function. Postepy Hig Med Dosw 1997, 51: 329–342.PubMedGoogle Scholar
  114. 114.
    Chinaglia G, Probst A, Palacios JM. Neurotensin receptors in Parkinson’s disease and progressive supranuclear palsy: an autoradiographic study in basal ganglia. Neuroscience 1990, 39: 351–360.CrossRefPubMedGoogle Scholar
  115. 115.
    Uhl GR, Whitehouse PJ, Price DL, Tourtelotte WW, Kuhar MJ. Parkinson’s disease: depletion of substantia nigra neurotensin receptors. Brain Res 1984, 308: 186–190.CrossRefPubMedGoogle Scholar
  116. 116.
    Schimpff RM, Avard C, Fenelon G, Lhiaubet AM, Tenneze L, Vidailhet M, et al. Increased plasma neurotensin concentrations in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 2001, 70: 784–786.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Boules M, Li Z, Smith K, Fredrickson P, Richelson E. Diverse roles of neurotensin agonists in the central nervous system. Front Endocrinol (Lausanne) 2013, 4: 36.CrossRefGoogle Scholar
  118. 118.
    Boules M, Warrington L, Fauq A, McCormick D, Richelson E. Antiparkinson-like effects of a novel neurotensin analog in unilaterally 6-hydroxydopamine lesioned rats. Eur J Pharmacol 2001, 428: 227–233.CrossRefPubMedGoogle Scholar
  119. 119.
    Lazarova M, Popatanasov A, Klissurov R, Stoeva S, Pajpanova T. Preventive effect of two new neurotensin analogues on Parkinson’s disease rat model. J Mol Neurosci 2018, 66: 552–560.CrossRefPubMedGoogle Scholar
  120. 120.
    Ferraro L, Tomasini MC, Beggiato S, Guerrini R, Salvadori S, Fuxe K, et al. Emerging evidence for neurotensin receptor 1 antagonists as novel pharmaceutics in neurodegenerative disorders. Mini Rev Med Chem 2009, 9: 1429–1438.CrossRefPubMedGoogle Scholar
  121. 121.
    Mesnage V, Houeto JL, Bonnet AM, Clavier I, Arnulf I, Cattelin F, et al. Neurokinin B, neurotensin, and cannabinoid receptor antagonists and Parkinson disease. Clin Neuropharmacol 2004, 27: 108–110.CrossRefPubMedGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS 2019

Authors and Affiliations

  1. 1.Department of Physiology and Pathophysiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders and State Key Disciplines: PhysiologyMedical College of Qingdao UniversityQingdaoChina

Personalised recommendations