Pharmacogenetic Correlates of Antipsychotic-Induced Weight Gain in the Chinese Population

  • Chao Luo
  • Junyan Liu
  • Xu Wang
  • Xiaoyuan Mao
  • Honghao Zhou
  • Zhaoqian LiuEmail author


Antipsychotic-induced weight gain (AIWG) is a common adverse effect of this treatment, particularly with second-generation antipsychotics, and it is a major health problem around the world. We aimed to review the progress of pharmacogenetic studies on AIWG in the Chinese population to compare the results for Chinese with other ethnic populations, identify the limitations and problems of current studies, and provide future research directions in China. Both English and Chinese electronic databases were searched to identify eligible studies. We determined that > 25 single-nucleotide polymorphisms in 19 genes have been investigated in association with AIWG in Chinese patients over the past few decades. HTR2C rs3813929 is the most frequently studied single-nucleotide polymorphism, and it seems to be the most strongly associated with AIWG in the Chinese population. However, many genes that have been reported to be associated with AIWG in other ethnic populations have not been included in Chinese studies. To explain the pharmacogenetic reasons for AIWG in the Chinese population, genome-wide association studies and multiple-center, standard, unified, and large samples are needed.


Pharmacogenetic Antipsychotic Weight gain Single nucleotide polymorphism Schizophrenia 



This work was supported by the National Basic Research Development Program of China (2016YFC1306900 and 2016YFC0905002), the National Natural Science Foundation of China (81573508), the Open Foundation of Innovative Platform in Colleges and University of Hunan Province, China ([2015]54), and the Clinical Research Fund of Peking University Unamed-Central South University Xiangya Hospital (xywm2015I16).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Luan Z, Lu T, Ruan Y, Yue W, Zhang D. The human MSI2 gene is associated with schizophrenia in the Chinese Han population. Neurosci Bull 2016, 32: 239–245.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Charlson FJ, Ferrari AJ, Santomauro DF, Diminic S, Stockings E, Scott JG, et al. Global epidemiology and burden of schizophrenia: Findings from the Global Burden of Disease Study 2016. Schizophr Bull 2018, 44: 1195–1203.PubMedCrossRefGoogle Scholar
  3. 3.
    Hilker R, Helenius D, Fagerlund B, Skytthe A, Christensen K, Werge TM, et al. Heritability of schizophrenia and schizophrenia spectrum based on the nationwide Danish twin register. Biol Psychiatry 2017, 83: 492–498.PubMedCrossRefGoogle Scholar
  4. 4.
    Bai Z, Wang G, Cai S, Ding X, Liu W, Huang D, et al. Efficacy, acceptability and tolerability of 8 atypical antipsychotics in Chinese patients with acute schizophrenia: A network meta-analysis. Schizophr Res 2017, 185: 73–79.PubMedCrossRefGoogle Scholar
  5. 5.
    Fonseka TM, Muller DJ, Kennedy SH. Inflammatory cytokines and antipsychotic-induced weight gain: review and clinical implications. Mol Neuropsychiatry 2016, 2: 1–14.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Samara MT, Dold M, Gianatsi M, Nikolakopoulou A, Helfer B, Salanti G, et al. Efficacy, acceptability, and tolerability of antipsychotics in treatment-resistant schizophrenia: a network meta-analysis. JAMA Psychiatry 2016, 73: 199–210.PubMedCrossRefGoogle Scholar
  7. 7.
    Siskind D, McCartney L, Goldschlager R, Kisely S. Clozapine v. first- and second-generation antipsychotics in treatment-refractory schizophrenia: systematic review and meta-analysis. Br J Psychiatry 2016, 209: 385–392.Google Scholar
  8. 8.
    Werner FM, Coveñas R. Safety of antipsychotic drugs: focus on therapeutic and adverse effects. Expert Opin Drug Saf 2014, 13: 1031–1042.PubMedCrossRefGoogle Scholar
  9. 9.
    van Bennekom MWL, Gijsman HJ, Zitman FG. Antipsychotic polypharmacy in psychotic disorders: a critical review of neurobiology, efficacy, tolerability and cost effectiveness. J Psychopharmacol 2013, 27: 327–336.CrossRefGoogle Scholar
  10. 10.
    Mizuno Y, Suzuki T, Nakagawa A, Yoshida K, Mimura M, Fleischhacker WW, et al. Pharmacological strategies to counteract antipsychotic-induced weight gain and metabolic adverse effects in schizophrenia: a systematic review and meta-analysis. Schizophr Bull 2014, 40: 1385–1403.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    He M, Deng C, Huang XF. The role of hypothalamic H1 receptor antagonism in antipsychotic-induced weight gain. CNS Drugs 2013, 27: 423–434.PubMedCrossRefGoogle Scholar
  12. 12.
    Correll CU, Lencz T, Malhotra AK. Antipsychotic drugs and obesity. Trends Mol Med 2011, 17: 97–107.PubMedCrossRefGoogle Scholar
  13. 13.
    Zhang Q, He M, Deng C, Wang H, Lian J, Huang XF. Hypothalamic ghrelin signalling mediates olanzapine-induced hyperphagia and weight gain in female rats. Int J Neuropsychopharmacol 2014, 17: 807–818.PubMedCrossRefGoogle Scholar
  14. 14.
    He M, Zhang Q, Deng C, Wang H, Lian J, Huang XF. Hypothalamic histamine H1 receptor-AMPK signaling time-dependently mediates olanzapine-induced hyperphagia and weight gain in female rats. Psychoneuroendocrinology 2014, 42: 153–164.PubMedCrossRefGoogle Scholar
  15. 15.
    Wu RR, Zhao JP, Jin H, Shao P, Fang MS, Guo XF, et al. Lifestyle intervention and metformin for treatment of antipsychotic-induced weight gain: a randomized controlled trial. JAMA 2008, 299: 185–193.PubMedGoogle Scholar
  16. 16.
    Bahr SM, Tyler BC, Wooldridge N, Butcher BD, Burns TL, Teesch LM, et al. Use of the second-generation antipsychotic, risperidone, and secondary weight gain are associated with an altered gut microbiota in children. Transl Psychiatry 2015, 5: e652.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Manu P, Dima L, Shulman M, Vancampfort D, De Hert M, Correll CU. Weight gain and obesity in schizophrenia: epidemiology, pathobiology, and management. Acta Psychiatr Scand 2015, 132: 97–108.PubMedCrossRefGoogle Scholar
  18. 18.
    Gebhardt S, Theisen FM, Haberhausen M, Heinzel-Gutenbrunner M, Wehmeier PM, Krieg JC, et al. Body weight gain induced by atypical antipsychotics: an extension of the monozygotic twin and sib pair study. J Clin Pharm Ther 2010, 35: 207–211.PubMedCrossRefGoogle Scholar
  19. 19.
    Zhao AL, Zhao JP, Zhang YH, Xue ZM, Chen JD, Chen XG. Dopamine D4 receptor gene exon III polymorphism and interindividual variation in response to clozapine. Int J Neurosci 2005, 115: 1539–1547.PubMedCrossRefGoogle Scholar
  20. 20.
    Yang L, Chen J, Li Y, Wang Y, Liang S, Shi Y, et al. Association between SCAP and SREBF1 gene polymorphisms and metabolic syndrome in schizophrenia patients treated with atypical antipsychotics. World J Biol Psychiatry 2016, 17: 467–474.PubMedCrossRefGoogle Scholar
  21. 21.
    Urban TJ, Goldstein DB. Pharmacogenetics at 50: genomic personalization comes of age. Sci Transl Med 2014, 6: 220ps1.Google Scholar
  22. 22.
    Yu H, Wang L, Lv L, Ma C, Du B, Lu T, et al. Genome-wide association study suggested the PTPRD polymorphisms were associated with weight gain effects of atypical antipsychotic medications. Schizophr Bull 2016, 42: 814–823.PubMedCrossRefGoogle Scholar
  23. 23.
    Brandl EJ, Tiwari AK, Zai CC, Nurmi EL, Chowdhury NI, Arenovich T, et al. Genome-wide association study on antipsychotic-induced weight gain in the CATIE sample. Pharmacogenomics J 2016, 16: 352–356.PubMedCrossRefGoogle Scholar
  24. 24.
    Ruzicka WB, Subburaju S, Benes FM. Variability of DNA methylation within schizophrenia risk loci across subregions of human hippocampus. Genes 2017, 8: pii: E143.Google Scholar
  25. 25.
    Zhang JP, Lencz T, Zhang RX, Nitta M, Maayan L, John M, et al. Pharmacogenetic associations of antipsychotic drug-related weight gain: a systematic review and meta-analysis. Schizophr Bull 2016, 42: 1418–1437.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Need AC, Keefe RS, Ge D, Grossman I, Dickson S, McEvoy JP, et al. Pharmacogenetics of antipsychotic response in the CATIE trial: a candidate gene analysis. Eur J Hum Genet 2009, 17: 946–957.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Ramsey TL, Brennan MD. Glucagon-like peptide 1 receptor (GLP1R) haplotypes correlate with altered response to multiple antipsychotics in the CATIE trial. Schizophr Res 2014, 160: 73–79.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Tiwari AK, Brandl EJ, Zai CC, Goncalves VF, Chowdhury NI, Freeman N, et al. Association of orexin receptor polymorphisms with antipsychotic-induced weight gain. World J Biol Psychiatry 2016, 17: 219–221.CrossRefGoogle Scholar
  29. 29.
    Shams TA, Muller DJ. Antipsychotic induced weight gain: genetics, epigenetics, and biomarkers reviewed. Curr Psychiatry Rep 2014, 16: 473.PubMedCrossRefGoogle Scholar
  30. 30.
    Reynolds GP, Zhang ZJ, Zhang XB. Association of antipsychotic druginduced weight gain with a 5-HT2C receptor gene polymorphism. Lancet 2002, 359: 2086–2087.PubMedCrossRefGoogle Scholar
  31. 31.
    Zhang ZJ, Zhang XB, Yao ZJ, Chen JF, Sun J, Yao H, et al. Association of antipsychotic agent-induced weight gain with a polymorphism of the promotor region of the 5-HT2C receptor gene. Zhonghua Yi Xue Za Zhi 2002, 82: 1097–1101.PubMedGoogle Scholar
  32. 32.
    Reynolds GP, Zhang Z, Zhang X. Polymorphism of the promoter region of the serotonin 5-HT(2C) receptor gene and clozapine-induced weight gain. Am J Psychiatry 2003, 160: 677–679.PubMedCrossRefGoogle Scholar
  33. 33.
    Lane HY, Liu YC, Huang CL, Chang YC, Wu PL, Lu CT, et al. Risperidone-related weight gain: genetic and nongenetic predictors. J Clin Psychopharmacol 2006, 26: 128–134.PubMedCrossRefGoogle Scholar
  34. 34.
    Wu RR, Zhao JP, Shao P, Ou JJ, Chang MH. Genetic predictors of antipsychotic-induced weight gain: a case-matched multi-gene study. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2011, 36: 720–723.PubMedGoogle Scholar
  35. 35.
    Tsai SJ, Hong CJ, Yu YWY, Lin CH. −759C/T genetic variation of 5HT2C receptor and clozapine-induced weight gain. Lancet 2002, 360: 1790.PubMedCrossRefGoogle Scholar
  36. 36.
    Wang F, Mi WF, Ma WB, Ma CK, Yang YF, Zhang HX, et al. A pharmacogenomic study revealed an association between SLC6A4 and risperidone-induced weight gain in Chinese Han population. Pharmacogenomics 2015, 16:1943–1949.PubMedCrossRefGoogle Scholar
  37. 37.
    Kang SH, Lee JI, Han HR, Soh M, Hong JP. Polymorphisms of the leptin and HTR2C genes and clozapine-induced weight change and baseline BMI in patients with chronic schizophrenia. Psychiatr Genet 2014, 24: 249–256.PubMedCrossRefGoogle Scholar
  38. 38.
    Roffeei SN, Reynolds GP, Zainal NZ, Said MA, Hatim A, Aida SA, et al. Association of ADRA2A and MTHFR gene polymorphisms with weight loss following antipsychotic switching to aripiprazole or ziprasidone. Hum Psychopharmacol 2014, 29: 38–45.PubMedCrossRefGoogle Scholar
  39. 39.
    Ma X, Maimaitirexiati T, Zhang R, Gui X, Zhang W, Xu G, et al. HTR2C polymorphisms, olanzapine-induced weight gain and antipsychotic-induced metabolic syndrome in schizophrenia patients: a meta-analysis. Int J Psychiatry Clin Pract 2014, 18: 229–242.PubMedCrossRefGoogle Scholar
  40. 40.
    Hong CJ, Lin CH, Yu YW, Yang KH, Tsai SJ. Genetic variants of the serotonin system and weight change during clozapine treatment. Pharmacogenetics 2001, 11: 265–268.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Sicard MN, Zai CC, Tiwari AK, Souza RP, Meltzer HY, Lieberman JA, et al. Polymorphisms of the HTR2C gene and antipsychotic-induced weight gain: an update and meta-analysis. Pharmacogenomics 2010, 11: 1561–1571.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Reynolds GP. Pharmacogenetic aspects of antipsychotic drug-induced weight gain - a critical review. Clin Psychopharmacol Neurosci 2012, 10: 71–77.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Tang H, Mcgowan OO, Reynolds GP. Polymorphisms of serotonin neurotransmission and their effects on antipsychotic drug action. Pharmacogenomics 2014, 15: 1599–1609.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Parsons MJ, D’Souza UM, Arranz MJ, Kerwin RW, Makoff AJ. The -1438A/G polymorphism in the 5-hydroxytryptamine type 2A receptor gene affects promoter activity. Biol Psychiatry 2004, 56: 406–410.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Mou XD, Zhang ZJ, Yao ZJ, Liu W, Zhang XR, Shi JB, et al. No association of -1438G/A polymorphism in promoter region of 5-HT2A receptor gene with antipsychotic agent-induced weight gain. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2005, 22: 575–576.PubMedGoogle Scholar
  46. 46.
    Roffeei SN, Mohamed Z, Reynolds GP, Said MA, Hatim A, Mohamed EH, et al. Association of FTO, LEPR and MTHFR gene polymorphisms with metabolic syndrome in schizophrenia patients receiving antipsychotics. Pharmacogenomics 2014, 15: 477–485.PubMedCrossRefGoogle Scholar
  47. 47.
    Gunes A, Melkersson KI, Scordo MG, Dahl ML. Association between HTR2C and HTR2A polymorphisms and metabolic abnormalities in patients treated with olanzapine or clozapine. J Clin Psychopharmacol 2009, 29: 65–68.PubMedCrossRefGoogle Scholar
  48. 48.
    Ryu S, Huh IS, Cho EY, Cho Y, Park T, Yoon SC, et al. Association study of 60 candidate genes with antipsychotic-induced weight gain in schizophrenia patients. Pharmacopsychiatry 2016, 49: 51–56.PubMedCrossRefGoogle Scholar
  49. 49.
    Llerena A, Berecz R, Peñas-Lledó E, Süveges A, Fariñas H. Pharmacogenetics of clinical response to risperidone. Pharmacogenomics 2013, 14: 177–194.PubMedCrossRefGoogle Scholar
  50. 50.
    Nowrouzi B, Souza RP, Zai C, Shinkai T, Monda M, Lieberman J, et al. Finite mixture regression model analysis on antipsychotics induced weight gain: investigation of the role of the serotonergic genes. Eur Neuropsychopharmacol 2013, 23: 224–228.PubMedCrossRefGoogle Scholar
  51. 51.
    Lencz T, Robinson DG, Napolitano B, Sevy S, Kane JM, Goldman D, et al. DRD2 promoter region variation predicts antipsychotic-induced weight gain in first episode schizophrenia. Pharmacogenet Genomics 2010, 20: 569–572.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Gluskin BS, Mickey BJ. Genetic variation and dopamine D2 receptor availability: a systematic review and meta-analysis of human in vivo molecular imaging studies. Transl Psychiatry 2016, 6: e747.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Hong CJ, Liou YJ, Bai YM, Chen TT, Wang YC, Tsai SJ. Dopamine receptor D2 gene is associated with weight gain in schizophrenic patients under long-term atypical antipsychotic treatment. Pharmacogenet Genomics 2010, 20: 359–366.PubMedCrossRefGoogle Scholar
  54. 54.
    Muller DJ, Zai CC, Sicard M, Remington E, Souza RP, Tiwari AK, et al. Systematic analysis of dopamine receptor genes (DRD1-DRD5) in antipsychotic-induced weight gain. Pharmacogenomics J 2012, 12: 156–164.PubMedCrossRefGoogle Scholar
  55. 55.
    Kroeze WK, Hufeisen SJ, Popadak BA, Renock SM, Steinberg S, Ernsberger P, et al. H1-histamine receptor affinity predicts short-term weight gain for typical and atypical antipsychotic drugs. Neuropsychopharmacology 2003, 28: 519.PubMedCrossRefGoogle Scholar
  56. 56.
    He M, Zhang Q, Deng C, Jin T, Song X, Wang H, et al. Time-dependent effects of olanzapine treatment on the expression of histidine decarboxylase, H1 and H3 receptor in the rat brain: The roles in olanzapine-induced obesity. Psychoneuroendocrinology 2017, 85: 190–199.PubMedCrossRefGoogle Scholar
  57. 57.
    Hong CJ, Lin CH, Yu YW, Chang SC, Wang SY, Tsai SJ. Genetic variant of the histamine-1 receptor (glu349asp) and body weight change during clozapine treatment. Psychiatr Genet 2002, 12: 169–171.PubMedCrossRefGoogle Scholar
  58. 58.
    Vehof J, Risselada AJ, Al Hadithy AF, Burger H, Snieder H, Wilffert B, et al. Association of genetic variants of the histamine H1 and muscarinic M3 receptors with BMI and HbA1c values in patients on antipsychotic medication. Psychopharmacology 2011, 216: 257–265.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Godlewska BR, Olajossyhilkesberger L, Olajossy M, Limon J, Landowski J. Polymorphisms of the histamine receptor (H1HR) gene are not associated with olanzapine-induced weight gain. J Clin Psychopharmacol 2013, 33: 436–437.PubMedCrossRefGoogle Scholar
  60. 60.
    Tiwari AK, Zhang D, Pouget JG, Zai CC, Chowdhury NI, Brandl EJ, et al. Impact of histamine receptors H1 and H3 polymorphisms on antipsychotic-induced weight gain. World J Biol Psychiatry 2016, 15: 1–9.CrossRefGoogle Scholar
  61. 61.
    Than A, Ye F, Xue R, Ong JW, Poh CL, Chen P. The crosstalks between adipokines and catecholamines. Mol Cell Endocrinol 2011, 332: 261–270.PubMedCrossRefGoogle Scholar
  62. 62.
    Basile VS, Masellis M, Mcintyre RS, Meltzer HY, Lieberman JA, Kennedy JL. Genetic dissection of atypical antipsychotic-induced weight gain: novel preliminary data on the pharmacogenetic puzzle. J Clin Psychiatry 2001, 62: 45–66.PubMedGoogle Scholar
  63. 63.
    Ujike H, Nomura A, Morita Y, Morio A, Okahisa Y, Kotaka T, et al. Multiple genetic factors in olanzapine-induced weight gain in schizophrenia patients: a cohort study. J Clin Psychiatry 2008, 69: 1416–1422.PubMedCrossRefGoogle Scholar
  64. 64.
    Liu YR, Loh EW, Lan TH, Chen SF, Yu YH, Chang YH, et al. ADRA1A gene is associated with BMI in chronic schizophrenia patients exposed to antipsychotics. Pharmacogenomics J 2010, 10: 30–39.PubMedCrossRefGoogle Scholar
  65. 65.
    Wang YC, Bai YM, Chen JY, Lin CC, Lai IC, Liou YJ. Polymorphism of the adrenergic receptor alpha 2a -1291C>G genetic variation and clozapine-induced weight gain. J Neural Transm 2005, 112: 1463–1468.PubMedCrossRefGoogle Scholar
  66. 66.
    Park YM, Chung YC, Lee SH, Lee KJ, Kim H, Byun YC, et al. Weight gain associated with the alpha2a-adrenergic receptor -1291 C/G polymorphism and olanzapine treatment. Am J Med Genet B Neuropsychiatr Genet 2006, 141B: 394–397.PubMedCrossRefGoogle Scholar
  67. 67.
    Kurokawa N, Young EH, Oka Y, Satoh H, Wareham NJ, Sandhu MS, et al. The ADRB3 Trp64Arg variant and BMI: a meta-analysis of 44833 individuals. Int J Obesity 2008, 32: 1240–1249.CrossRefGoogle Scholar
  68. 68.
    Luca VD, Souza RP, Viggiano E, Sickert L, Teo C, Zai C, et al. Genetic interactions in the adrenergic system genes: analysis of antipsychotic-induced weight gain. Hum Psychopharmacol 2011, 26: 386–391.PubMedGoogle Scholar
  69. 69.
    Tsai SJ, Yu YW, Lin CH, Wang YC, Chen JY, Hong CJ. Association study of adrenergic beta3 receptor (Trp64Arg) and G-protein beta3 subunit gene (C825T) polymorphisms and weight change during clozapine treatment. Neuropsychobiology 2004, 50: 37–40.PubMedCrossRefGoogle Scholar
  70. 70.
    Lee AK, Bishop JR. Pharmacogenetics of leptin in antipsychotic-associated weight gain and obesity-related complications. Pharmacogenomics 2011, 12: 999–1016.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Zhang ZJ, Yao ZJ, Mou XD, Chen JF, Zhu RX, Liu W, et al. Association of -2548G/A functional polymorphism in the promoter region of leptin gene with antipsychotic agent-induced weight gain. Zhonghua Yi Xue Za Zhi 2003, 83: 2119–2123.PubMedGoogle Scholar
  72. 72.
    Zhang XY, Tan YL, Zhou DF, Haile CN, Cao LY, Xu Q, et al. Association of clozapine-induced weight gain with a polymorphism in the leptin promoter region in patients with chronic schizophrenia in a Chinese population. J Clin Psychopharmacol 2007, 27: 246–251.PubMedCrossRefGoogle Scholar
  73. 73.
    Mou XD, Zhang ZJ, Zhang XR, Shi JB, Sun J. -2548G/A functional polymorphism in the promoter region of leptin gene and antipsychotic agent-induced weight gain in schizophrenic patients: a study of nuclear family-based association. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2008, 33: 316–320.PubMedGoogle Scholar
  74. 74.
    Kuo PH, Kao CF, Chen PY, Chen CH, Tsai YS, Lu ML, et al. Polymorphisms of INSIG2, MC4R, and LEP are associated with obesity- and metabolic-related traits in schizophrenic patients. J Clin Psychopharmacol 2011, 31: 705–711.PubMedCrossRefGoogle Scholar
  75. 75.
    Li S, Xu CG, Tian Y, Wang XS, Jiang R, Zhang MM, et al. TOX and ADIPOQ gene polymorphisms are associated with antipsychotic-induced weight gain in Han Chinese. Sci Rep 2017, 7: 45203.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Gregoor JG, van der Weide J, Mulder H, Cohen D, van Megen HJ, Egberts AC, et al. Polymorphisms of the LEP- and LEPR gene and obesity in patients using antipsychotic medication. J Clin Psychopharmacol 2009, 29: 21–25.PubMedCrossRefGoogle Scholar
  77. 77.
    Perez-Iglesias R, Mata I, Amado JA, Berja A, Garcia-Unzueta MT, García OM, et al. Effect of FTO, SH2B1, LEP, and LEPR polymorphisms on weight gain associated with antipsychotic treatment. J Clin Psychopharmacol 2010, 30: 661–666.PubMedCrossRefGoogle Scholar
  78. 78.
    Fernandez E, Carrizo E, Fernandez V, Connell L, Sandia I, Prieto D, et al. Polymorphisms of the LEP- and LEPR genes, metabolic profile after prolonged clozapine administration and response to the antidiabetic metformin. Schizophr Res 2010, 121: 213–217.PubMedCrossRefGoogle Scholar
  79. 79.
    Yao PF, Zhang YL, Mei Y, Xiang ZQ, Qian YP, Chen RF, et al. Association study of leptin gene and leptin receptor gene with antipsychotic agent-induced weight gain. Shanghai Arch Psychiatry 2008, 20: 226–228.Google Scholar
  80. 80.
    Scerif M, Goldstone AP, Korbonits M. Ghrelin in obesity and endocrine diseases. Mol Cell Endocrinol 2011, 340: 15–25.PubMedCrossRefGoogle Scholar
  81. 81.
    Zhang Q, Deng C, Huang XF. The role of ghrelin signalling in second-generation antipsychotic-induced weight gain. Psychoneuroendocrinology 2013, 38: 2423–2438.PubMedCrossRefGoogle Scholar
  82. 82.
    Tagami K, Kashiwase Y, Yokoyama A, Nishimura H, Miyano K, Suzuki M, et al. The atypical antipsychotic, olanzapine, potentiates ghrelin-induced receptor signaling: An in vitro study with cells expressing cloned human growth hormone secretagogue receptor. Neuropeptides 2016, 58: 93–101.PubMedCrossRefGoogle Scholar
  83. 83.
    Yang YF, Li WQ, Zhao JY, Zhang HX, Song XQ, Xiao B, et al. Association between ghrelin gene (GHRL) polymorphisms and clinical response to atypical antipsychotic drugs in Han Chinese schizophrenia patients. Behav Brain Funct 2012, 8: 11.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Fani L, Bak S, Delhanty P, van Rossum EF, van den Akker EL. The melanocortin-4 receptor as target for obesity treatment: a systematic review of emerging pharmacological therapeutic options. Int J Obesity 2014, 38: 163–169.CrossRefGoogle Scholar
  85. 85.
    Lam DD, Przydzial MJ, Ridley SH, Yeo GS, Rochford JJ, O’Rahilly S, et al. Serotonin 5-HT2C receptor agonist promotes hypophagia via downstream activation of melanocortin 4 receptors. Endocrinology 2008, 149: 1323–1328.PubMedCrossRefGoogle Scholar
  86. 86.
    Seeley RJ, Yagaloff KA, Fisher SL, Burn P, Thiele TE, Van DG, et al. Melanocortin receptors in leptin effects. Nature 1997, 390: 349.PubMedCrossRefGoogle Scholar
  87. 87.
    Farooqi IS, Keogh JM, Yeo GS, Lank EJ, Cheetham T, O’Rahilly S. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med 2003, 348: 1085–1095.PubMedCrossRefGoogle Scholar
  88. 88.
    Czerwensky F, Leucht S, Steimer W. Association of the common MC4R rs17782313 polymorphism with antipsychotic-related weight gain. J Clin Psychopharmacol 2013, 33: 74–79.PubMedCrossRefGoogle Scholar
  89. 89.
    Malhotra AK, Correll CU, Chowdhury NI, Muller DJ, Gregersen PK, Lee AT, et al. Association between common variants near the melanocortin 4 receptor gene and severe antipsychotic drug-induced weight gain. Arch Gen Psychiatry 2012, 69: 904–912.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Czerwensky F, Leucht S, Steimer W. MC4R rs489693: a clinical risk factor for second generation antipsychotic-related weight gain? Int J Neuropsychopharmacol 2013, 16: 2103–2109.PubMedCrossRefGoogle Scholar
  91. 91.
    Nurmi EL, Spilman SL, Whelan F, Scahill LL, Aman MG, McDougle CJ, et al. Moderation of antipsychotic-induced weight gain by energy balance gene variants in the RUPP autism network risperidone studies. Transl Psychiatry 2013, 3: e274.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Marosi K, Mattson MP. BDNF mediates adaptive brain and body responses to energetic challenges. Trends Endocrinol Metab 2014, 25: 89–98.PubMedCrossRefGoogle Scholar
  93. 93.
    Zai GC, Zai CC, Chowdhury NI, Tiwari AK, Souza RP, Lieberman JA, et al. The role of brain-derived neurotrophic factor (BDNF) gene variants in antipsychotic response and antipsychotic-induced weight gain. Prog Neuropsychopharmacol Biol Psychiatry 2012, 39: 96–101.PubMedCrossRefGoogle Scholar
  94. 94.
    Almoguera B, Riveiro-Alvarez R, Lopez-Castroman J, Dorado P, Vaquero-Lorenzo C, Fernandez-Piqueras J, et al. Association of common genetic variants with risperidone adverse events in a Spanish schizophrenic population. Pharmacogenomics J 2013, 13: 197–204.PubMedCrossRefGoogle Scholar
  95. 95.
    Fonseka TM, Tiwari AK, Goncalves VF, Lieberman JA, Meltzer HY, Goldstein BI, et al. The role of genetic variation across IL-1beta, IL-2, IL-6, and BDNF in antipsychotic-induced weight gain. World J Biol Psychiatry 2015, 16: 45–56.PubMedCrossRefGoogle Scholar
  96. 96.
    Zhang XY, Zhou DF, Wu GY, Cao LY, Tan YL, Haile CN, et al. BDNF levels and genotype are associated with antipsychotic-induced weight gain in patients with chronic schizophrenia. Neuropsychopharmacology 2008, 33: 2200–2205.PubMedCrossRefGoogle Scholar
  97. 97.
    Fang H, Zhen YF, Liu XY, Xu G, Soares JC, Zhao J, et al. Association of the BDNF Val66Met polymorphism with BMI in chronic schizophrenic patients and healthy controls. Int Clin Psychopharmacol 2016, 31: 353–357.PubMedCrossRefGoogle Scholar
  98. 98.
    Tsai A, Liou YJ, Hong CJ, Wu CL, Tsai SJ, Bai YM. Association study of brain-derived neurotrophic factor gene polymorphisms and body weight change in schizophrenic patients under long-term atypical antipsychotic treatment. Neuromolecular Med 2011, 13: 328–333.PubMedCrossRefGoogle Scholar
  99. 99.
    Bonaccorso S, Sodhi M, Li J, Bobo WV, Chen Y, Tumuklu M, et al. The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism is associated with increased body mass index and insulin resistance measures in bipolar disorder and schizophrenia. Bipolar Disord 2015, 17: 528–535.PubMedCrossRefGoogle Scholar
  100. 100.
    Petryshen TL, Sabeti PC, Aldinger KA, Fry B, Fan JB, Schaffner SF, et al. Population genetic study of the brain-derived neurotrophic factor (BDNF) gene. Mol Psychiatry 2010, 15: 810–815.PubMedCrossRefGoogle Scholar
  101. 101.
    Miura I, Kunii Y, Hino M, Hoshino H, Matsumoto J, Kanno-Nozaki K, et al. DNA methylation of ANKK1 and response to aripiprazole in patients with acute schizophrenia: A preliminary study. J Psychiatr Res 2018, 100: 84–87.PubMedCrossRefGoogle Scholar
  102. 102.
    Stice E, Spoor S, Bohon C, Small DM. Relation between obesity and blunted striatal response to food is moderated by TaqIA A1 allele. Science 2008, 322: 449–452.PubMedCrossRefGoogle Scholar
  103. 103.
    Tybura P, Trzesniowska-Drukala B, Bienkowski P, Beszlej A, Frydecka D, Mierzejewski P, et al. Pharmacogenetics of adverse events in schizophrenia treatment: comparison study of ziprasidone, olanzapine and perazine. Psychiatry Res 2014, 219: 261–267.PubMedCrossRefGoogle Scholar
  104. 104.
    Zhang Z, Yao Z, Zhang X, Chen J, Jing S, Hui Y, et al. No association of antipsychotic agent-induced weight gain with a DA receptor gene polymorphism and therapeutic response. Acta Pharmacol Sin 2003, 24: 235–240.PubMedGoogle Scholar
  105. 105.
    Yu ZB, Han SP, Cao XG, Zhu C, Wang XJ, Guo XR. Genetic polymorphisms in adipokine genes and the risk of obesity: a systematic review and meta-analysis. Obesity 2012, 20: 396–406.PubMedCrossRefGoogle Scholar
  106. 106.
    Zhou W, Liu Y, Zhong DW. Adiponectin (ADIPOQ) rs2241766 G/T polymorphism is associated with risk of cancer: evidence from a meta-analysis. Tumour Biol 2013, 34: 493–504.Google Scholar
  107. 107.
    Fan YF, Wang K, Xu SH, Chen GF, Di HJ, Cao M, et al. Association between ADIPOQ +45T/G polymorphism and type 2 diabetes: a systematic review and meta-analysis. Int J Mol Scis 2014, 16: 704–723.CrossRefGoogle Scholar
  108. 108.
    Jassim G, Ferno J, Theisen FM, Haberhausen M, Christoforou A, Havik B, et al. Association study of energy homeostasis genes and antipsychotic-induced weight gain in patients with schizophrenia. Pharmacopsychiatry 2011, 44: 15–20.PubMedCrossRefGoogle Scholar
  109. 109.
    Brandl EJ, Tiwari AK, Zai CC, Chowdhury NI, Lieberman JA, Meltzer HY, et al. No evidence for a role of the peroxisome proliferator-activated receptor gamma (PPARG) and adiponectin (ADIPOQ) genes in antipsychotic-induced weight gain. Psychiatry Res 2014, 219: 255–260.PubMedCrossRefGoogle Scholar
  110. 110.
    Klemettila JP, Kampman O, Seppala N, Viikki M, Hamalainen M, Moilanen E, et al. Association study of the HTR2C, leptin and adiponectin genes and serum marker analyses in clozapine treated long-term patients with schizophrenia. Eur Psychiatry 2015, 30: 296–302.PubMedCrossRefGoogle Scholar
  111. 111.
    Scuteri A, Sanna S, Chen WM, Uda M, Albai G, Strait J, et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet 2007, 3: e115.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 2007, 316: 889–894.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Zhao X, Yang Y, Sun BF, Zhao YL, Yang YG. FTO and obesity: mechanisms of association. Curr Diab Rep 2014, 14: 486.PubMedCrossRefGoogle Scholar
  114. 114.
    Wang F, Mi WF, Lu TL, Ruan YY, Zhang D, Yue WH. Association study of FTO gene polymorphism with weight gain associated with 4 week risperidone treatment. Chin Mental Health J 2013, 27: 157–160.Google Scholar
  115. 115.
    Song X, Pang L, Feng Y, Fan X, Li X, Zhang W, et al. Fat-mass and obesity-associated gene polymorphisms and weight gain after risperidone treatment in first episode schizophrenia. Behav Brain Funct 2014, 10: 35.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Shing EC, Tiwari AK, Brandl EJ, Zai CC, Lieberman JA, Meltzer HY, et al. Fat mass- and obesity-associated (FTO) gene and antipsychotic-induced weight gain: an association study. Neuropsychobiology 2014, 69: 59–63.PubMedCrossRefGoogle Scholar
  117. 117.
    Fernández-Alvarez A, Alvarez MS, Cucarella C, Casado M. Characterization of the human insulin-induced gene 2 (INSIG2) promoter: the role of Ets-binding motifs. J Biol Chem 2010, 285: 11765–11774.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Herbert A, Gerry NP, Mcqueen MB, Heid IM, Pfeufer A, Illig T, et al. A common genetic variant is associated with adult and childhood obesity. Science 2006, 315: 279–283.CrossRefGoogle Scholar
  119. 119.
    Skelly T, Pinheiro AP, Lange LA, Sullivan PF. Is rs7566605, a SNP near INSIG2, associated with body mass in a randomized clinical trial of antipsychotics in schizophrenia? Mol Psychiatry 2007, 12: 321–322.PubMedCrossRefGoogle Scholar
  120. 120.
    Le Hellard S, Theisen FM, Haberhausen M, Raeder MB, Ferno J, Gebhardt S, et al. Association between the insulin-induced gene 2 (INSIG2) and weight gain in a German sample of antipsychotic-treated schizophrenic patients: perturbation of SREBP-controlled lipogenesis in drug-related metabolic adverse effects? Mol Psychiatry 2009, 14: 308–317.PubMedCrossRefGoogle Scholar
  121. 121.
    Tiwari AK, Zai CC, Meltzer HY, Lieberman JA, Muller DJ, Kennedy JL. Association study of polymorphisms in insulin induced gene 2 (INSIG2) with antipsychotic-induced weight gain in European and African-American schizophrenia patients. Hum Psychopharmacol 2010, 25: 253–259.PubMedCrossRefGoogle Scholar
  122. 122.
    Opgen-Rhein C, Brandl EJ, Müller DJ, Neuhaus AH, Tiwari AK, Sander T, et al. Association of HTR2C, but not LEP or INSIG2, genes with antipsychotic-induced weight gain in a German sample. Pharmacogenomics 2010, 11: 773–780.PubMedCrossRefGoogle Scholar
  123. 123.
    Heid IM, Huth C, Loos RJ, Kronenberg F, Adamkova V, Anand SS, et al. Meta-analysis of the INSIG2 association with obesity including 74,345 individuals: does heterogeneity of estimates relate to study design? PLoS Genet 2009, 5: e1000694.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Hu Q, Zhang SY, Liu F, Zhang XJ, Cui GC, Yu EQ, et al. Influence of GNB3 C825T polymorphism on the efficacy of antidepressants in the treatment of major depressive disorder: A meta-analysis. J Affect Disord 2015, 172: 103–109.PubMedCrossRefGoogle Scholar
  125. 125.
    Wang YC, Bai YM, Chen JY, Lin CC, Lai IC, Liou YJ. C825T polymorphism in the human G protein beta3 subunit gene is associated with long-term clozapine treatment-induced body weight change in the Chinese population. Pharmacogenet Genomics 2005, 15: 743–748.PubMedCrossRefGoogle Scholar
  126. 126.
    Park YM, Chung YC, Lee SH, Lee KJ, Kim H, Choi JE, et al. G-protein beta3 subunit gene 825C/T polymorphism is not associated with olanzapine-induced weight gain in Korean schizophrenic patients. Psychiatry Investig 2009, 6: 39–43.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Bishop JR, Ellingrod VL, Moline J, Miller D. Pilot study of the G-protein beta3 subunit gene (C825T) polymorphism and clinical response to olanzapine or olanzapine-related weight gain in persons with schizophrenia. Med Sci Monit 2006, 12: 47–50.Google Scholar
  128. 128.
    Misiak B, Frydecka D, Piotrowski P, Kiejna A. The multidimensional nature of metabolic syndrome in schizophrenia: lessons from studies of one-carbon metabolism and DNA methylation. Epigenomics 2013, 5: 317–329.PubMedCrossRefGoogle Scholar
  129. 129.
    Tsang BL, Devine OJ, Cordero AM, Marchetta CM, Joseph M, Patricia M, et al. Assessing the association between the methylenetetrahydrofolate reductase (MTHFR) 677C>T polymorphism and blood folate concentrations: a systematic review and meta-analysis of trials and observational studies. Am J Clin Nutr 2015, 101: 1286–1294.PubMedCrossRefGoogle Scholar
  130. 130.
    Srisawat U, Reynolds GP, Zhang ZJ, Zhang XR, Arranz B, San L, et al. Methylenetetrahydrofolate reductase (MTHFR) 677C/T polymorphism is associated with antipsychotic-induced weight gain in first-episode schizophrenia. Int J Neuropsychopharmacol 2014, 17: 485–490.PubMedCrossRefGoogle Scholar
  131. 131.
    Kao AC, Rojnic Kuzman M, Tiwari AK, Zivkovic MV, Chowdhury NI, Medved V, et al. Methylenetetrahydrofolate reductase gene variants and antipsychotic-induced weight gain and metabolic disturbances. J Psychiatr Res 2014, 54: 36–42.PubMedCrossRefGoogle Scholar
  132. 132.
    Misiak B, Laczmanski L, Sloka NK, Szmida E, Slezak R, Piotrowski P, et al. Genetic variation in one-carbon metabolism and changes in metabolic parameters in first-episode schizophrenia patients. Int J Neuropsychopharmacol 2017, 20: 207–212.PubMedGoogle Scholar
  133. 133.
    Reissner C, Runkel F, Missler M. Neurexins. Genome Biol 2013, 14: 213.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Kasem E, Kurihara T, Tabuchi K. Neurexins and neuropsychiatric disorders. Neurosci Res 2017, 127: 53–60.PubMedCrossRefGoogle Scholar
  135. 135.
    Heardcosta NL, Zillikens MC, Monda KL, Johansson Å, Harris TB, Fu M, et al. NRXN3 is a novel locus for waist circumference: a genome-wide association study from the CHARGE consortium. PLoS Genet 2009, 5: e1000539.CrossRefGoogle Scholar
  136. 136.
    Lee M, Kwon DY, Kim MS, Choi CR, Park MY, Kim AJ. Genome-wide association study for the interaction between BMR and BMI in obese Korean women including overweight. Nutr Res Pract 2016, 10: 115–124.PubMedCrossRefGoogle Scholar
  137. 137.
    Hu X, Zhang J, Jin C, Mi W, Wang F, Ma W, et al. Association study of NRXN3 polymorphisms with schizophrenia and risperidone-induced bodyweight gain in Chinese Han population. Prog Neuropsychopharmacol Biol Psychiatry 2013, 43: 197–202.PubMedCrossRefGoogle Scholar
  138. 138.
    Chagnon MJ, Uetani N, Tremblay ML. Functional significance of the LAR receptor protein tyrosine phosphatase family in development and diseases. Biochem Cell Biol 2004, 82: 664–675.PubMedCrossRefGoogle Scholar
  139. 139.
    Li J, Yoshikawa A, Brennan MD, Ramsey TL, Meltzer HY. Genetic predictors of antipsychotic response to lurasidone identified in a genome wide association study and by schizophrenia risk genes. Schizophr Res 2017, 192: 194–204.PubMedCrossRefGoogle Scholar
  140. 140.
    Ward J, Strawbridge RJ, Bailey M, Graham N, Ferguson A, Lyall DM, et al. Genome-wide analysis in UK Biobank identifies four loci associated with mood instability and genetic correlation with major depressive disorder, anxiety disorder and schizophrenia. Transl Psychiatry 2017, 7: 1264.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Maruthur NM, Gribble MO, Bennett WL, Bolen S, Wilson LM, Balakrishnan P, et al. The pharmacogenetics of type 2 diabetes: a systematic review. Diabetes Care 2014, 37: 876–886.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Morris LGT, Veeriah S, Chan TA. Genetic determinants at the interface of cancer and neurodegenerative disease. Oncogene 2010, 29: 3453–3464.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Yu X, Zhang F, Mao J, Lu Y, Li J, Ma W, et al. Protein tyrosine phosphatase receptor-type δ acts as a negative regulator suppressing breast cancer. Oncotarget 2017, 8: 98798–98811.PubMedPubMedCentralGoogle Scholar
  144. 144.
    Bill BR, Lowe JK, Dybuncio CT, Fogel BL. Orchestration of neurodevelopmental programs by RBFOX1: implications for autism spectrum disorder. Int Re Neurobiol 2013, 113: 251–267.CrossRefGoogle Scholar
  145. 145.
    Meyre D, Delplanque J, Chèvre JC, Lecoeur C, Lobbens S, Gallina S, et al. Genome-wide association study for early-onset and morbid adult obesity identifies three new risk loci in European populations. Nat Genet 2009, 41: 157–159.PubMedCrossRefGoogle Scholar
  146. 146.
    Ma L, Hanson RL, Traurig MT, Muller YL, Kaur BP, Perez JM, et al. Evaluation of A2BP1 as an obesity gene. Diabetes 2010, 59: 2837–2845.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Dong LC, Yan H, Huang XB, Hu XF, Yang YF, Ma CC, et al. A2BP1 gene polymorphisms association with olanzapine-induced weight gain. Pharmacol Res 2015, 99: 155–161.PubMedCrossRefGoogle Scholar
  148. 148.
    Li J, Yoshikawa A, Brennan MD, Ramsey TL, Meltzer HY. Genetic predictors of antipsychotic response to lurasidone identified in a genome wide association study and by schizophrenia risk genes. Schizophr Res 2018, 192: 194–204.PubMedCrossRefGoogle Scholar
  149. 149.
    Moller DE. Potential role of TNF-alpha in the pathogenesis of insulin resistance and type 2 diabetes. Trends Endocrinol Metab 2000, 11: 212–217.PubMedCrossRefGoogle Scholar
  150. 150.
    Tzanavari T, Giannogonas P, Karalis KP. TNF-alpha and obesity. Curr Dir Autoimmun 2010, 11: 145–156.PubMedCrossRefGoogle Scholar
  151. 151.
    Jiang C, Li Z, Chen P, Chen L. Association between the tumor necrosis factor-α-308G/A gene polymorphism and HIV-1 susceptibility: a meta-analysis. AIDS Res Hum Retroviruses 2015, 31: 859–865.PubMedCrossRefGoogle Scholar
  152. 152.
    Correll CU, Malhotra AK. Pharmacogenetics of antipsychotic-induced weight gain. Psychopharmacology 2004, 174: 477–489.PubMedCrossRefGoogle Scholar
  153. 153.
    Wang YC, Bai YM, Chen JY, Lin CC, Lai IC, Liou YJ. Genetic association between TNF-α −308 G>A polymorphism and longitudinal weight change during clozapine treatment. Hum Psychopharmacol 2010, 25: 303–309.PubMedCrossRefGoogle Scholar
  154. 154.
    Tsai SJ, Hong CJ, Yu YW, Lin CH, Liu LL. No association of tumor necrosis factor alpha gene polymorphisms with schizophrenia or response to clozapine. Schizophr Res 2003, 65: 27–32.PubMedCrossRefGoogle Scholar
  155. 155.
    Huang HH, Wang YC, Wu CL, Hong CJ, Bai YM, Tsai SJ, et al. TNF-alpha -308 G>A polymorphism and weight gain in patients with schizophrenia under long-term clozapine, risperidone or olanzapine treatment. Neurosci Lett 2011, 504: 277–280.PubMedCrossRefGoogle Scholar
  156. 156.
    Zai G, Muller DJ, Volavka J, Czobor P, Lieberman JA, Meltzer HY, et al. Family and case-control association study of the tumor necrosis factor-alpha (TNF-alpha) gene with schizophrenia and response to antipsychotic medication. Psychopharmacology 2006, 188: 171–182.PubMedCrossRefGoogle Scholar
  157. 157.
    Artegiani B, Am DJD, Bragado AS, Brandl E, Massalini S, Dahl A, et al. Tox: a multifunctional transcription factor and novel regulator of mammalian corticogenesis. EMBO J 2015, 34: 896–910.PubMedCrossRefGoogle Scholar
  158. 158.
    Wei FJ, Cai CY, Feng SZ, Lv J, Li S, Chang BC, et al. TOX and CDKN2A/B gene polymorphisms are associated with type 2 diabetes in Han Chinese. Sci Rep 2015, 5: 11900.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Li JL, Jiang D, Xiao XS, Li SQ, Jia XY, Sun WM, et al. Evaluation of 12 myopia-associated genes in Chinese patients with high myopia. Invest Ophthalmol Vis Sci 2015, 56: 722–729.PubMedCrossRefGoogle Scholar
  160. 160.
    Patrick ONB, Braggio E, O’Neill BP, Van WS, Ojha J, Mcphail E, et al. Genome-wide analysis uncovers novel recurrent alterations in primary central nervous system lymphomas. Clin Cancer Res 2015, 21: 3986–3994.CrossRefGoogle Scholar
  161. 161.
    Safavi S, Hansson M, Karlsson K, Biloglav A, Johansson B, Paulsson K. Novel gene targets detected by genomic profiling in a consecutive series of 126 adults with acute lymphoblastic leukemia. Haematologica 2015, 100: 55–61.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Qi X, Wan Y, Zhan Q, Yang S, Wang Y, Cai X. Effect of CDKN2A/B rs4977756 polymorphism on glioma risk: a meta-analysis of 16 studies including 24077 participants. Mamm Genome 2016, 27: 1–7.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Guo C, Huang Y, Yu J, Liu L, Gong X, Huang M, et al. The impacts of single nucleotide polymorphisms in genes of cell cycle and NF-kB pathways on the efficacy and acute toxicities of radiotherapy in patients with nasopharyngeal carcinoma. Oncotarget 2017, 8: 25334–25344.PubMedPubMedCentralGoogle Scholar
  164. 164.
    Herling CD, Abedpour N, Weiss J, Schmitt A, Jachimowicz RD, Merkel O, et al. Clonal dynamics towards the development of venetoclax resistance in chronic lymphocytic leukemia. Nat Commun 2018, 9: 727.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Bartels S, van Luttikhuizen JL, Christgen M, Mägel L, Luft A, Hänzelmann S, et al. CDKN2A loss and PIK3CA mutation in myoepithelial-like metaplastic breast cancer. J Pathol 2018, 245: 373–383.PubMedCrossRefGoogle Scholar
  166. 166.
    Mittal K, Goncalves VF, Harripaul R, Cuperfain AB, Rollins B, Tiwari AK, et al. A comprehensive analysis of mitochondrial genes variants and their association with antipsychotic-induced weight gain. Schizophr Res 2017, 187: 67–73.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Kane JM, Skuban A, Hobart M, Ouyang J, Weiller E, Weiss C, et al. Overview of short- and long-term tolerability and safety of brexpiprazole in patients with schizophrenia. Schizophr Res 2016, 174: 93–98.PubMedCrossRefGoogle Scholar
  168. 168.
    Vassos E, Di Forti M, Coleman J, Iyegbe C, Prata D, Euesden J, et al. An examination of polygenic score risk prediction in individuals with first-episode psychosis. Biol Psychiatry 2017, 81: 470–477.PubMedCrossRefGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS 2019

Authors and Affiliations

  • Chao Luo
    • 1
    • 2
    • 3
  • Junyan Liu
    • 4
  • Xu Wang
    • 1
    • 2
  • Xiaoyuan Mao
    • 1
    • 2
  • Honghao Zhou
    • 1
    • 2
    • 5
  • Zhaoqian Liu
    • 1
    • 2
    • 5
    Email author
  1. 1.Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaChina
  2. 2.Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical PharmacologyCentral South UniversityChangshaChina
  3. 3.School of Life SciencesCentral South UniversityChangshaChina
  4. 4.Department of OrthopaedicsThe First Affiliated Hospital of the University of South ChinaHengyangChina
  5. 5.National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina

Personalised recommendations