Spinal Cord Stimulation for Pain Treatment After Spinal Cord Injury
Abstract
In addition to restoration of bladder, bowel, and motor functions, alleviating the accompanying debilitating pain is equally important for improving the quality of life of patients with spinal cord injury (SCI). Currently, however, the treatment of chronic pain after SCI remains a largely unmet need. Electrical spinal cord stimulation (SCS) has been used to manage a variety of chronic pain conditions that are refractory to pharmacotherapy. Yet, its efficacy, benefit profiles, and mechanisms of action in SCI pain remain elusive, due to limited research, methodological weaknesses in previous clinical studies, and a lack of mechanistic exploration of SCS for SCI pain control. We aim to review recent studies and outline the therapeutic potential of different SCS paradigms for traumatic SCI pain. We begin with an overview of its manifestations, classification, potential underlying etiology, and current challenges for its treatment. The clinical evidence for using SCS in SCI pain is then reviewed. Finally, future perspectives of pre-clinical research and clinical study of SCS for SCI pain treatment are discussed.
Keywords
Pain Trauma Spinal cord injury Spinal cord stimulation Neuromodulation AnalgesiaNotes
Acknowledgements
This review was supported by grants from the National Institutes of Health, Bethesda, MD (R01NS70814 and R21NS99879 to YG). The authors thank Claire F. Levine, MS, ELS (Scientific Editor, Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University) for editing the manuscript.
Conflict of interest
The authors declare no conflict of interest.
References
- 1.Widerstrom-Noga E. Neuropathic pain and spinal cord injury: phenotypes and pharmacological management. Drugs 2017, 77: 967–984.PubMedCrossRefGoogle Scholar
- 2.Widerstrom-Noga E, Felix ER, Adcock JP, Escalona M, Tibbett J. Multidimensional neuropathic pain phenotypes after spinal cord injury. J Neurotrauma 2016, 33: 482–492.PubMedCrossRefGoogle Scholar
- 3.Melzack R, Wall PD. Evolution of pain theories. Int Anesthesiol Clin 1970, 8: 3–34.PubMedCrossRefGoogle Scholar
- 4.Melzack R, Wall PD. Pain mechanisms: a new theory. Science 1965, 150: 971–979.PubMedCrossRefGoogle Scholar
- 5.Chakravarthy K, Richter H, Christo PJ, Williams K, Guan Y. Spinal cord stimulation for treating chronic pain: reviewing preclinical and clinical data on paresthesia-free high-frequency therapy. Neuromodulation 2018, 21: 10–18.PubMedCrossRefGoogle Scholar
- 6.Geurts JW, Joosten EA, van Kleef KM. Current status and future perspectives of spinal cord stimulation in treatment of chronic pain. Pain 2017, 158: 771–774.PubMedCrossRefGoogle Scholar
- 7.Linderoth B, Foreman RD. Conventional and novel spinal stimulation algorithms: hypothetical mechanisms of action and comments on outcomes. Neuromodulation 2017, 20: 525–533.PubMedCrossRefGoogle Scholar
- 8.Shealy CN, Mortimer JT, Hagfors NR. Dorsal column electroanalgesia. J Neurosurg 1970, 32: 560–564.PubMedCrossRefGoogle Scholar
- 9.Shu B, Yang F, Guan Y. Intra-spinal microstimulation may alleviate chronic pain after spinal cord injury. Med Hypotheses 2017, 104: 73–77.PubMedPubMedCentralCrossRefGoogle Scholar
- 10.Chari A, Hentall ID, Papadopoulos MC, Pereira EA. Surgical neurostimulation for spinal cord injury. Brain Sci 2017, 7: 18–35.PubMedCentralCrossRefPubMedGoogle Scholar
- 11.Widerstrom-Noga E, Biering-Sorensen F, Bryce TN, Cardenas DD, Finnerup NB, Jensen MP et al. The International Spinal Cord Injury Pain Basic Data Set (version 2.0). Spinal Cord 2014, 52: 282–286.PubMedCrossRefGoogle Scholar
- 12.Bryce TN, Ragnarsson KT. Pain after spinal cord injury. Phys Med Rehabil Clin N Am 2000, 11: 157–168.PubMedCrossRefGoogle Scholar
- 13.Bryce TN, Budh CN, Cardenas DD, Dijkers M, Felix ER, Finnerup NB, et al. Pain after spinal cord injury: an evidence-based review for clinical practice and research. Report of the National Institute on Disability and Rehabilitation Research Spinal Cord Injury Measures meeting. J Spinal Cord Med 2007, 30: 421–440.PubMedPubMedCentralCrossRefGoogle Scholar
- 14.Shiao R, Lee-Kubli CA. Neuropathic pain after spinal cord injury: challenges and research perspectives. Neurotherapeutics 2018, 15: 635–653.CrossRefGoogle Scholar
- 15.Attal N, Mazaltarine G, Perrouin-Verbe B, Albert T. Chronic neuropathic pain management in spinal cord injury patients. What is the efficacy of pharmacological treatments with a general mode of administration? (oral, transdermal, intravenous). Ann Phys Rehabil Med 2009, 52: 124–141.PubMedCrossRefGoogle Scholar
- 16.Dijkers M, Bryce T, Zanca J. Prevalence of chronic pain after traumatic spinal cord injury: a systematic review. J Rehabil Res Dev 2009, 46: 13–29.PubMedCrossRefGoogle Scholar
- 17.Widerstrom-Noga E, Biering-Sorensen F, Bryce T, Cardenas DD, Finnerup NB, Jensen MP, et al. The international spinal cord injury pain basic data set. Spinal Cord 2008, 46: 818–823.PubMedCrossRefGoogle Scholar
- 18.Widerstrom-Noga E, Biering-Sorensen F, Bryce TN, Cardenas DD, Finnerup NB, Jensen MP, et al. The International Spinal Cord Injury Pain Extended Data Set (Version 1.0). Spinal Cord 2016, 54: 1036–1046.PubMedCrossRefGoogle Scholar
- 19.Burke D, Fullen BM, Stokes D, Lennon O. Neuropathic pain prevalence following spinal cord injury: A systematic review and meta-analysis. Eur J Pain 2017, 21: 29–44.PubMedCrossRefGoogle Scholar
- 20.Wieseler J, Ellis AL, McFadden A, Brown K, Starnes C, Maier SF, et al. Below level central pain induced by discrete dorsal spinal cord injury. J Neurotrauma 2010, 27: 1697–1707.PubMedPubMedCentralCrossRefGoogle Scholar
- 21.Siddall PJ, McClelland JM, Rutkowski SB, Cousins MJ. A longitudinal study of the prevalence and characteristics of pain in the first 5 years following spinal cord injury. Pain 2003, 103: 249–257.PubMedCrossRefGoogle Scholar
- 22.Siddall PJ, Loeser JD. Pain following spinal cord injury. Spinal Cord 2001, 39: 63–73.PubMedCrossRefGoogle Scholar
- 23.Bryce TN, Biering-Sorensen F, Finnerup NB, Cardenas DD, Defrin R, Lundeberg T, et al. International spinal cord injury pain classification: part I. Background and description. March 6–7, 2009. Spinal Cord 2012, 50: 413–417.PubMedCrossRefGoogle Scholar
- 24.Modirian E, Pirouzi P, Soroush M, Karbalaei-Esmaeili S, Shojaei H, Zamani H. Chronic pain after spinal cord injury: results of a long-term study. Pain Med 2010, 11: 1037–1043.PubMedCrossRefGoogle Scholar
- 25.Finnerup NB, Jensen MP, Norrbrink C, Trok K, Johannesen IL, Jensen TS, et al. A prospective study of pain and psychological functioning following traumatic spinal cord injury. Spinal Cord 2016, 54: 816–821.PubMedCrossRefGoogle Scholar
- 26.Penas C, Navarro X. Epigenetic modifications associated to neuroinflammation and neuropathic pain after neural trauma. Front Cell Neurosci 2018, 12: 158.PubMedPubMedCentralCrossRefGoogle Scholar
- 27.Walters ET. Neuroinflammatory contributions to pain after SCI: roles for central glial mechanisms and nociceptor-mediated host defense. Exp Neurol 2014, 258: 48–61.PubMedCrossRefGoogle Scholar
- 28.Yezierski RP. Spinal cord injury pain: spinal and supraspinal mechanisms. J Rehabil Res Dev 2009, 46: 95–107.PubMedCrossRefGoogle Scholar
- 29.Hulsebosch CE, Hains BC, Crown ED, Carlton SM. Mechanisms of chronic central neuropathic pain after spinal cord injury. Brain Res Rev 2009, 60: 202–213.PubMedCrossRefGoogle Scholar
- 30.Burchiel KJ, Hsu FP. Pain and spasticity after spinal cord injury: mechanisms and treatment. Spine (Phila Pa 1976) 2001, 26: S146–S160.CrossRefGoogle Scholar
- 31.Yezierski RP, Yu CG, Mantyh PW, Vierck CJ, Lappi DA. Spinal neurons involved in the generation of at-level pain following spinal injury in the rat. Neurosci Lett 2004, 361: 232–236.PubMedCrossRefGoogle Scholar
- 32.Gwak YS, Hulsebosch CE. Neuronal hyperexcitability: a substrate for central neuropathic pain after spinal cord injury. Curr Pain Headache Rep 2011, 15: 215–222.PubMedCrossRefGoogle Scholar
- 33.Carlton SM, Du J, Tan HY, Nesic O, Hargett GL, Bopp AC, et al. Peripheral and central sensitization in remote spinal cord regions contribute to central neuropathic pain after spinal cord injury. Pain 2009, 147: 265–276.PubMedPubMedCentralCrossRefGoogle Scholar
- 34.Gosselin RD, Suter MR, Ji RR, Decosterd I. Glial cells and chronic pain. Neuroscientist 2010, 16: 519–531.PubMedPubMedCentralCrossRefGoogle Scholar
- 35.Zhou LJ, Liu XG. Glial activation, a common mechanism underlying spinal synaptic plasticity? Neurosci Bull 2017, 33: 121–123.PubMedPubMedCentralCrossRefGoogle Scholar
- 36.Ji RR, Berta T, Nedergaard M. Glia and pain: is chronic pain a gliopathy? Pain 2013, 154 Suppl 1: S10–S28.PubMedPubMedCentralCrossRefGoogle Scholar
- 37.Kerasidis H, Wrathall JR, Gale K. Behavioral assessment of functional deficit in rats with contusive spinal cord injury. J Neurosci Methods 1987, 20: 167–179.PubMedCrossRefPubMedCentralGoogle Scholar
- 38.Vierck CJ Jr, Siddall P, Yezierski RP. Pain following spinal cord injury: animal models and mechanistic studies. Pain 2000, 89: 1–5.PubMedCrossRefPubMedCentralGoogle Scholar
- 39.Yezierski RP, Liu S, Ruenes GL, Kajander KJ, Brewer KL. Excitotoxic spinal cord injury: behavioral and morphological characteristics of a central pain model. Pain 1998, 75: 141–155.PubMedCrossRefPubMedCentralGoogle Scholar
- 40.Meisner JG, Marsh AD, Marsh DR. Loss of GABAergic interneurons in laminae I-III of the spinal cord dorsal horn contributes to reduced GABAergic tone and neuropathic pain after spinal cord injury. J Neurotrauma 2010, 27: 729–737.PubMedCrossRefGoogle Scholar
- 41.Kalous A, Osborne PB, Keast JR. Spinal cord compression injury in adult rats initiates changes in dorsal horn remodeling that may correlate with development of neuropathic pain. J Comp Neurol 2009, 513: 668–684.PubMedCrossRefGoogle Scholar
- 42.Hao JX, Kupers RC, Xu XJ. Response characteristics of spinal cord dorsal horn neurons in chronic allodynic rats after spinal cord injury. J Neurophysiol 2004, 92: 1391–1399.PubMedCrossRefGoogle Scholar
- 43.Zhao P, Waxman SG, Hains BC. Modulation of thalamic nociceptive processing after spinal cord injury through remote activation of thalamic microglia by cysteine cysteine chemokine ligand 21. J Neurosci 2007, 27: 8893–8902.PubMedCrossRefGoogle Scholar
- 44.Hains BC, Saab CY, Waxman SG. Alterations in burst firing of thalamic VPL neurons and reversal by Na(v)1.3 antisense after spinal cord injury. J Neurophysiol 2006, 95: 3343–3352.PubMedCrossRefGoogle Scholar
- 45.Gwak YS, Kim HK, Kim HY, Leem JW. Bilateral hyperexcitability of thalamic VPL neurons following unilateral spinal injury in rats. J Physiol Sci 2010, 60: 59–66.PubMedCrossRefGoogle Scholar
- 46.Crown ED, Gwak YS, Ye Z, Johnson KM, Hulsebosch CE. Activation of p38 MAP kinase is involved in central neuropathic pain following spinal cord injury. Exp Neurol 2008, 213: 257–267.PubMedPubMedCentralCrossRefGoogle Scholar
- 47.Hains BC, Waxman SG. Activated microglia contribute to the maintenance of chronic pain after spinal cord injury. J Neurosci 2006, 26: 4308–4317.PubMedCrossRefGoogle Scholar
- 48.Gwak YS, Hulsebosch CE. Upregulation of group I metabotropic glutamate receptors in neurons and astrocytes in the dorsal horn following spinal cord injury. Exp Neurol 2005, 195: 236–243.PubMedCrossRefGoogle Scholar
- 49.Hains BC, Saab CY, Klein JP, Craner MJ, Waxman SG. Altered sodium channel expression in second-order spinal sensory neurons contributes to pain after peripheral nerve injury. J Neurosci 2004, 24: 4832–4839.PubMedCrossRefGoogle Scholar
- 50.Boulenguez P, Liabeuf S, Bos R, Bras H, Jean-Xavier C, Brocard C, et al. Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury. Nat Med 2010, 16: 302–307.PubMedCrossRefGoogle Scholar
- 51.Liabeuf S, Stuhl-Gourmand L, Gackiere F, Mancuso R, Sanchez Brualla I, Marino P, et al. Prochlorperazine increases KCC2 function and reduces spasticity after spinal cord injury. J Neurotrauma 2017, 34: 3397–3406.PubMedCrossRefGoogle Scholar
- 52.Chen B, Li Y, Yu B, Zhang Z, Brommer B, Williams PR, et al. Reactivation of dormant relay pathways in injured spinal cord by KCC2 manipulations. Cell 2018, 174: 521–535.PubMedCrossRefGoogle Scholar
- 53.Tashiro S, Shinozaki M, Mukaino M, Renault-Mihara F, Toyama Y, Liu M, et al. BDNF induced by treadmill training contributes to the suppression of spasticity and allodynia after spinal cord injury via upregulation of KCC2. Neurorehabil Neural Repair 2015, 29: 677–689.PubMedCrossRefGoogle Scholar
- 54.Filosa A, Paixao S, Honsek SD, Carmona MA, Becker L, Feddersen B, et al. Neuron-glia communication via EphA4/ephrin-A3 modulates LTP through glial glutamate transport. Nat Neurosci 2009, 12: 1285–1292.PubMedPubMedCentralCrossRefGoogle Scholar
- 55.Kronschlager MT, Drdla-Schutting R, Gassner M, Honsek SD, Teuchmann HL, Sandkuhler J. Gliogenic LTP spreads widely in nociceptive pathways. Science 2016, 354: 1144–1148.PubMedPubMedCentralCrossRefGoogle Scholar
- 56.Gwak YS, Kang J, Unabia GC, Hulsebosch CE. Spatial and temporal activation of spinal glial cells: role of gliopathy in central neuropathic pain following spinal cord injury in rats. Exp Neurol 2012, 234: 362–372.PubMedCrossRefGoogle Scholar
- 57.Kim D, Kim MA, Cho IH, Kim MS, Lee S, Jo EK, et al. A critical role of toll-like receptor 2 in nerve injury-induced spinal cord glial cell activation and pain hypersensitivity. J Biol Chem 2007, 282: 14975–14983.PubMedCrossRefGoogle Scholar
- 58.Hains BC, Waxman SG. Sodium channel expression and the molecular pathophysiology of pain after SCI. Prog Brain Res 2007, 161: 195–203.PubMedCrossRefGoogle Scholar
- 59.Bedi SS, Yang Q, Crook RJ, Du J, Wu Z, Fishman HM, et al. Chronic spontaneous activity generated in the somata of primary nociceptors is associated with pain-related behavior after spinal cord injury. J Neurosci 2010, 30: 14870–14882.PubMedPubMedCentralCrossRefGoogle Scholar
- 60.Miranpuri GS, Meethal SV, Sampene E, Chopra A, Buttar S, Nacht C, et al. Folic acid modulates matrix metalloproteinase-2 expression, alleviates neuropathic pain, and improves functional recovery in spinal cord-injured rats. Ann Neurosci 2017, 24: 74–81.PubMedPubMedCentralCrossRefGoogle Scholar
- 61.Schomberg D, Miranpuri G, Duellman T, Crowell A, Vemuganti R, Resnick D. Spinal cord injury induced neuropathic pain: Molecular targets and therapeutic approaches. Metab Brain Dis 2015, 30: 645–658.PubMedCrossRefGoogle Scholar
- 62.Descalzi G, Ikegami D, Ushijima T, Nestler EJ, Zachariou V, Narita M. Epigenetic mechanisms of chronic pain. Trends Neurosci 2015, 38: 237–246.PubMedPubMedCentralCrossRefGoogle Scholar
- 63.Turtle JD, Strain MM, Aceves M, Huang YJ, Reynolds JA, Hook MA, et al. Pain input impairs recovery after spinal cord injury: treatment with lidocaine. J Neurotrauma 2017, 34: 1200–1208.PubMedPubMedCentralCrossRefGoogle Scholar
- 64.Ravenscroft A, Ahmed YS, Burnside IG. Chronic pain after SCI. A patient survey. Spinal Cord 2000, 38: 611–614.PubMedCrossRefGoogle Scholar
- 65.Baastrup C, Finnerup NB. Pharmacological management of neuropathic pain following spinal cord injury. CNS Drugs 2008, 22: 455–475.PubMedCrossRefGoogle Scholar
- 66.Mehta S, McIntyre A, Janzen S, Loh E, Teasell R. Systematic review of pharmacologic treatments of pain after spinal cord injury: an update. Arch Phys Med Rehabil 2016, 97: 1381–1391.PubMedCrossRefGoogle Scholar
- 67.Teasell RW, Mehta S, Aubut JA, Foulon B, Wolfe DL, Hsieh JT, et al. A systematic review of pharmacologic treatments of pain after spinal cord injury. Arch Phys Med Rehabil 2010, 91: 816–831.PubMedPubMedCentralCrossRefGoogle Scholar
- 68.Warms CA, Turner JA, Marshall HM, Cardenas DD. Treatments for chronic pain associated with spinal cord injuries: many are tried, few are helpful. Clin J Pain 2002, 18: 154–163.PubMedCrossRefGoogle Scholar
- 69.Cardenas DD, Felix ER. Pain after spinal cord injury: a review of classification, treatment approaches, and treatment assessment. PM R 2009, 1: 1077–1090.PubMedCrossRefGoogle Scholar
- 70.Sjolund BH. Pain and rehabilitation after spinal cord injury: the case of sensory spasticity? Brain Res Brain Res Rev 2002, 40: 250–256.PubMedCrossRefGoogle Scholar
- 71.Canavero S, Bonicalzi V. Neuromodulation for central pain. Expert Rev Neurother 2003, 3: 591–607.PubMedCrossRefGoogle Scholar
- 72.Sadowsky CL. Electrical stimulation in spinal cord injury. NeuroRehabilitation 2001, 16: 165–169.PubMedGoogle Scholar
- 73.Dworkin RH, O’Connor AB, Kent J, Mackey SC, Raja SN, Stacey BR, et al. Interventional management of neuropathic pain: NeuPSIG recommendations. Pain 2013, 154: 2249–2261.PubMedPubMedCentralCrossRefGoogle Scholar
- 74.Lagauche D, Facione J, Albert T, Fattal C. The chronic neuropathic pain of spinal cord injury: which efficiency of neuropathic stimulation? Ann Phys Rehabil Med 2009, 52: 180–187.PubMedCrossRefGoogle Scholar
- 75.Siddall PJ. Management of neuropathic pain following spinal cord injury: now and in the future. Spinal Cord 2009, 47: 352–359.PubMedCrossRefGoogle Scholar
- 76.Kumar K, Toth C, Nath RK. Spinal cord stimulation for chronic pain in peripheral neuropathy. Surg Neurol 1996, 46: 363–369.PubMedCrossRefGoogle Scholar
- 77.Guan Y. Spinal cord stimulation: neurophysiological and neurochemical mechanisms of action. Curr Pain Headache Rep 2012, 16: 217–225.PubMedCrossRefGoogle Scholar
- 78.Shechter R, Yang F, Xu Q, Cheong YK, He SQ, Sdrulla A, et al. Conventional and kilohertz-frequency spinal cord stimulation produces intensity- and frequency-dependent inhibition of mechanical hypersensitivity in a rat model of neuropathic pain. Anesthesiology 2013, 119: 422–432.PubMedPubMedCentralCrossRefGoogle Scholar
- 79.Shealy CN. Dorsal column stimulation. Surg Neurol 1977, 7: 192.PubMedGoogle Scholar
- 80.Costigan M, Woolf CJ. No DREAM, No pain. Closing the spinal gate. Cell 2002, 108: 297–300.PubMedGoogle Scholar
- 81.Kapural L. Spinal cord stimulation for intractable chronic pain. Curr Pain Headache Rep 2014, 18: 406.PubMedCrossRefGoogle Scholar
- 82.Falowski S, Sharan A. A review on spinal cord stimulation. J Neurosurg Sci 2012, 56: 287–298.PubMedGoogle Scholar
- 83.Song Z, Viisanen H, Meyerson BA, Pertovaara A, Linderoth B. Efficacy of kilohertz-frequency and conventional spinal cord stimulation in rat models of different pain conditions. Neuromodulation 2014, 17: 226–234.PubMedCrossRefGoogle Scholar
- 84.Foreman RD, Linderoth B. Neural mechanisms of spinal cord stimulation. Int Rev Neurobiol 2012, 107: 87–119.PubMedCrossRefGoogle Scholar
- 85.Guan Y, Wacnik PW, Yang F, Carteret AF, Chung CY, Meyer RA, et al. Spinal cord stimulation-induced analgesia: electrical stimulation of dorsal column and dorsal roots attenuates dorsal horn neuronal excitability in neuropathic rats. Anesthesiology 2010, 113: 1392–1405.PubMedCrossRefGoogle Scholar
- 86.Narikawa K, Furue H, Kumamoto E, Yoshimura M. In vivo patch-clamp analysis of IPSCs evoked in rat substantia gelatinosa neurons by cutaneous mechanical stimulation. J Neurophysiol 2000, 84: 2171–2174.PubMedCrossRefGoogle Scholar
- 87.Shimoji K, Shimizu H, Maruyama Y, Matsuki M, Kuribayashi H, Fujioka H. Dorsal column stimulation in man: facilitation of primary afferent depolarization. Anesth Analg 1982, 61: 410–413.PubMedCrossRefGoogle Scholar
- 88.Olsson GL, Meyerson BA, Linderoth B. Spinal cord stimulation in adolescents with complex regional pain syndrome type I (CRPS-I). Eur J Pain 2008, 12: 53–59.PubMedCrossRefGoogle Scholar
- 89.Carter ML. Spinal cord stimulation in chronic pain: a review of the evidence. Anaesth Intensive Care 2004, 32: 11–21.PubMedGoogle Scholar
- 90.Kumar K, Taylor RS, Jacques L, Eldabe S, Meglio M, Molet J, et al. Spinal cord stimulation versus conventional medical management for neuropathic pain: a multicentre randomised controlled trial in patients with failed back surgery syndrome. Pain 2007, 132: 179–188.PubMedCrossRefGoogle Scholar
- 91.Meyerson BA, Linderoth B. Mode of action of spinal cord stimulation in neuropathic pain. J Pain Symptom Manage 2006, 31: S6–S12.PubMedCrossRefGoogle Scholar
- 92.De Ridder D, Vanneste S. Burst and tonic spinal cord stimulation: different and common brain mechanisms. Neuromodulation 2016, 19: 47–59.PubMedCrossRefGoogle Scholar
- 93.de Vos CC, Bom MJ, Vanneste S, Lenders MW, De Ridder RD. Burst spinal cord stimulation evaluated in patients with failed back surgery syndrome and painful diabetic neuropathy. Neuromodulation 2014, 17: 152–159.PubMedCrossRefGoogle Scholar
- 94.De Ridder D, Plazier M, Kamerling N, Menovsky T, Vanneste S. Burst spinal cord stimulation for limb and back pain. World Neurosurg 2013, 80: 642–649.PubMedCrossRefGoogle Scholar
- 95.Hou S, Kemp K, Grabois M. A systematic evaluation of burst spinal cord stimulation for chronic back and limb pain. Neuromodulation 2016, 19: 398–405.PubMedCrossRefGoogle Scholar
- 96.Van HT, Vancamp T, Van LP, Vanneste S, De Ridder D. Spinal cord stimulation for the treatment of chronic back pain patients: 500-Hz vs. 1000-Hz burst stimulation. Neuromodulation 2015, 18: 9–12.CrossRefGoogle Scholar
- 97.Tang R, Martinez M, Goodman-Keiser M, Farber JP, Qin C, Foreman RD. Comparison of burst and tonic spinal cord stimulation on spinal neural processing in an animal model. Neuromodulation 2014, 17: 143–151.PubMedCrossRefGoogle Scholar
- 98.Gong WY, Johanek LM, Sluka KA. A comparison of the effects of burst and tonic spinal cord stimulation on hyperalgesia and physical activity in an animal model of neuropathic pain. Anesth Analg 2016, 112: 1178–1185.CrossRefGoogle Scholar
- 99.Kapural L, Yu C, Doust MW, Gliner BE, Vallejo R, Sitzman BT, et al. Novel 10-kHz high-frequency therapy (HF10 therapy) is superior to traditional low-frequency spinal cord stimulation for the treatment of chronic back and leg pain: The SENZA-RCT randomized controlled trial. Anesthesiology 2015, 123: 851–860.PubMedCrossRefGoogle Scholar
- 100.Al-Kaisy A, Van Buyten JP, Smet I, Palmisani S, Pang D, Smith T. Sustained effectiveness of 10 kHz high-frequency spinal cord stimulation for patients with chronic, low back pain: 24-month results of a prospective multicenter study. Pain Med 2014, 15: 347–354.PubMedCrossRefGoogle Scholar
- 101.Van Buyten JP, Al-Kaisy A, Smet I, Palmisani S, Smith T. High-frequency spinal cord stimulation for the treatment of chronic back pain patients: results of a prospective multicenter European clinical study. Neuromodulation 2013, 16: 59–65.PubMedCrossRefGoogle Scholar
- 102.Verrills P, Sinclair C, Barnard A. A review of spinal cord stimulation systems for chronic pain. J Pain Res 2016, 9: 481–492.PubMedPubMedCentralCrossRefGoogle Scholar
- 103.Perruchoud C, Eldabe S, Batterham AM, Madzinga G, Brookes M, Durrer A, et al. Analgesic efficacy of high-frequency spinal cord stimulation: a randomized double-blind placebo-controlled study. Neuromodulation 2013, 16: 363–369.PubMedCrossRefGoogle Scholar
- 104.Annemans L, Van Buyten JP, Smith T, Al-Kaisy A. Cost effectiveness of a novel 10 kHz high-frequency spinal cord stimulation system in patients with failed back surgery syndrome (FBSS). J Long Term Eff Med Implants 2014, 24: 173–183.PubMedCrossRefGoogle Scholar
- 105.Wolter T. Spinal cord stimulation for neuropathic pain: current perspectives. J Pain Res 2014, 7: 651–663.PubMedPubMedCentralCrossRefGoogle Scholar
- 106.Crosby ND, Janik JJ, Grill WM. Modulation of activity and conduction in single dorsal column axons by kilohertz-frequency spinal cord stimulation. J Neurophysiol 2017, 117: 136–147.PubMedCrossRefGoogle Scholar
- 107.Crosby ND, Weisshaar CL, Smith JR, Zeeman ME, Goodman-Keiser MD, Winkelstein BA. Burst and tonic spinal cord stimulation differentially activate GABAergic mechanisms to attenuate pain in a rat model of cervical radiculopathy. IEEE Trans Biomed Eng 2015, 62: 1604–1613.PubMedCrossRefGoogle Scholar
- 108.Tator CH, Minassian K, Mushahwar VK. Spinal cord stimulation: therapeutic benefits and movement generation after spinal cord injury. Handb Clin Neurol 2012, 109: 283–296.PubMedCrossRefGoogle Scholar
- 109.Nagel SJ, Wilson S, Johnson MD, Machado A, Frizon L, Chardon MK, et al. Spinal cord stimulation for spasticity: historical approaches, current status, and future directions. Neuromodulation 2017, 20: 307–321.PubMedCrossRefGoogle Scholar
- 110.Gater DR Jr, Dolbow D, Tsui B, Gorgey AS. Functional electrical stimulation therapies after spinal cord injury. NeuroRehabilitation 2011, 28: 231–248.PubMedGoogle Scholar
- 111.Eldabe S, Thomson S, Duarte R, Brookes M, Belder M, Raphael J, et al. The effectiveness and cost-effectiveness of spinal cord stimulation for refractory angina (RASCAL Study): A pilot randomized controlled trial. Neuromodulation 2016, 19: 60–70.PubMedCrossRefGoogle Scholar
- 112.Saraste A, Ukkonen H, Varis A, Vasankari T, Tunturi S, Taittonen M, et al. Effect of spinal cord stimulation on myocardial perfusion reserve in patients with refractory angina pectoris. Eur Heart J Cardiovasc Imaging 2015, 16: 449–455.PubMedCrossRefGoogle Scholar
- 113.Kapural L, Cywinski JB, Sparks DA. Spinal cord stimulation for visceral pain from chronic pancreatitis. Neuromodulation 2011, 14: 423–426.PubMedCrossRefGoogle Scholar
- 114.Aslan SC, Legg Ditterline BE, Park MC, Angeli CA, Rejc E, Chen Y, et al. Epidural spinal cord stimulation of lumbosacral networks modulates arterial blood pressure in individuals with spinal cord injury-induced cardiovascular deficits. Front Physiol 2018, 9: 565.PubMedPubMedCentralCrossRefGoogle Scholar
- 115.Herrity AN, Williams CS, Angeli CA, Harkema SJ, Hubscher CH. Lumbosacral spinal cord epidural stimulation improves voiding function after human spinal cord injury. Sci Rep 2018, 8: 8688.PubMedPubMedCentralCrossRefGoogle Scholar
- 116.Kowalski KE, Romaniuk JR, Brose SW, Richmond MA, Kowalski T, DiMarco AF. High frequency spinal cord stimulation-New method to restore cough. Respir Physiol Neurobiol 2016, 232: 54–56.PubMedPubMedCentralCrossRefGoogle Scholar
- 117.DiMarco AF, Geertman RT, Tabbaa K, Polito RR, Kowalski KE. Case report: Minimally invasive method to activate the expiratory muscles to restore cough. J Spinal Cord Med 2018, 41: 562–566.PubMedCrossRefGoogle Scholar
- 118.Nashold BS Jr, Friedman H. Dorsal column stimulation for control of pain. Preliminary report on 30 patients. J Neurosurg 1972, 36: 590–597.PubMedCrossRefGoogle Scholar
- 119.Meglio M, Cioni B, Rossi GF. Spinal cord stimulation in management of chronic pain. A 9-year experience. J Neurosurg 1989, 70: 519–524.PubMedCrossRefGoogle Scholar
- 120.Buchhaas U, Koulousakis A, Nittner K. Experience with spinal cord stimulation (SCS) in the management of chronic pain in a traumatic transverse lesion syndrome. Neurosurg Rev 1989, 12 Suppl 1: 582–587.PubMedCrossRefGoogle Scholar
- 121.Meglio M, Cioni B, Prezioso A, Talamonti G. Spinal cord stimulation (SCS) in deafferentation pain. Pacing Clin Electrophysiol 1989, 12: 709–712.PubMedCrossRefGoogle Scholar
- 122.North RB, Kidd DH, Zahurak M, James CS, Long DM. Spinal cord stimulation for chronic, intractable pain: experience over two decades. Neurosurgery 1993, 32: 384–394.PubMedCrossRefGoogle Scholar
- 123.Tasker RR, DeCarvalho GT, Dolan EJ. Intractable pain of spinal cord origin: clinical features and implications for surgery. J Neurosurg 1992, 77: 373–378.PubMedCrossRefGoogle Scholar
- 124.Cioni B, Meglio M, Pentimalli L, Visocchi M. Spinal cord stimulation in the treatment of paraplegic pain. J Neurosurg 1995, 82: 35–39.PubMedCrossRefGoogle Scholar
- 125.Kumar K, Toth C, Nath RK, Laing P. Epidural spinal cord stimulation for treatment of chronic pain–some predictors of success. A 15-year experience. Surg Neurol 1998, 50: 110–120.PubMedCrossRefGoogle Scholar
- 126.Shimoji K, Hokari T, Kano T, Tomita M, Kimura R, Watanabe S, et al. Management of intractable pain with percutaneous epidural spinal cord stimulation: differences in pain-relieving effects among diseases and sites of pain. Anesth Analg 1993, 77: 110–116.PubMedCrossRefGoogle Scholar
- 127.Levine AB, Parrent AG, MacDougall KW. Cervical spinal cord and dorsal nerve root stimulation for neuropathic upper limb pain. Can J Neurol Sci 2017, 44: 83–89.PubMedCrossRefGoogle Scholar
- 128.Brill S, Aryeh IG. Neuromodulation in the management of pain from brachial plexus injury. Pain Physician 2008, 11: 81–85.PubMedGoogle Scholar
- 129.Richardson RR, Meyer PR, Cerullo LJ. Neurostimulation in the modulation of intractable paraplegic and traumatic neuroma pains. Pain 1980, 8: 75–84.PubMedCrossRefGoogle Scholar
- 130.Barchini J, Tchachaghian S, Shamaa F, Jabbur SJ, Meyerson BA, Song Z, et al. Spinal segmental and supraspinal mechanisms underlying the pain-relieving effects of spinal cord stimulation: an experimental study in a rat model of neuropathy. Neuroscience 2012, 215: 196–208.PubMedCrossRefGoogle Scholar
- 131.Sdrulla AD, Xu Q, He SQ, Tiwari V, Yang F, Zhang C, et al. Electrical stimulation of low-threshold afferent fibers induces a prolonged synaptic depression in lamina II dorsal horn neurons to high-threshold afferent inputs in mice. Pain 2015, 156: 1008–1017.PubMedPubMedCentralGoogle Scholar
- 132.Yang F, Xu Q, Shu B, Tiwari V, He SQ, Vera-Portocarrero LP, et al. Activation of cannabinoid CB1 receptor contributes to suppression of spinal nociceptive transmission and inhibition of mechanical hypersensitivity by Abeta-fiber stimulation. Pain 2016, 157: 2582–2593.PubMedPubMedCentralCrossRefGoogle Scholar
- 133.Zhang H, Xie W, Xie Y. Spinal cord injury triggers sensitization of wide dynamic range dorsal horn neurons in segments rostral to the injury. Brain Res 2005, 1055: 103–110.PubMedCrossRefGoogle Scholar
- 134.Hains BC, Willis WD, Hulsebosch CE. Temporal plasticity of dorsal horn somatosensory neurons after acute and chronic spinal cord hemisection in rat. Brain Res 2003, 970: 238–241.PubMedCrossRefGoogle Scholar
- 135.Reck TA, Landmann G. Successful spinal cord stimulation for neuropathic below-level spinal cord injury pain following complete paraplegia: a case report. Spinal Cord Ser Cases 2017, 3: 17049.PubMedPubMedCentralCrossRefGoogle Scholar
- 136.Eldabe S, Buchser E, Duarte RV. Complications of spinal cord stimulation and peripheral nerve stimulation techniques: a review of the literature. Pain Med 2016, 17: 325–336.PubMedGoogle Scholar
- 137.Deer TR, Mekhail N, Provenzano D, Pope J, Krames E, Leong M, et al. The appropriate use of neurostimulation of the spinal cord and peripheral nervous system for the treatment of chronic pain and ischemic diseases: the Neuromodulation Appropriateness Consensus Committee. Neuromodulation 2014, 17: 515–550.PubMedCrossRefGoogle Scholar
- 138.Cameron T. Safety and efficacy of spinal cord stimulation for the treatment of chronic pain: a 20-year literature review. J Neurosurg 2004, 100: 254–267.PubMedGoogle Scholar
- 139.Levy R, Henderson J, Slavin K, Simpson BA, Barolat G, Shipley J, et al. Incidence and avoidance of neurologic complications with paddle type spinal cord stimulation leads. Neuromodulation 2011, 14: 412–422.PubMedCrossRefGoogle Scholar
- 140.Shealy CN, Mortimer JT, Reswick JB. Electrical inhibition of pain by stimulation of the dorsal columns: preliminary clinical report. Anesth Analg 1967, 46: 489–491.PubMedGoogle Scholar
- 141.Franzini A, Ferroli P, Marras C, Broggi G. Huge epidural hematoma after surgery for spinal cord stimulation. Acta Neurochir (Wien) 2005, 147: 565–567.CrossRefGoogle Scholar
- 142.McKinney MC, Kulesa PM. In vivo calcium dynamics during neural crest cell migration and patterning using GCaMP3. Dev Biol 2011, 358: 309–317.PubMedPubMedCentralCrossRefGoogle Scholar
- 143.Anderson M, Zheng Q, Dong X. Investigation of pain mechanisms by calcium imaging approaches. Neurosci Bull 2018, 34: 194–199.PubMedCrossRefGoogle Scholar
- 144.Deer TR, Krames E, Mekhail N, Pope J, Leong M, Stanton-Hicks M, et al. The appropriate use of neurostimulation: new and evolving neurostimulation therapies and applicable treatment for chronic pain and selected disease states. Neuromodulation Appropriateness Consensus Committee. Neuromodulation 2014, 17: 599–615.PubMedCrossRefGoogle Scholar
- 145.Xie YF, Wang J, Bonin RP. Optogenetic exploration and modulation of pain processing. Exp Neurol 2018, 306: 117–121.PubMedCrossRefGoogle Scholar
- 146.Rahman MH, Nam Y, Kim JH, Lee WH, Suk K. Optogenetics of the spinal cord: use of channelrhodopsin proteins for interrogation of spinal cord circuits. Curr Protein Pept Sci 2018, 19: 714–724.PubMedCrossRefGoogle Scholar
- 147.Ropero Pelaez FJ, Taniguchi S. The Gate Theory of Pain revisited: modeling different pain conditions with a parsimonious neurocomputational model. Neural Plast 2016, 2016: 4131395.PubMedCrossRefGoogle Scholar
- 148.Lempka SF, McIntyre CC, Kilgore KL, Machado AG. Computational analysis of kilohertz frequency spinal cord stimulation for chronic pain management. Anesthesiology 2015, 122: 1362–1376.PubMedCrossRefGoogle Scholar
- 149.Drew GM, Siddall PJ, Duggan AW. Mechanical allodynia following contusion injury of the rat spinal cord is associated with loss of GABAergic inhibition in the dorsal horn. Pain 2004, 109: 379–388.PubMedCrossRefGoogle Scholar
- 150.Krishna V, Andrews H, Jin X, Yu J, Varma A, Wen X, et al. A contusion model of severe spinal cord injury in rats. J Vis Exp 2013, 78: e50111.Google Scholar
- 151.King T, Qu C, Okun A, Mercado R, Ren J, Brion T, et al. Contribution of afferent pathways to nerve injury-induced spontaneous pain and evoked hypersensitivity. Pain 2011, 152: 1997–2005.PubMedPubMedCentralCrossRefGoogle Scholar
- 152.Baron R, Binder A, Wasner G. Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol 2010, 9: 807–819.PubMedCrossRefGoogle Scholar
- 153.Christensen MD, Hulsebosch CE. Chronic central pain after spinal cord injury. J Neurotrauma 1997, 14: 517–537.PubMedCrossRefGoogle Scholar
- 154.Meier K. Spinal cord stimulation: Background and clinical application. Scand J Pain 2017, 5: 175–181.CrossRefGoogle Scholar
- 155.Norrbrink BC, Lundeberg T. Non-pharmacological pain-relieving therapies in individuals with spinal cord injury: a patient perspective. Complement Ther Med 2004, 12: 189–197.CrossRefGoogle Scholar
- 156.Stroman PW, Khan HS, Bosma RL, Cotoi AI, Leung R, Cadotte DW, et al. Changes in pain processing in the spinal cord and brainstem after spinal cord injury characterized by functional magnetic resonance imaging. J Neurotrauma 2016, 33: 1450–1460.PubMedCrossRefGoogle Scholar
- 157.Howell B, Lad SP, Grill WM. Evaluation of intradural stimulation efficiency and selectivity in a computational model of spinal cord stimulation. PLoS One 2014, 9: e114938.PubMedPubMedCentralCrossRefGoogle Scholar
- 158.Flouty OE, Oya H, Kawasaki H, Reddy CG, Fredericks DC, Gibson-Corley KN, et al. Intracranial somatosensory responses with direct spinal cord stimulation in anesthetized sheep. PLoS One 2013, 8: e56266.PubMedPubMedCentralCrossRefGoogle Scholar
- 159.Flouty O, Oya H, Kawasaki H, Wilson S, Reddy CG, Jeffery ND, et al. A new device concept for directly modulating spinal cord pathways: initial in vivo experimental results. Physiol Meas 2012, 33: 2003–2015.PubMedCrossRefPubMedCentralGoogle Scholar
- 160.Walters BC. Oscillating field stimulation in the treatment of spinal cord injury. PM R 2010, 2: S286–S291.PubMedCrossRefPubMedCentralGoogle Scholar
- 161.Deer T, Kim C, Bowman R, Ranson M, Douglas CS, Tolentino W. Spinal cord stimulation as a method of reducing opioids in severe chronic pain: a case report and review of the literature. W V Med J 2010, 106: 56–59.PubMedPubMedCentralGoogle Scholar