Advertisement

Correlations Between Single Nucleotide Polymorphisms, Cognitive Dysfunction, and Postmortem Brain Pathology in Alzheimer’s Disease Among Han Chinese

  • Qian Yang
  • Kang Chen
  • Hanlin Zhang
  • Wanying Zhang
  • Changlin Gong
  • Qing Zhang
  • Pan Liu
  • Tianyi Sun
  • Yuanyuan Xu
  • Xiaojing Qian
  • Wenying QiuEmail author
  • Chao MaEmail author
Original Article
  • 54 Downloads

Abstract

In this study, the distribution of five Alzheimer’s disease (AD)-related single nucleotide polymorphisms (SNPs) in the Han population was examined in combination with the evaluation of clinical cognition and brain pathological analysis. The associations among SNPs, clinical daily cognitive states, and postmortem neuropathological changes were analyzed in 110 human brains from the Chinese Academy of Medical Sciences/Peking Union Medical College (CAMS/PUMC) Human Brain Bank. APOE ε4 (OR = 4.482, P = 0.004), the RS2305421 GG genotype (adjusted OR = 4.397, P = 0.015), and the RS10498633 GT genotype (adjusted OR = 2.375, P = 0.028) were associated with a higher score on the ABC (Aβ plaque score, Braak NFT stage, and CERAD neuritic plaque score) dementia scale. These results advance our understanding of the pathogenesis of AD, the relationship between pathological diagnosis and clinical diagnosis, and the SNPs in the Han population for future research.

Keywords

Human brain bank Alzheimer’s disease APOE ε4 ADAM10 SLC24A4 

Notes

Acknowledgements

We would like to extend our appreciation to Ms. Yunli Ling for preparing the mounted paraffin sections. This work was supported by grants from the National Natural Science Foundation of China (81271239, 81771205, and 91632113), the Institute of Basic Medical Sciences/Chinese Academy of Medical Sciences (CAMS) Dean’s Fund (2011RC01), the CAMS Innovation Fund for Medical Sciences (2016-I2M-1004), and the Natural Science Foundation and Major Basic Research Program of Shanghai Municipality, China (16JC1420500 and 16JC1420502).

Supplementary material

12264_2019_343_MOESM1_ESM.pdf (13 kb)
Supplementary material 1 (PDF 14 kb)

References

  1. 1.
    Dong MJ, Peng B, Lin XT, Zhao J, Zhou YR, Wang RH. The prevalence of dementia in the People’s Republic of China: a systematic analysis of 1980–2004 studies. Age Ageing 2007, 36: 619–624.CrossRefGoogle Scholar
  2. 2.
    Wang QH, Wang X, Bu XL, Lian Y, Xiang Y, Luo HB, et al. Comorbidity burden of dementia: a hospital-based retrospective study from 2003 to 2012 in seven cities in China. Neurosci Bull 2017, 33: 703–710.CrossRefGoogle Scholar
  3. 3.
    Jack CR, Jr., Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement 2018, 14: 535–562.CrossRefGoogle Scholar
  4. 4.
    Yang A, Wang C, Song B, Zhang W, Guo Y, Yang R, et al. Attenuation of beta-amyloid toxicity in vitro and in vivo by accelerated aggregation. Neurosci Bull 2017, 33: 405–412.CrossRefGoogle Scholar
  5. 5.
    Doig AJ, Del Castillo-Frias MP, Berthoumieu O, Tarus B, Nasica-Labouze J, Sterpone F, et al. Why is research on amyloid-beta failing to give new drugs for Alzheimer’s disease? ACS Chem Neurosci 2017, 8: 1435–1437.CrossRefGoogle Scholar
  6. 6.
    Serrano-Pozo A, Qian J, Muzikansky A, Monsell SE, Montine TJ, Frosch MP, et al. Thal amyloid stages do not significantly impact the correlation between neuropathological change and cognition in the Alzheimer Disease Continuum. J Neuropathol Exp Neurol 2016, 75: 516–526.CrossRefGoogle Scholar
  7. 7.
    Desikan RS, Fan CC, Wang Y, Schork AJ, Cabral HJ, Cupples LA, et al. Genetic assessment of age-associated Alzheimer disease risk: Development and validation of a polygenic hazard score. PLoS Med 2017, 14: e1002258.CrossRefGoogle Scholar
  8. 8.
    Strum JC, Shehee R, Virley D, Richardson J, Mattie M, Selley P, et al. Rosiglitazone induces mitochondrial biogenesis in mouse brain. J Alzheimers Dis 2007, 11: 45–51.CrossRefGoogle Scholar
  9. 9.
    Shi Y, Yamada K, Liddelow SA, Smith ST, Zhao L, Luo W, et al. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature 2017, 549: 523–527.CrossRefGoogle Scholar
  10. 10.
    Coon KD, Myers AJ, Craig DW, Webster JA, Pearson JV, Lince DH, et al. A high-density whole-genome association study reveals that APOE is the major susceptibility gene for sporadic late-onset Alzheimer’s disease. J Clin Psychiatry 2007, 68: 613–618.CrossRefGoogle Scholar
  11. 11.
    Roses AD, Lutz MW, Amrine-Madsen H, Saunders AM, Crenshaw DG, Sundseth SS, et al. A TOMM40 variable-length polymorphism predicts the age of late-onset Alzheimer’s disease. Pharmacogenomics J 2010, 10: 375–384.CrossRefGoogle Scholar
  12. 12.
    Hung AY, Haass C, Nitsch RM, Qiu WQ, Citron M, Wurtman RJ, et al. Activation of protein kinase C inhibits cellular production of the amyloid beta-protein. J Biol Chem 1993, 268: 22959–22962.Google Scholar
  13. 13.
    Kim M, Suh J, Romano D, Truong MH, Mullin K, Hooli B, et al. Potential late-onset Alzheimer’s disease-associated mutations in the ADAM10 gene attenuate {alpha}-secretase activity. Hum Mol Genet 2009, 18: 3987–3996.CrossRefGoogle Scholar
  14. 14.
    Bertram L, Lange C, Mullin K, Parkinson M, Hsiao M, Hogan MF, et al. Genome-wide association analysis reveals putative Alzheimer’s disease susceptibility loci in addition to APOE. Am J Hum Genet 2008, 83: 623–632.CrossRefGoogle Scholar
  15. 15.
    Larsson M, Duffy DL, Zhu G, Liu JZ, Macgregor S, McRae AF, et al. GWAS findings for human iris patterns: associations with variants in genes that influence normal neuronal pattern development. Am J Hum Genet 2011, 89: 334–343.CrossRefGoogle Scholar
  16. 16.
    Samarasekera N, Al-Shahi Salman R, Huitinga I, Klioueva N, McLean CA, Kretzschmar H, et al. Brain banking for neurological disorders. Lancet Neurol 2013, 12: 1096–1105.CrossRefGoogle Scholar
  17. 17.
    Marshall GA, Zoller AS, Kelly KE, Amariglio RE, Locascio JJ, Johnson KA, et al. Everyday cognition scale items that best discriminate between and predict progression from clinically normal to mild cognitive impairment. Curr Alzheimer Res 2014, 11: 853–861.CrossRefGoogle Scholar
  18. 18.
    Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC, et al. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement 2012, 8: 1–13.CrossRefGoogle Scholar
  19. 19.
    Roman GC, Tatemichi TK, Erkinjuntti T, Cummings JL, Masdeu JC, Garcia JH, et al. Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology 1993, 43: 250–260.Google Scholar
  20. 20.
    Braak H, Braak E. Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging 1995, 16: 271–278; discussion 278–284.Google Scholar
  21. 21.
    Farias ST, Park LQ, Harvey DJ, Simon C, Reed BR, Carmichael O, et al. Everyday cognition in older adults: associations with neuropsychological performance and structural brain imaging. J Int Neuropsychol Soc 2013, 19: 430–441.CrossRefGoogle Scholar
  22. 22.
    Farias ST, Mungas D, Reed BR, Harvey D, Cahn-Weiner D, Decarli C. MCI is associated with deficits in everyday functioning. Alzheimer Dis Assoc Disord 2006, 20: 217–223.CrossRefGoogle Scholar
  23. 23.
    Suenaga T, Hirano A, Llena JF, Yen SH, Dickson DW. Modified Bielschowsky stain and immunohistochemical studies on striatal plaques in Alzheimer’s disease. Acta Neuropathol 1990, 80: 280–286.CrossRefGoogle Scholar
  24. 24.
    Vonsattel JP, Myers RH, Hedley-Whyte ET, Ropper AH, Bird ED, Richardson EP, Jr. Cerebral amyloid angiopathy without and with cerebral hemorrhages: a comparative histological study. Ann Neurol 1991, 30: 637–649.CrossRefGoogle Scholar
  25. 25.
    Yarchoan M, Xie SX, Kling MA, Toledo JB, Wolk DA, Lee EB, et al. Cerebrovascular atherosclerosis correlates with Alzheimer pathology in neurodegenerative dementias. Brain 2012, 135: 3749–3756.CrossRefGoogle Scholar
  26. 26.
    Ananth CV, Kleinbaum DG. Regression models for ordinal responses: a review of methods and applications. Int J Epidemiol 1997, 26: 1323–1333.CrossRefGoogle Scholar
  27. 27.
    Suemoto CK, Ferretti-Rebustini RE, Rodriguez RD, Leite RE, Soterio L, Brucki SM, et al. Neuropathological diagnoses and clinical correlates in older adults in Brazil: A cross-sectional study. PLoS Med 2017, 14: e1002267.CrossRefGoogle Scholar
  28. 28.
    Montine TJ, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Dickson DW, et al. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 2012, 123: 1–11.CrossRefGoogle Scholar
  29. 29.
    Goedert M. NEURODEGENERATION. Alzheimer’s and Parkinson’s diseases: The prion concept in relation to assembled Abeta, tau, and alpha-synuclein. Science 2015, 349: 1255555.Google Scholar
  30. 30.
    Wang Y, Mandelkow E. Tau in physiology and pathology. Nat Rev Neurosci 2016, 17: 5–21.CrossRefGoogle Scholar
  31. 31.
    Quinn JP, Corbett NJ, Kellett KAB, Hooper NM. Tau proteolysis in the pathogenesis of tauopathies: neurotoxic fragments and novel biomarkers. J Alzheimers Dis 2018, 63: 13–33.CrossRefGoogle Scholar
  32. 32.
    Mairet-Coello G, Courchet J, Pieraut S, Courchet V, Maximov A, Polleux F. The CAMKK2-AMPK kinase pathway mediates the synaptotoxic effects of Abeta oligomers through Tau phosphorylation. Neuron 2013, 78: 94–108.CrossRefGoogle Scholar
  33. 33.
    Brier MR, Gordon B, Friedrichsen K, McCarthy J, Stern A, Christensen J, et al. Tau and Abeta imaging, CSF measures, and cognition in Alzheimer’s disease. Sci Transl Med 2016, 8: 338ra366.Google Scholar
  34. 34.
    Bos I, Verhey FR, Ramakers I, Jacobs HIL, Soininen H, Freund-Levi Y, et al. Cerebrovascular and amyloid pathology in predementia stages: the relationship with neurodegeneration and cognitive decline. Alzheimers Res Ther 2017, 9: 101.CrossRefGoogle Scholar
  35. 35.
    Jiang Y, Huang H, Abner E, Broster LS, Jicha GA, Schmitt FA, et al. Alzheimer’s biomarkers are correlated with brain connectivity in older adults differentially during resting and task states. Front Aging Neurosci 2016, 8: 15.Google Scholar
  36. 36.
    Nelson PT, Alafuzoff I, Bigio EH, Bouras C, Braak H, Cairns NJ, et al. Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol 2012, 71: 362–381.CrossRefGoogle Scholar
  37. 37.
    Quiroz-Baez R, Flores-Dominguez D, Arias C. Synaptic aging is associated with mitochondrial dysfunction, reduced antioxidant contents and increased vulnerability to amyloid-beta toxicity. Curr Alzheimer Res 2013, 10: 324–331.CrossRefGoogle Scholar
  38. 38.
    Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993, 261: 921–923.CrossRefGoogle Scholar
  39. 39.
    Liu L, MacKenzie KR, Putluri N, Maletic-Savatic M, Bellen HJ. The glia-neuron lactate shuttle and elevated ROS promote lipid synthesis in neurons and lipid droplet accumulation in glia via APOE/D. Cell Metab 2017, 26: 719–737 e716.Google Scholar
  40. 40.
    Wang C, Najm R, Xu Q, Jeong DE, Walker D, Balestra ME, et al. Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nat Med 2018, 24: 647–657.CrossRefGoogle Scholar
  41. 41.
    Chen W, Jin F, Cao G, Mei R, Wang Y, Long P, et al. ApoE4 may be a promising target for treatment of coronary heart disease and Alzheimer’s disease. Curr Drug Targets 2018, 19: 1038–1046.CrossRefGoogle Scholar
  42. 42.
    Koch G, Di Lorenzo F, Loizzo S, Motta C, Travaglione S, Baiula M, et al. CSF tau is associated with impaired cortical plasticity, cognitive decline and astrocyte survival only in APOE4-positive Alzheimer’s disease. Sci Rep 2017, 7: 13728.CrossRefGoogle Scholar
  43. 43.
    Miller BR, Cumsky MG. An unusual mitochondrial import pathway for the precursor to yeast cytochrome c oxidase subunit Va. J Cell Biol 1991, 112: 833–841.CrossRefGoogle Scholar
  44. 44.
    Jensen RE, Dunn CD. Protein import into and across the mitochondrial inner membrane: role of the TIM23 and TIM22 translocons. Biochim Biophys Acta 2002, 1592: 25–34.CrossRefGoogle Scholar
  45. 45.
    Ma XY, Yu JT, Wang W, Wang HF, Liu QY, Zhang W, et al. Association of TOMM40 polymorphisms with late-onset Alzheimer’s disease in a Northern Han Chinese population. Neuromolecular Med 2013, 15: 279–287.CrossRefGoogle Scholar
  46. 46.
    Bagnoli S, Piaceri I, Tedde A, Bessi V, Bracco L, Sorbi S, et al. TOMM40 polymorphisms in Italian Alzheimer’s disease and frontotemporal dementia patients. Neurol Sci 2013, 34: 995–998.CrossRefGoogle Scholar
  47. 47.
    Bernardi L, Gallo M, Anfossi M, Conidi ME, Colao R, Puccio G, et al. Role of TOMM40 rs10524523 polymorphism in onset of Alzheimer’s disease caused by the PSEN1 M146L mutation. J Alzheimers Dis 2013, 37: 285–289.CrossRefGoogle Scholar
  48. 48.
    Lammich S, Kojro E, Postina R, Gilbert S, Pfeiffer R, Jasionowski M, et al. Constitutive and regulated alpha-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease. Proc Natl Acad Sci U S A 1999, 96: 3922–3927.CrossRefGoogle Scholar
  49. 49.
    Postina R, Schroeder A, Dewachter I, Bohl J, Schmitt U, Kojro E, et al. A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. J Clin Invest 2004, 113: 1456–1464.CrossRefGoogle Scholar
  50. 50.
    Song JH, Yu JT, Liu M, Yan CZ, Tan L. Genetic association between ADAM10 gene polymorphism and Alzheimer’s disease in a Northern Han Chinese population. Brain Res 2011, 1421: 78–81.CrossRefGoogle Scholar
  51. 51.
    Jalloul AH, Rogasevskaia TP, Szerencsei RT, Schnetkamp PP. A functional study of mutations in K+-dependent Na+-Ca2+ exchangers associated with amelogenesis imperfecta and non-syndromic oculocutaneous albinism. J Biol Chem 2016, 291: 13113–13123.CrossRefGoogle Scholar
  52. 52.
    Wang S, Choi M, Richardson AS, Reid BM, Seymen F, Yildirim M, et al. STIM1 and SLC24A4 are critical for enamel maturation. J Dent Res 2014, 93: 94S–100S.CrossRefGoogle Scholar
  53. 53.
    Parry DA, Poulter JA, Logan CV, Brookes SJ, Jafri H, Ferguson CH, et al. Identification of mutations in SLC24A4, encoding a potassium-dependent sodium/calcium exchanger, as a cause of amelogenesis imperfecta. Am J Hum Genet 2013, 92: 307–312.CrossRefGoogle Scholar
  54. 54.
    Bronckers AL, Jalali R, Lytton J. Reduced protein expression of the Na+/Ca2+ +K+ exchanger (SLC24A4) in apical plasma membranes of maturation ameloblasts of fluorotic mice. Calcif Tissue Int 2017, 100: 80–86.CrossRefGoogle Scholar
  55. 55.
    Han J, Kraft P, Nan H, Guo Q, Chen C, Qureshi A, et al. A genome-wide association study identifies novel alleles associated with hair color and skin pigmentation. PLoS Genet 2008, 4: e1000074.CrossRefGoogle Scholar
  56. 56.
    Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 2013, 45: 1452–1458.CrossRefGoogle Scholar
  57. 57.
    Liu G, Zhang L, Feng R, Liao M, Jiang Y, Chen Z, et al. Lack of association between PICALM rs3851179 polymorphism and Alzheimer’s disease in Chinese population and APOEepsilon4-negative subgroup. Neurobiol Aging 2013, 34: 1310 e1319–1310.Google Scholar
  58. 58.
    Greene CS, Penrod NM, Williams SM, Moore JH. Failure to replicate a genetic association may provide important clues about genetic architecture. PLoS One 2009, 4: e5639.CrossRefGoogle Scholar
  59. 59.
    Qiu WY, Yang Q, Zhang W, Wang N, Zhang D, Huang Y, et al. The correlations between postmortem brain pathologies and cognitive dysfunction in aging and Alzheimer’s disease. Curr Alzheimer Res 2018, 15: 462–473.CrossRefGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS 2019

Authors and Affiliations

  • Qian Yang
    • 1
    • 2
  • Kang Chen
    • 2
    • 3
  • Hanlin Zhang
    • 2
    • 3
  • Wanying Zhang
    • 4
  • Changlin Gong
    • 2
    • 3
  • Qing Zhang
    • 1
    • 2
  • Pan Liu
    • 1
    • 2
  • Tianyi Sun
    • 1
    • 2
  • Yuanyuan Xu
    • 5
  • Xiaojing Qian
    • 1
  • Wenying Qiu
    • 1
    Email author
  • Chao Ma
    • 1
    Email author
  1. 1.Institute of Basic Medical Sciences, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic MedicinePeking Union Medical CollegeBeijingChina
  2. 2.Joint Laboratory of Anesthesia and PainPeking Union Medical CollegeBeijingChina
  3. 3.Eight-Year MD ProgramPeking Union Medical CollegeBeijingChina
  4. 4.Johns Hopkins Bloomberg School of Public HealthBaltimoreUSA
  5. 5.National Experimental Teaching Demonstration Center of Basic MedicinePeking Union Medical CollegeBeijingChina

Personalised recommendations