Age-Related Reduction in Cortical Thickness in First-Episode Treatment-Naïve Patients with Schizophrenia

  • Yin Lin
  • Mingli Li
  • Yi Zhou
  • Wei Deng
  • Xiaohong Ma
  • Qiang Wang
  • Wanjun Guo
  • Yinfei Li
  • Lijun Jiang
  • Xun Hu
  • Nanyin ZhangEmail author
  • Tao LiEmail author
Original Article


Substantial evidence supports the neurodevelopmental hypothesis of schizophrenia. Meanwhile, progressive neurodegenerative processes have also been reported, leading to the hypothesis that neurodegeneration is a characteristic component in the neuropathology of schizophrenia. However, a major challenge for the neurodegenerative hypothesis is that antipsychotic drugs used by patients have profound impact on brain structures. To clarify this potential confounding factor, we measured the cortical thickness across the whole brain using high-resolution T1-weighted magnetic resonance imaging in 145 first-episode and treatment-naïve patients with schizophrenia and 147 healthy controls. The results showed that, in the patient group, the frontal, temporal, parietal, and cingulate gyri displayed a significant age-related reduction of cortical thickness. In the control group, age-related cortical thickness reduction was mostly located in the frontal, temporal, and cingulate gyri, albeit to a lesser extent. Importantly, relative to healthy controls, patients exhibited a significantly smaller age-related cortical thickness in the anterior cingulate, inferior temporal, and insular gyri in the right hemisphere. These results provide evidence supporting the existence of neurodegenerative processes in schizophrenia and suggest that these processes already occur in the early stage of the illness.


Schizophrenia Cortical thickness Age-related 



This work was supported by the National Basic Research Development Program of China (2016YFC0904300), National Natural Science Foundation of China (81630030, 81130024 and 81528008), the National Natural Science Foundation of China/Research Grants Council of Hong Kong Joint Research Scheme (81461168029), and the “135” Project for Disciplines of Excellence, West China Hospital of Sichuan University, China (ZY2016103 and ZY2016203).

Conflict of interest

Authors declare that they have no conflict of interest.


  1. 1.
    Insel TR. Rethinking schizophrenia. Nature 2010, 468: 187–193.CrossRefGoogle Scholar
  2. 2.
    Weinberger DR. Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 1987, 44: 660–669.CrossRefGoogle Scholar
  3. 3.
    Murray RM, Lewis SW. Is schizophrenia a neurodevelopmental disorder? Br Med J (Clin Res Ed) 1987, 295: 681–682.CrossRefGoogle Scholar
  4. 4.
    Zhao X, Tian L, Yan J, Yue W, Yan H, Zhang D. Abnormal rich-club organization associated with compromised cognitive function in patients with schizophrenia and their unaffected parents. Neurosci Bull 2017, 33: 445–454.CrossRefGoogle Scholar
  5. 5.
    Fenton WS, McGlashan TH. Antecedents, symptom progression, and long-term outcome of the deficit syndrome in schizophrenia. Am J Psychiatry 1994, 151: 351–356.CrossRefGoogle Scholar
  6. 6.
    Loebel AD, Lieberman JA, Alvir JM, Mayerhoff DI, Geisler SH, Szymanski SR. Duration of psychosis and outcome in first-episode schizophrenia. Am J Psychiatry 1992, 149: 1183–1188.CrossRefGoogle Scholar
  7. 7.
    Wyatt RJ. Neuroleptics and the natural course of schizophrenia. Schizophr Bull 1991, 17: 325–351.CrossRefGoogle Scholar
  8. 8.
    Cahn W, Hulshoff Pol HE, Lems EB, van Haren NE, Schnack HG, van der Linden JA, et al. Brain volume changes in first-episode schizophrenia: a 1-year follow-up study. Arch Gen Psychiatry 2002, 59: 1002–1010.CrossRefGoogle Scholar
  9. 9.
    DeLisi LE, Tew W, Xie S, Hoff AL, Sakuma M, Kushner M, et al. A prospective follow-up study of brain morphology and cognition in first-episode schizophrenic patients: preliminary findings. Biol Psychiatry 1995, 38: 349–360.CrossRefGoogle Scholar
  10. 10.
    DeLisi LE, Sakuma M, Tew W, Kushner M, Hoff AL, Grimson R. Schizophrenia as a chronic active brain process: a study of progressive brain structural change subsequent to the onset of schizophrenia. Psychiatry Res 1997, 74: 129–140.CrossRefGoogle Scholar
  11. 11.
    Whitford TJ, Grieve SM, Farrow TF, Gomes L, Brennan J, Harris AW, et al. Progressive grey matter atrophy over the first 2-3 years of illness in first-episode schizophrenia: a tensor-based morphometry study. Neuroimage 2006, 32: 511–519.CrossRefGoogle Scholar
  12. 12.
    Ho BC, Andreasen NC, Nopoulos P, Arndt S, Magnotta V, Flaum M. Progressive structural brain abnormalities and their relationship to clinical outcome: a longitudinal magnetic resonance imaging study early in schizophrenia. Arch Gen Psychiatry 2003, 60: 585–594.CrossRefGoogle Scholar
  13. 13.
    Kasai K, Shenton ME, Salisbury DF, Hirayasu Y, Lee CU, Ciszewski AA, et al. Progressive decrease of left superior temporal gyrus gray matter volume in patients with first-episode schizophrenia. Am J Psychiatry 2003, 160: 156–164.CrossRefGoogle Scholar
  14. 14.
    Mathalon DH, Sullivan EV, Lim KO, Pfefferbaum A. Progressive brain volume changes and the clinical course of schizophrenia in men: a longitudinal magnetic resonance imaging study. Arch Gen Psychiatry 2001, 58: 148–157.CrossRefGoogle Scholar
  15. 15.
    Jacobsen LK, Giedd JN, Castellanos FX, Vaituzis AC, Hamburger SD, Kumra S, et al. Progressive reduction of temporal lobe structures in childhood-onset schizophrenia. Am J Psychiatry 1998, 155: 678–685.CrossRefGoogle Scholar
  16. 16.
    Thompson PM, Vidal C, Giedd JN, Gochman P, Blumenthal J, Nicolson R, et al. Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. Proc Natl Acad Sci U S A 2001, 98: 11650–11655.CrossRefGoogle Scholar
  17. 17.
    Keller A, Castellanos FX, Vaituzis AC, Jeffries NO, Giedd JN, Rapoport JL. Progressive loss of cerebellar volume in childhood-onset schizophrenia. Am J Psychiatry 2003, 160: 128–133.CrossRefGoogle Scholar
  18. 18.
    Sporn AL, Greenstein DK, Gogtay N, Jeffries NO, Lenane M, Gochman P, et al. Progressive brain volume loss during adolescence in childhood-onset schizophrenia. Am J Psychiatry 2003, 160: 2181–2189.CrossRefGoogle Scholar
  19. 19.
    van Haren NE, Schnack HG, Cahn W, van den Heuvel MP, Lepage C, Collins L, et al. Changes in cortical thickness during the course of illness in schizophrenia. Arch Gen Psychiatry 2011, 68: 871–880.CrossRefGoogle Scholar
  20. 20.
    Xie T, Zhang X, Tang X, Zhang H, Yu M, Gong G, et al. Mapping convergent and divergent cortical thinning patterns in patients with deficit and nondeficit schizophrenia. Schizophr Bull 2019, 45: 211–221.CrossRefGoogle Scholar
  21. 21.
    Buchy L, Makowski C, Malla A, Joober R, Lepage M. A longitudinal study of cognitive insight and cortical thickness in first-episode psychosis. Schizophr Res 2018, 193: 251–260.CrossRefGoogle Scholar
  22. 22.
    Wiegand LC, Warfield SK, Levitt JJ, Hirayasu Y, Salisbury DF, Heckers S, et al. Prefrontal cortical thickness in first-episode psychosis: a magnetic resonance imaging study. Biol Psychiatry 2004, 55: 131–140.CrossRefGoogle Scholar
  23. 23.
    Rais M, Cahn W, Schnack HG, Hulshoff Pol HE, Kahn RS, van Haren NE. Brain volume reductions in medication-naive patients with schizophrenia in relation to intelligence quotient. Psychol Med 2012, 42: 1847–1856.CrossRefGoogle Scholar
  24. 24.
    Lieberman JA. Is schizophrenia a neurodegenerative disorder? A clinical and neurobiological perspective. Biol Psychiatry 1999, 46: 729–739.CrossRefGoogle Scholar
  25. 25.
    Meyer-Lindenberg A. Neuroimaging and the question of neurodegeneration in schizophrenia. Prog Neurobiol 2011, 95: 514–516.CrossRefGoogle Scholar
  26. 26.
    Snitz BE, MacDonald A 3rd, Cohen JD, Cho RY, Becker T, Carter CS. Lateral and medial hypofrontality in first-episode schizophrenia: functional activity in a medication-naive state and effects of short-term atypical antipsychotic treatment. Am J Psychiatry 2005, 162: 2322–2329.CrossRefGoogle Scholar
  27. 27.
    Gur RE, Maany V, Mozley PD, Swanson C, Bilker W, Gur RC. Subcortical MRI volumes in neuroleptic-naive and treated patients with schizophrenia. Am J Psychiatry 1998, 155: 1711–1717.CrossRefGoogle Scholar
  28. 28.
    Ebdrup BH, Skimminge A, Rasmussen H, Aggernaes B, Oranje B, Lublin H, et al. Progressive striatal and hippocampal volume loss in initially antipsychotic-naive, first-episode schizophrenia patients treated with quetiapine: relationship to dose and symptoms. Int J Neuropsychopharmacol 2011, 14: 69–82.CrossRefGoogle Scholar
  29. 29.
    Tost H, Braus DF, Hakimi S, Ruf M, Vollmert C, Hohn F, et al. Acute D2 receptor blockade induces rapid, reversible remodelling in human cortical-striatal circuits. Nat Neurosci 2010, 13: 920–922.CrossRefGoogle Scholar
  30. 30.
    Ho BC, Andreasen NC, Ziebell S, Pierson R, Magnotta V. Long-term antipsychotic treatment and brain volumes: a longitudinal study of first-episode schizophrenia. Arch Gen Psychiatry 2011, 68: 128–137.CrossRefGoogle Scholar
  31. 31.
    Lewis DA. Antipsychotic medications and brain volume: do we have cause for concern? Arch Gen Psychiatry 2011, 68: 126–127.CrossRefGoogle Scholar
  32. 32.
    Kuperberg GR, Broome MR, McGuire PK, David AS, Eddy M, Ozawa F, et al. Regionally localized thinning of the cerebral cortex in schizophrenia. Arch Gen Psychiatry 2003, 60: 878–888.CrossRefGoogle Scholar
  33. 33.
    Nesvag R, Lawyer G, Varnas K, Fjell AM, Walhovd KB, Frigessi A, et al. Regional thinning of the cerebral cortex in schizophrenia: effects of diagnosis, age and antipsychotic medication. Schizophr Res 2008, 98: 16–28.CrossRefGoogle Scholar
  34. 34.
    Kubota M, Miyata J, Yoshida H, Hirao K, Fujiwara H, Kawada R, et al. Age-related cortical thinning in schizophrenia. Schizophr Res 2011, 125: 21–29.CrossRefGoogle Scholar
  35. 35.
    Jessen K, Rostrup E, Mandl RCW, Nielsen MO, Bak N, Fagerlund B, et al. Cortical structures and their clinical correlates in antipsychotic-naive schizophrenia patients before and after 6 weeks of dopamine D2/3 receptor antagonist treatment. Psychol Med 2018: 1–10.Google Scholar
  36. 36.
    Leung M, Cheung C, Yu K, Yip B, Sham P, Li Q, et al. Gray matter in first-episode schizophrenia before and after antipsychotic drug treatment. Anatomical likelihood estimation meta-analyses with sample size weighting. Schizophr Bull 2011, 37: 199–211.CrossRefGoogle Scholar
  37. 37.
    First MB, Spitzer RL, Gibbon M, Williams JBW. Structured Clinical Interview for DSM-IV Axis I & Axis II Disorders (Version 2.0). New York: Biometrics Research, New York State Psychiatric Institute, 1995.Google Scholar
  38. 38.
    Kay SR, Fiszbein A, Opler LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 1987, 13: 261–276.CrossRefGoogle Scholar
  39. 39.
    Morosini PL, Magliano L, Brambilla L, Ugolini S, Pioli R. Development, reliability and acceptability of a new version of the DSM-IV Social and Occupational Functioning Assessment Scale (SOFAS) to assess routine social functioning. Acta Psychiatr Scand 2000, 101: 323–329.Google Scholar
  40. 40.
    Annett M. A classification of hand preference by association analysis. Br J Psychol 1970, 61: 303–321.CrossRefGoogle Scholar
  41. 41.
    Liu Z, Zhang J, Zhang K, Zhang J, Li X, Cheng W, et al. Distinguishable brain networks relate disease susceptibility to symptom expression in schizophrenia. Hum Brain Mapp 2018. Scholar
  42. 42.
    Liang S, Li Y, Zhang Z, Kong X, Wang Q, Deng W, et al. Classification of first-episode schizophrenia using multimodal brain features: a combined structural and diffusion imaging study. Schizophr Bull 2018. Scholar
  43. 43.
    Wang Q, Zhang J, Liu Z, Crow TJ, Zhang K, Li M, et al. “Brain connectivity deviates by sex and hemisphere in the first episode of schizophrenia”-A route to the genetic basis of language and psychosis? Schizophr Bull 2018. Scholar
  44. 44.
    Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 1999, 9: 179–194.Google Scholar
  45. 45.
    Fischl B, Sereno MI, Dale AM. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 1999, 9: 195–207.CrossRefGoogle Scholar
  46. 46.
    Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A 2000, 97: 11050–11055.CrossRefGoogle Scholar
  47. 47.
    Bachmann S, Bottmer C, Pantel J, Schroder J, Amann M, Essig M, et al. MRI-morphometric changes in first-episode schizophrenic patients at 14 months follow-up. Schizophr Res 2004, 67: 301–303.CrossRefGoogle Scholar
  48. 48.
    Zhang W, Deng W, Yao L, Xiao Y, Li F, Liu J, et al. Brain structural abnormalities in a group of never-medicated patients with long-term schizophrenia. Am J Psychiatry 2015, 172: 995–1003.CrossRefGoogle Scholar
  49. 49.
    Godwin D, Alpert KI, Wang L, Mamah D. Regional cortical thinning in young adults with schizophrenia but not psychotic or non-psychotic bipolar I disorder. Int J Bipolar Disord 2018, 6: 16.CrossRefGoogle Scholar
  50. 50.
    Kong L, Herold CJ, Zollner F, Salat DH, Lasser MM, Schmid LA, et al. Comparison of grey matter volume and thickness for analysing cortical changes in chronic schizophrenia: a matter of surface area, grey/white matter intensity contrast, and curvature. Psychiatry Res 2015, 231: 176–183.CrossRefGoogle Scholar
  51. 51.
    Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD. Neurodegenerative diseases target large-scale human brain networks. Neuron 2009, 62: 42–52.CrossRefGoogle Scholar
  52. 52.
    Takahashi T, Wood SJ, Yung AR, Phillips LJ, Soulsby B, McGorry PD, et al. Insular cortex gray matter changes in individuals at ultra-high-risk of developing psychosis. Schizophr Res 2009, 111: 94–102.CrossRefGoogle Scholar
  53. 53.
    Fornito A, Yung AR, Wood SJ, Phillips LJ, Nelson B, Cotton S, et al. Anatomic abnormalities of the anterior cingulate cortex before psychosis onset: an MRI study of ultra-high-risk individuals. Biol Psychiatry 2008, 64: 758–765.CrossRefGoogle Scholar
  54. 54.
    Van Haren NE, Cahn W, Hulshoff Pol HE, Kahn RS. Confounders of excessive brain volume loss in schizophrenia. Neurosci Biobehav Rev 2013, 37: 2418–2423.CrossRefGoogle Scholar
  55. 55.
    Ebdrup BH, Norbak H, Borgwardt S, Glenthoj B. Volumetric changes in the basal ganglia after antipsychotic monotherapy: a systematic review. Curr Med Chem 2013, 20: 438–447.Google Scholar
  56. 56.
    Hulshoff Pol HE, Schnack HG, Bertens MG, van Haren NE, van der Tweel I, Staal WG, et al. Volume changes in gray matter in patients with schizophrenia. Am J Psychiatry 2002, 159: 244–250.CrossRefGoogle Scholar
  57. 57.
    van Haren NE, Hulshoff Pol HE, Schnack HG, Cahn W, Brans R, Carati I, et al. Progressive brain volume loss in schizophrenia over the course of the illness: evidence of maturational abnormalities in early adulthood. Biol Psychiatry 2008, 63: 106–113.CrossRefGoogle Scholar
  58. 58.
    Hu ML, Zong XF, Mann JJ, Zheng JJ, Liao YH, Li ZC, et al. A review of the functional and anatomical default mode network in schizophrenia. Neurosci Bull 2017, 33: 73–84.CrossRefGoogle Scholar
  59. 59.
    Lieberman JA. Pathophysiologic mechanisms in the pathogenesis and clinical course of schizophrenia. J Clin Psychiatry 1999, 60: 9–12.CrossRefGoogle Scholar
  60. 60.
    Lieberman JA, Sheitman BB, Kinon BJ. Neurochemical sensitization in the pathophysiology of schizophrenia: deficits and dysfunction in neuronal regulation and plasticity. Neuropsychopharmacology 1997, 17: 205–229.CrossRefGoogle Scholar
  61. 61.
    Waddington JL, Scully PJ, Youssef HA. Developmental trajectory and disease progression in schizophrenia: the conundrum, and insights from a 12-year prospective study in the Monaghan 101. Schizophr Res 1997, 23: 107–118.CrossRefGoogle Scholar
  62. 62.
    Woods BT. Is schizophrenia a progressive neurodevelopmental disorder? Toward a unitary pathogenetic mechanism. Am J Psychiatry 1998, 155: 1661–1670.CrossRefGoogle Scholar
  63. 63.
    Keshavan MS. Development, disease and degeneration in schizophrenia: a unitary pathophysiological model. J Psychiatr Res 1999, 33: 513–521.CrossRefGoogle Scholar
  64. 64.
    Keshavan MS, Hogarty GE. Brain maturational processes and delayed onset in schizophrenia. Dev Psychopathol 1999, 11: 525–543.CrossRefGoogle Scholar
  65. 65.
    Shaw P, Greenstein D, Lerch J, Clasen L, Lenroot R, Gogtay N, et al. Intellectual ability and cortical development in children and adolescents. Nature 2006, 440: 676–679.CrossRefGoogle Scholar
  66. 66.
    Lewis DA, Pierri JN, Volk DW, Melchitzky DS, Woo TU. Altered GABA neurotransmission and prefrontal cortical dysfunction in schizophrenia. Biol Psychiatry 1999, 46: 616–626.CrossRefGoogle Scholar
  67. 67.
    Glantz LA, Lewis DA. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 2000, 57: 65–73.CrossRefGoogle Scholar
  68. 68.
    Selemon LD, Goldman-Rakic PS. The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol Psychiatry 1999, 45: 17–25.CrossRefGoogle Scholar
  69. 69.
    Bubenikova-Valesova V, Horacek J, Vrajova M, Hoschl C. Models of schizophrenia in humans and animals based on inhibition of NMDA receptors. Neurosci Biobehav Rev 2008, 32: 1014–1023.CrossRefGoogle Scholar
  70. 70.
    Beninger RJ, Jhamandas A, Aujla H, Xue L, Dagnone RV, Boegman RJ, et al. Neonatal exposure to the glutamate receptor antagonist MK-801: effects on locomotor activity and pre-pulse inhibition before and after sexual maturity in rats. Neurotox Res 2002, 4: 477–488.CrossRefGoogle Scholar
  71. 71.
    Shaw P, Kabani NJ, Lerch JP, Eckstrand K, Lenroot R, Gogtay N, et al. Neurodevelopmental trajectories of the human cerebral cortex. J Neurosci 2008, 28: 3586–3594.CrossRefGoogle Scholar
  72. 72.
    Dosenbach NU, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, et al. Prediction of individual brain maturity using fMRI. Science 2010, 329: 1358–1361.CrossRefGoogle Scholar
  73. 73.
    Castellanos FX, Lee PP, Sharp W, Jeffries NO, Greenstein DK, Clasen LS, et al. Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. JAMA 2002, 288: 1740–1748.CrossRefGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS 2019

Authors and Affiliations

  • Yin Lin
    • 1
    • 2
    • 3
  • Mingli Li
    • 1
    • 2
  • Yi Zhou
    • 4
  • Wei Deng
    • 1
    • 2
  • Xiaohong Ma
    • 1
    • 2
  • Qiang Wang
    • 1
    • 2
  • Wanjun Guo
    • 1
    • 2
  • Yinfei Li
    • 1
    • 2
  • Lijun Jiang
    • 1
    • 2
  • Xun Hu
    • 5
  • Nanyin Zhang
    • 6
    Email author
  • Tao Li
    • 1
    • 2
    Email author
  1. 1.Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
  2. 2.West China Brain Research Centre, West China HospitalSichuan UniversityChengduChina
  3. 3.Department of PsychologyShenzhen Children’s HospitalShenzhenChina
  4. 4.Department of Radiology, Hospital for Chengdu Office of Tibetan Autonomous Region, Branch Hospital of West China HospitalSichuan UniversityChengduChina
  5. 5.Huaxi Biobank, West China HospitalSichuan UniversityChengduChina
  6. 6.Department of Biomedical Engineering, Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations