Neuroscience Bulletin

, Volume 35, Issue 1, pp 113–123 | Cite as

Next-Generation Tools to Study Autonomic Regulation In Vivo

  • Snigdha Mukerjee
  • Eric LazartiguesEmail author


The recent development of tools to decipher the intricacies of neural networks has improved our understanding of brain function. Optogenetics allows one to assess the direct outcome of activating a genetically-distinct population of neurons. Neurons are tagged with light-sensitive channels followed by photo-activation with an appropriate wavelength of light to functionally activate or silence them, resulting in quantifiable changes in the periphery. Capturing and manipulating activated neuron ensembles, is a recently-designed technique to permanently label activated neurons responsible for a physiological function and manipulate them. On the other hand, neurons can be transfected with genetically-encoded Ca2+ indicators to capture the interplay between them that modulates autonomic end-points or somatic behavior. These techniques work with millisecond temporal precision. In addition, neurons can be manipulated chronically to simulate physiological aberrations by transfecting designer G-protein-coupled receptors exclusively activated by designer drugs. In this review, we elaborate on the fundamental concepts and applications of these techniques in research.


Autonomic regulation Optogenetics Calcium sensors DREADD 



This review was supported by grants from the National Institutes of Health (HL093178 to EL and CoBRE P30 GM106392) and Louisiana State University Health Sciences Research Enhancement Program.

Conflict of interest

The authors report no conflict of interest.


  1. 1.
    Katz LC, Dalva MB. Scanning laser photostimulation: a new approach for analyzing brain circuits. J Neurosci Methods 1994, 54: 205–218.CrossRefGoogle Scholar
  2. 2.
    Denk W, Delaney KR, Gelperin A, Kleinfeld D, Strowbridge BW, Tank DW, et al. Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy. J Neurosci Methods 1994, 54: 151–162.CrossRefGoogle Scholar
  3. 3.
    Duplan SM, Boucher F, Alexandrov L, Michaud JL. Impact of Sim1 gene dosage on the development of the paraventricular and supraoptic nuclei of the hypothalamus. Eur J Neurosci 2009, 30: 2239–2249.CrossRefGoogle Scholar
  4. 4.
    Herzig TC, Buchholz RA, Haywood JR. Effects of paraventricular nucleus lesions on chronic renal hypertension. Am J Physiol 1991, 261: H860–867.Google Scholar
  5. 5.
    Buggy J, Fink GD, Haywood JR, Johnson AK, Brody MJ. Interruption of the maintenance phase of established hypertension by ablation of the anteroventral third ventricle (AV3V) in rats. Clin Exp Hypertens 1978, 1: 337–353.CrossRefGoogle Scholar
  6. 6.
    Teschemacher AG, Wang S, Raizada MK, Paton JF, Kasparov S. Area-specific differences in transmitter release in central catecholaminergic neurons of spontaneously hypertensive rats. Hypertension 2008, 52: 351–358.CrossRefGoogle Scholar
  7. 7.
    Chen Y, Lin YC, Kuo TW, Knight ZA. Sensory detection of food rapidly modulates arcuate feeding circuits. Cell 2015, 160: 829–841.CrossRefGoogle Scholar
  8. 8.
    Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 2005, 8: 1263–1268.CrossRefGoogle Scholar
  9. 9.
    Zhao S, Cunha C, Zhang F, Liu Q, Gloss B, Deisseroth K, et al. Improved expression of halorhodopsin for light-induced silencing of neuronal activity. Brain Cell Biol 2008, 36: 141–154.CrossRefGoogle Scholar
  10. 10.
    Ihara K, Umemura T, Katagiri I, Kitajima-Ihara T, Sugiyama Y, Kimura Y, et al. Evolution of the archaeal rhodopsins: evolution rate changes by gene duplication and functional differentiation. J Mol Biol 1999, 285: 163–174.CrossRefGoogle Scholar
  11. 11.
    Wenker IC, Abe C, Viar KE, Stornetta DS, Stornetta RL, Guyenet PG. Blood pressure regulation by the rostral ventrolateral medulla in conscious rats: effects of hypoxia, hypercapnia, baroreceptor denervation, and anesthesia. J Neurosci 2017, 37: 4565–4583.CrossRefGoogle Scholar
  12. 12.
    Fenno L, Yizhar O, Deisseroth K. The development and application of optogenetics. Annu Rev Neurosci 2011, 34: 389–412.CrossRefGoogle Scholar
  13. 13.
    Boneva SK, Gross TR, Schlecht A, Schmitt SI, Sippl C, Jagle H, et al. Cre recombinase expression or topical tamoxifen treatment do not affect retinal structure and function, neuronal vulnerability or glial reactivity in the mouse eye. Neuroscience 2016, 325: 188–201.CrossRefGoogle Scholar
  14. 14.
    Madisen L, Mao T, Koch H, Zhuo JM, Berenyi A, Fujisawa S, et al. A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat Neurosci 2012, 15: 793–802.CrossRefGoogle Scholar
  15. 15.
    Shin Y, Yoo M, Kim HS, Nam SK, Kim HI, Lee SK, et al. Characterization of fiber-optic light delivery and light-induced temperature changes in a rodent brain for precise optogenetic neuromodulation. Biomed Opt Express 2016, 7: 4450–4471.CrossRefGoogle Scholar
  16. 16.
    Chuong AS, Miri ML, Busskamp V, Matthews GA, Acker LC, Sorensen AT, et al. Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nat Neurosci 2014, 17: 1123–1129.CrossRefGoogle Scholar
  17. 17.
    Abbott SB, Machado NL, Geerling JC, Saper CB. Reciprocal control of drinking behavior by median preoptic neurons in mice. J Neurosci 2016, 36: 8228–8237.CrossRefGoogle Scholar
  18. 18.
    Holloway BB, Stornetta RL, Bochorishvili G, Erisir A, Viar KE, Guyenet PG. Monosynaptic glutamatergic activation of locus coeruleus and other lower brainstem noradrenergic neurons by the C1 cells in mice. J Neurosci 2013, 33: 18792–18805.CrossRefGoogle Scholar
  19. 19.
    Burke PG, Abbott SB, Coates MB, Viar KE, Stornetta RL, Guyenet PG. Optogenetic stimulation of adrenergic C1 neurons causes sleep state-dependent cardiorespiratory stimulation and arousal with sighs in rats. Am J Respir Crit Care Med 2014, 190: 1301–1310.CrossRefGoogle Scholar
  20. 20.
    Chen Q, Zeng Z, Hu Z. Optogenetics in neuroscience: what we gain from studies in mammals. Neurosci Bull 2012, 28: 423–434.CrossRefGoogle Scholar
  21. 21.
    Lin JY. A user’s guide to channelrhodopsin variants: features, limitations and future developments. Exp Physiol 2011, 96: 19–25.CrossRefGoogle Scholar
  22. 22.
    Lin JY, Knutsen PM, Muller A, Kleinfeld D, Tsien RY. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat Neurosci 2013, 16: 1499–1508.CrossRefGoogle Scholar
  23. 23.
    McClung CA, Ulery PG, Perrotti LI, Zachariou V, Berton O, Nestler EJ. DeltaFosB: a molecular switch for long-term adaptation in the brain. Brain Res Mol Brain Res 2004, 132: 146–154.CrossRefGoogle Scholar
  24. 24.
    Chiu R, Boyle WJ, Meek J, Smeal T, Hunter T, Karin M. The c-Fos protein interacts with c-Jun/AP-1 to stimulate transcription of AP-1 responsive genes. Cell 1988, 54: 541–552.CrossRefGoogle Scholar
  25. 25.
    Reijmers LG, Perkins BL, Matsuo N, Mayford M. Localization of a stable neural correlate of associative memory. Science 2007, 317: 1230–1233.CrossRefGoogle Scholar
  26. 26.
    Ramirez S, Liu X, Lin PA, Suh J, Pignatelli M, Redondo RL, et al. Creating a false memory in the hippocampus. Science 2013, 341: 387–391.CrossRefGoogle Scholar
  27. 27.
    Sakurai K, Zhao S, Takatoh J, Rodriguez E, Lu J, Leavitt AD, et al. Capturing and manipulating activated neuronal ensembles with CANE delineates a hypothalamic social-fear circuit. Neuron 2016, 9: 739–753.CrossRefGoogle Scholar
  28. 28.
    Rodriguez E, Sakurai K, Xu J, Chen Y, Toda K, Zhao S, et al. A craniofacial-specific monosynaptic circuit enables heightened affective pain. Nat Neurosci 2017, 20: 1734–1743.CrossRefGoogle Scholar
  29. 29.
    Ohkura M, Sasaki T, Sadakari J, Gengyo-Ando K, Kagawa-Nagamura Y, Kobayashi C, et al. Genetically encoded green fluorescent Ca2+ indicators with improved detectability for neuronal Ca2+ signals. PLoS One 2012, 7: e51286.CrossRefGoogle Scholar
  30. 30.
    Nakai J, Ohkura M, Imoto K. A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein. Nat Biotechnol 2001, 19: 137–141.CrossRefGoogle Scholar
  31. 31.
    Zimmerman CA, Lin YC, Leib DE, Guo L, Huey EL, Daly GE, et al. Thirst neurons anticipate the homeostatic consequences of eating and drinking. Nature 2016, 537: 680–684.CrossRefGoogle Scholar
  32. 32.
    Palmer AE, Tsien RY. Measuring calcium signaling using genetically targetable fluorescent indicators. Nat Protoc 2006, 1: 1057–1065.CrossRefGoogle Scholar
  33. 33.
    Zhao Y, Araki S, Wu J, Teramoto T, Chang YF, Nakano M, et al. An expanded palette of genetically encoded Ca(2)(+) indicators. Science 2011, 333: 1888–1891.CrossRefGoogle Scholar
  34. 34.
    Akerboom J, Carreras Calderon N, Tian L, Wabnig S, Prigge M, Tolo J, et al. Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front Mol Neurosci 2013, 6: 2.CrossRefGoogle Scholar
  35. 35.
    Alexander GM, Rogan SC, Abbas AI, Armbruster BN, Pei Y, Allen JA, et al. Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron 2009, 63: 27–39.CrossRefGoogle Scholar
  36. 36.
    Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci U S A 2007, 104: 5163–5168.CrossRefGoogle Scholar
  37. 37.
    Jameson H, Bateman R, Byrne P, Dyavanapalli J, Wang X, Jain V, et al. Oxytocin neuron activation prevents hypertension that occurs with chronic intermittent hypoxia/hypercapnia in rats. Am J Physiol Heart Circ Physiol 2016, 310: H1549–1557.CrossRefGoogle Scholar
  38. 38.
    Shi Z, Madden CJ, Brooks VL. Arcuate neuropeptide Y inhibits sympathetic nerve activity via multiple neuropathways. J Clin Invest 2017, 127: 2868–2880.CrossRefGoogle Scholar
  39. 39.
    Wang S, Tan Y, Zhang JE, Luo M. Pharmacogenetic activation of midbrain dopaminergic neurons induces hyperactivity. Neurosci Bull 2013, 29: 517–524.CrossRefGoogle Scholar
  40. 40.
    Gomez JL, Bonaventura J, Lesniak W, Mathews WB, Sysa-Shah P, Rodriguez LA, et al. Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science 2017, 357: 503–507.CrossRefGoogle Scholar
  41. 41.
    Yu L, Zhou L, Cao G, Po SS, Huang B, Zhou X, et al. Optogenetic modulation of cardiac sympathetic nerve activity to prevent ventricular arrhythmias. J Am Coll Cardiol 2017, 70: 2778–2790.CrossRefGoogle Scholar
  42. 42.
    Wang X, Pinol RA, Byrne P, Mendelowitz D. Optogenetic stimulation of locus ceruleus neurons augments inhibitory transmission to parasympathetic cardiac vagal neurons via activation of brainstem alpha1 and beta1 receptors. J Neurosci 2014, 34: 6182–6189.CrossRefGoogle Scholar
  43. 43.
    Williams EK, Chang RB, Strochlic DE, Umans BD, Lowell BB, Liberles SD. Sensory neurons that detect stretch and nutrients in the digestive system. Cell 2016, 166: 209–221.CrossRefGoogle Scholar
  44. 44.
    Tan CL, Cooke EK, Leib DE, Lin YC, Daly GE, Zimmerman CA, et al. Warm-sensitive neurons that control body temperature. Cell 2016, 167: 47–59.e15.Google Scholar
  45. 45.
    Lewin AE, Vicini S, Richardson J, Dretchen KL, Gillis RA, Sahibzada N. Optogenetic and pharmacological evidence that somatostatin-GABA neurons are important regulators of parasympathetic outflow to the stomach. J Physiol 2016, 594: 2661–2679.CrossRefGoogle Scholar
  46. 46.
    Agulhon C, Boyt KM, Xie AX, Friocourt F, Roth BL, McCarthy KD. Modulation of the autonomic nervous system and behaviour by acute glial cell Gq protein-coupled receptor activation in vivo. J Physiol 2013, 591: 5599–5609.CrossRefGoogle Scholar
  47. 47.
    Wu F, Stark E, Ku PC, Wise KD, Buzsaki G, Yoon E. Monolithically integrated muLEDs on silicon neural probes for high-resolution optogenetic studies in behaving animals. Neuron 2015, 88: 1136–1148.CrossRefGoogle Scholar
  48. 48.
    Drumm BT, Rembetski BE, Cobine CA, Baker SA, Sergeant GP, Hollywood MA, et al. Ca(2+) signalling in mouse urethral smooth muscle in situ: role of Ca(2+) stores and Ca(2+) influx mechanisms. J Physiol 2018, 596: 1433–1466.CrossRefGoogle Scholar
  49. 49.
    Pucihar G, Kotnik T, Miklavcic D. Measuring the induced membrane voltage with Di-8-ANEPPS. J Vis Exp 2009.Google Scholar
  50. 50.
    Hortigon-Vinagre MP, Zamora V, Burton FL, Green J, Gintant GA, Smith GL. The use of ratiometric fluorescence measurements of the voltage sensitive dye Di-4-ANEPPS to examine action potential characteristics and drug effects on human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Sci 2016, 154: 320–331.CrossRefGoogle Scholar
  51. 51.
    Osaki T, Sivathanu V, Kamm RD. Crosstalk between developing vasculature and optogenetically engineered skeletal muscle improves muscle contraction and angiogenesis. Biomaterials 2018, 156: 65–76.CrossRefGoogle Scholar
  52. 52.
    van Bremen T, Send T, Sasse P, Bruegmann T. Spot light on skeletal muscles: optogenetic stimulation to understand and restore skeletal muscle function. J Muscle Res Cell Motil 2017, 38: 331–337.CrossRefGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS 2018

Authors and Affiliations

  1. 1.Department of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew OrleansUSA
  2. 2.Neuroscience and Cardiovascular Centers of ExcellenceLouisiana State University Health Sciences CenterNew OrleansUSA
  3. 3.Southeast Louisiana Veterans Health Care SystemNew OrleansUSA

Personalised recommendations