Neuroscience Bulletin

, Volume 34, Issue 6, pp 1037–1046 | Cite as

Loss of VAPB Regulates Autophagy in a Beclin 1-Dependent Manner

  • Dan Wu
  • Zongbing Hao
  • Haigang RenEmail author
  • Guanghui WangEmail author
Original Article


Autophagy is an evolutionarily-conserved self-degradative process that maintains cellular homeostasis by eliminating protein aggregates and damaged organelles. Recently, vesicle-associated membrane protein-associated protein B (VAPB), which is associated with the familial form of amyotrophic lateral sclerosis, has been shown to regulate autophagy. In the present study, we demonstrated that knockdown of VAPB induced the up-regulation of beclin 1 expression, which promoted LC3 (microtubule-associated protein light chain 3) conversion and the formation of LC3 puncta, whereas overexpression of VAPB inhibited these processes. The regulation of beclin 1 by VAPB was at the transcriptional level. Moreover, knockdown of VAPB increased autophagic flux, which promoted the degradation of the autophagy substrate p62 and neurodegenerative disease proteins. Our study provides evidence that the regulation of autophagy by VAPB is associated with the autophagy-initiating factor beclin 1.


VAPB Autophagy Beclin 1 ALS Autophagic flux LC3 



This work was supported in part by the National Key R&D Program of China (2016YFC1306000), the National Natural Sciences Foundation of China (31330030, 31471012, and 81761148024), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Compliance with Ethical Standards

Conflict of interest

The authors declared that they have no conflict of interest.


  1. 1.
    Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature 2011, 469: 323–335.CrossRefGoogle Scholar
  2. 2.
    Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature 2008, 451: 1069–1075.CrossRefGoogle Scholar
  3. 3.
    Galluzzi L, Pietrocola F, Levine B, Kroemer G. Metabolic control of autophagy. Cell 2014, 159: 1263–1276.CrossRefGoogle Scholar
  4. 4.
    Lin CW, Chen B, Huang KL, Dai YS, Teng HL. Inhibition of autophagy by estradiol promotes locomotor recovery after spinal cord injury in rats. Neurosci Bull 2016, 32: 137–144.CrossRefGoogle Scholar
  5. 5.
    Russell RC, Yuan HX, Guan KL. Autophagy regulation by nutrient signaling. Cell Res 2014, 24: 42–57.CrossRefGoogle Scholar
  6. 6.
    Filippi-Chiela EC, Viegas MS, Thome MP, Buffon A, Wink MR, Lenz G. Modulation of autophagy by calcium signalosome in human disease. Mol Pharmacol 2016, 90: 371–384.CrossRefGoogle Scholar
  7. 7.
    Yap YW, Llanos RM, La Fontaine S, Cater MA, Beart PM, Cheung NS. Comparative microarray analysis identifies commonalities in neuronal injury: evidence for oxidative stress, dysfunction of calcium signalling, and inhibition of autophagy-lysosomal pathway. Neurochem Res 2016, 41: 554–567.CrossRefGoogle Scholar
  8. 8.
    Tao K, Wang B, Feng D, Zhang W, Lu F, Lai J, et al. Salidroside protects against 6-hydroxydopamine-induced cytotoxicity by attenuating ER stress. Neurosci Bull 2016, 32: 61–69.CrossRefGoogle Scholar
  9. 9.
    Zhao Q, Yang X, Cai D, Ye L, Hou Y, Zhang L, et al. Echinacoside protects against MPP(+)-induced neuronal apoptosis via ROS/ATF3/CHOP pathway regulation. Neurosci Bull 2016, 32: 349–362.CrossRefGoogle Scholar
  10. 10.
    Gomez-Suaga P, Paillusson S, Stoica R, Noble W, Hanger DP, Miller CC. The ER-mitochondria tethering complex VAPB-PTPIP51 regulates autophagy. Curr Biol 2017, 27: 371–385.CrossRefGoogle Scholar
  11. 11.
    Peretti D, Dahan N, Shimoni E, Hirschberg K, Lev S. Coordinated lipid transfer between the endoplasmic reticulum and the Golgi complex requires the VAP proteins and is essential for Golgi-mediated transport. Mol Biol Cell 2008, 19: 3871–3884.CrossRefGoogle Scholar
  12. 12.
    Kuijpers M, Yu KL, Teuling E, Akhmanova A, Jaarsma D, Hoogenraad CC. The ALS8 protein VAPB interacts with the ER-Golgi recycling protein YIF1A and regulates membrane delivery into dendrites. EMBO J 2013, 32: 2056–2072.CrossRefGoogle Scholar
  13. 13.
    Pennetta G, Hiesinger PR, Fabian-Fine R, Meinertzhagen IA, Bellen HJ. Drosophila VAP-33A directs bouton formation at neuromuscular junctions in a dosage-dependent manner. Neuron 2002, 35: 291–306.CrossRefGoogle Scholar
  14. 14.
    Matsuzaki F, Shirane M, Matsumoto M, Nakayama KI. Protrudin serves as an adaptor molecule that connects KIF5 and its cargoes in vesicular transport during process formation. Mol Biol Cell 2011, 22: 4602–4620.CrossRefGoogle Scholar
  15. 15.
    Nishimura AL, Mitne-Neto M, Silva HC, Richieri-Costa A, Middleton S, Cascio D, et al. A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am J Hum Genet 2004, 75: 822–831.CrossRefGoogle Scholar
  16. 16.
    Kanekura K, Nishimoto I, Aiso S, Matsuoka M. Characterization of amyotrophic lateral sclerosis-linked P56S mutation of vesicle-associated membrane protein-associated protein B (VAPB/ALS8). J Biol Chem 2006, 281: 30223–30233.CrossRefGoogle Scholar
  17. 17.
    Chen HJ, Anagnostou G, Chai A, Withers J, Morris A, Adhikaree J, et al. Characterization of the properties of a novel mutation in VAPB in familial amyotrophic lateral sclerosis. J Biol Chem 2010, 285: 40266–40281.CrossRefGoogle Scholar
  18. 18.
    Taylor JP, Brown RH, Jr., Cleveland DW. Decoding ALS: from genes to mechanism. Nature 2016, 539: 197–206.CrossRefGoogle Scholar
  19. 19.
    Kuijpers M, van Dis V, Haasdijk ED, Harterink M, Vocking K, Post JA, et al. Amyotrophic lateral sclerosis (ALS)-associated VAPB-P56S inclusions represent an ER quality control compartment. Acta Neuropathol Commun 2013, 1: 24.CrossRefGoogle Scholar
  20. 20.
    Aliaga L, Lai C, Yu J, Chub N, Shim H, Sun L, et al. Amyotrophic lateral sclerosis-related VAPB P56S mutation differentially affects the function and survival of corticospinal and spinal motor neurons. Hum Mol Genet 2013, 22: 4293–4305.CrossRefGoogle Scholar
  21. 21.
    Qiu L, Qiao T, Beers M, Tan W, Wang H, Yang B, et al. Widespread aggregation of mutant VAPB associated with ALS does not cause motor neuron degeneration or modulate mutant SOD1 aggregation and toxicity in mice. Mol Neurodegener 2013, 8: 1.CrossRefGoogle Scholar
  22. 22.
    Larroquette F, Seto L, Gaub PL, Kamal B, Wallis D, Lariviere R, et al. Vapb/Amyotrophic lateral sclerosis 8 knock-in mice display slowly progressive motor behavior defects accompanying ER stress and autophagic response. Hum Mol Genet 2015, 24: 6515–6529.CrossRefGoogle Scholar
  23. 23.
    De Vos KJ, Morotz GM, Stoica R, Tudor EL, Lau KF, Ackerley S, et al. VAPB interacts with the mitochondrial protein PTPIP51 to regulate calcium homeostasis. Hum Mol Genet 2012, 21: 1299–1311.CrossRefGoogle Scholar
  24. 24.
    Guo D, Ying Z, Wang H, Chen D, Gao F, Ren H, et al. Regulation of autophagic flux by CHIP. Neurosci Bull 2015, 31: 469–479.CrossRefGoogle Scholar
  25. 25.
    Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 2005, 171: 603–614.CrossRefGoogle Scholar
  26. 26.
    Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 2007, 282: 24131–24145.CrossRefGoogle Scholar
  27. 27.
    Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 2012, 149: 274–293.CrossRefGoogle Scholar
  28. 28.
    Heras-Sandoval D, Perez-Rojas JM, Hernandez-Damian J, Pedraza-Chaverri J. The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. Cell Signal 2014, 26: 2694–2701.CrossRefGoogle Scholar
  29. 29.
    Kang R, Zeh HJ, Lotze MT, Tang D. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 2011, 18: 571–580.CrossRefGoogle Scholar
  30. 30.
    Kimura S, Noda T, Yoshimori T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 2007, 3: 452–460.CrossRefGoogle Scholar
  31. 31.
    Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell 2010, 140: 313–326.CrossRefGoogle Scholar
  32. 32.
    Sahani MH, Itakura E, Mizushima N. Expression of the autophagy substrate SQSTM1/p62 is restored during prolonged starvation depending on transcriptional upregulation and autophagy-derived amino acids. Autophagy 2014, 10: 431–441.CrossRefGoogle Scholar
  33. 33.
    He L, Chen L, Li L. The TBK1-OPTN axis mediates crosstalk between mitophagy and the innate immune response: a potential therapeutic target for neurodegenerative diseases. Neurosci Bull 2017, 33: 354–356.CrossRefGoogle Scholar
  34. 34.
    Deng HX, Hentati A, Tainer JA, Iqbal Z, Cayabyab A, Hung WY, et al. Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase. Science 1993, 261: 1047–1051.PubMedGoogle Scholar
  35. 35.
    Jana NR, Tanaka M, Wang G, Nukina N. Polyglutamine length-dependent interaction of Hsp40 and Hsp70 family chaperones with truncated N-terminal huntingtin: their role in suppression of aggregation and cellular toxicity. Hum Mol Genet 2000, 9: 2009–2018.CrossRefGoogle Scholar
  36. 36.
    Li HL, Zhang YB, Wu ZY. Development of research on Huntington disease in China. Neurosci Bull 2017, 33: 312–316.CrossRefGoogle Scholar
  37. 37.
    Shi J, Lua S, Tong JS, Song J. Elimination of the native structure and solubility of the hVAPB MSP domain by the Pro56Ser mutation that causes amyotrophic lateral sclerosis. Biochemistry 2010, 49: 3887–3897.CrossRefGoogle Scholar
  38. 38.
    Dong R, Saheki Y, Swarup S, Lucast L, Harper JW, De Camilli P. Endosome-ER contacts control actin nucleation and retromer function through VAP-dependent regulation of PI4P. Cell 2016, 166: 408–423.CrossRefGoogle Scholar
  39. 39.
    Liang XH, Kleeman LK, Jiang HH, Gordon G, Goldman JE, Berry G, et al. Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol 1998, 72: 8586–8596.PubMedPubMedCentralGoogle Scholar
  40. 40.
    O’Brien CE, Wyss-Coray T. Sorting through the roles of beclin 1 in microglia and neurodegeneration. J Neuroimmune Pharmacol 2014, 9: 285–292.CrossRefGoogle Scholar
  41. 41.
    He C, Levine B. The Beclin 1 interactome. Curr Opin Cell Biol 2010, 22: 140–149.CrossRefGoogle Scholar
  42. 42.
    Wang JD, Cao YL, Li Q, Yang YP, Jin M, Chen D, et al. A pivotal role of FOS-mediated BECN1/Beclin 1 upregulation in dopamine D2 and D3 receptor agonist-induced autophagy activation. Autophagy 2015, 11: 2057–2073.CrossRefGoogle Scholar
  43. 43.
    Kihara A, Kabeya Y, Ohsumi Y, Yoshimori T. Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep 2001, 2: 330–335.CrossRefGoogle Scholar
  44. 44.
    Tudor EL, Galtrey CM, Perkinton MS, Lau KF, De Vos KJ, Mitchell JC, et al. Amyotrophic lateral sclerosis mutant vesicle-associated membrane protein-associated protein-B transgenic mice develop TAR-DNA-binding protein-43 pathology. Neuroscience 2010, 167: 774–785.CrossRefGoogle Scholar
  45. 45.
    Kabashi E, El Oussini H, Bercier V, Gros-Louis F, Valdmanis PN, McDearmid J, et al. Investigating the contribution of VAPB/ALS8 loss of function in amyotrophic lateral sclerosis. Hum Mol Genet 2013, 22: 2350–2360.CrossRefGoogle Scholar
  46. 46.
    Anagnostou G, Akbar MT, Paul P, Angelinetta C, Steiner TJ, de Belleroche J. Vesicle associated membrane protein B (VAPB) is decreased in ALS spinal cord. Neurobiol Aging 2010, 31: 969–985.CrossRefGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical SciencesSoochow UniversitySuzhouChina

Personalised recommendations