Skip to main content

Advertisement

Log in

Sex Differences in Neuropathology and Cognitive Behavior in APP/PS1/tau Triple-Transgenic Mouse Model of Alzheimer’s Disease

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is the most common form of dementia among the elderly, characterized by amyloid plaques, neurofibrillary tangles, and neuroinflammation in the brain, as well as impaired cognitive behaviors. A sex difference in the prevalence of AD has been noted, while sex differences in the cerebral pathology and relevant molecular mechanisms are not well clarified. In the present study, we systematically investigated the sex differences in pathological characteristics and cognitive behavior in 12-month-old male and female APP/PS1/tau triple-transgenic AD mice (3×Tg-AD mice) and examined the molecular mechanisms. We found that female 3×Tg-AD mice displayed more prominent amyloid plaques, neurofibrillary tangles, neuroinflammation, and spatial cognitive deficits than male 3×Tg-AD mice. Furthermore, the expression levels of hippocampal protein kinase A–cAMP response element-binding protein (PKA-CREB) and p38–mitogen-activated protein kinases (MAPK) also showed sex difference in the AD mice, with a significant increase in the levels of p-PKA/p-CREB and a decrease in the p-p38 in female, but not male, 3×Tg-AD mice. We suggest that an estrogen deficiency-induced PKA-CREB-MAPK signaling disorder in 12-month-old female 3×Tg-AD mice might be involved in the serious pathological and cognitive damage in these mice. Therefore, sex differences should be taken into account in investigating AD biomarkers and related target molecules, and estrogen supplementation or PKA-CREB-MAPK stabilization could be beneficial in relieving the pathological damage in AD and improving the cognitive behavior of reproductively-senescent females.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Grimm MO, Mett J, Grimm HS, Hartmann T. APP function and lipids: a bidirectional link. Front Mol Neurosci 2017, 10: 63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Kim NY, Cho MH, Won SH, Kang HJ, Yoon SY, Kim DH. Sorting nexin-4 regulates beta-amyloid production by modulating beta-site-activating cleavage enzyme-1. Alzheimers Res Ther 2017, 9: 4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Chen YC. Impact of a discordant helix on beta-amyloid structure, aggregation ability and toxicity. Eur Biophys J 2017, 46: 681–687.

    Article  PubMed  CAS  Google Scholar 

  4. Collin L, Bohrmann B, Gopfert U, Oroszlan-Szovik K, Ozmen L, Gruninger F. Neuronal uptake of tau/pS422 antibody and reduced progression of tau pathology in a mouse model of Alzheimer’s disease. Brain 2014, 137: 2834–2846.

    Article  PubMed  Google Scholar 

  5. Wilcock GK, Esiri MM. Plaques, tangles and dementia. A quantitative study. J Neurol Sci 1982, 56: 343–356.

    Article  PubMed  CAS  Google Scholar 

  6. Leyns CEG, Holtzman DM. Glial contributions to neurodegeneration in tauopathies. Mol Neurodegener 2017, 12: 50.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dye RV, Miller KJ, Singer EJ, Levine AJ. Hormone replacement therapy and risk for neurodegenerative diseases. Int J Alzheimers Dis 2012, 2012: 258454.

    PubMed  PubMed Central  Google Scholar 

  8. Phung TK, Waltoft BL, Laursen TM, Settnes A, Kessing LV, Mortensen PB, et al. Hysterectomy, oophorectomy and risk of dementia: a nationwide historical cohort study. Dement Geriatr Cogn Disord 2010, 30: 43–50.

    Article  PubMed  Google Scholar 

  9. Koran MEI, Wagener M, Hohman TJ, Alzheimer’s Neuroimaging I. Sex differences in the association between AD biomarkers and cognitive decline. Brain Imaging Behav 2017, 11: 205–213.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Koppel J, Acker C, Davies P, Lopez OL, Jimenez H, Azose M, et al. Psychotic Alzheimer’s disease is associated with gender-specific tau phosphorylation abnormalities. Neurobiol Aging 2014, 35: 2021–2028.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Carroll JC, Rosario ER, Kreimer S, Villamagna A, Gentzschein E, Stanczyk FZ, et al. Sex differences in beta-amyloid accumulation in 3xTg-AD mice: role of neonatal sex steroid hormone exposure. Brain Res 2010, 1366: 233–245.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Hirata-Fukae C, Li HF, Hoe HS, Gray AJ, Minami SS, Hamada K, et al. Females exhibit more extensive amyloid, but not tau, pathology in an Alzheimer transgenic model. Brain Res 2008, 1216: 92–103.

    Article  PubMed  CAS  Google Scholar 

  13. Chen YJ, Liu YL, Zhong Q, Yu YF, Su HL, Toque HA, et al. Tetrahydropalmatine protects against methamphetamine-induced spatial learning and memory impairment in mice. Neurosci Bull 2012, 28: 222–232.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Yang SH, Kim J, Lee MJ, Kim Y. Abnormalities of plasma cytokines and spleen in senile APP/PS1/Tau transgenic mouse model. Sci Rep 2015, 5: 15703.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Bertoni-Freddari C, Sensi SL, Giorgetti B, Balietti M, Di Stefano G, Canzoniero LM, et al. Decreased presence of perforated synapses in a triple-transgenic mouse model of Alzheimer’s disease. Rejuvenation Res 2008, 11: 309–313.

    Article  PubMed  CAS  Google Scholar 

  16. Laws KR, Irvine K, Gale TM. Sex differences in cognitive impairment in Alzheimer’s disease. World J Psychiatry 2016, 6: 54–65.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jiao SS, Bu XL, Liu YH, Zhu C, Wang QH, Shen LL, et al. Sex dimorphism profile of Alzheimer’s disease-type pathologies in an APP/PS1 mouse model. Neurotox Res 2016, 29: 256–266.

    Article  PubMed  CAS  Google Scholar 

  18. Clinton LK, Billings LM, Green KN, Caccamo A, Ngo J, Oddo S, et al. Age-dependent sexual dimorphism in cognition and stress response in the 3xTg-AD mice. Neurobiol Dis 2007, 28: 76–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Han WN, Holscher C, Yuan L, Yang W, Wang XH, Wu MN, et al. Liraglutide protects against amyloid-beta protein-induced impairment of spatial learning and memory in rats. Neurobiol Aging 2013, 34: 576–588.

    Article  PubMed  CAS  Google Scholar 

  20. Li B, He X, Sun Y, Li B. Developmental exposure to paraquat and maneb can impair cognition, learning and memory in Sprague-Dawley rats. Mol Biosyst 2016, 12: 3088–3097.

    Article  PubMed  CAS  Google Scholar 

  21. Yamamoto-Sasaki M, Ozawa H, Saito T, Rosler M, Riederer P. Impaired phosphorylation of cyclic AMP response element binding protein in the hippocampus of dementia of the Alzheimer type. Brain Res 1999, 824: 300–303.

    Article  PubMed  CAS  Google Scholar 

  22. Tully T, Bourtchouladze R, Scott R, Tallman J. Targeting the CREB pathway for memory enhancers. Nat Rev Drug Discov 2003, 2: 267–277.

    Article  PubMed  CAS  Google Scholar 

  23. Josselyn SA, Nguyen PV. CREB, synapses and memory disorders: past progress and future challenges. Curr Drug Targets CNS Neurol Disord 2005, 4: 481–497.

    Article  PubMed  CAS  Google Scholar 

  24. Chen Y, Huang X, Zhang YW, Rockenstein E, Bu G, Golde TE, et al. Alzheimer’s beta-secretase (BACE1) regulates the cAMP/PKA/CREB pathway independently of beta-amyloid. J Neurosci 2012, 32: 11390–11395.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Ran I, Laplante I, Lacaille JC. CREB-dependent transcriptional control and quantal changes in persistent long-term potentiation in hippocampal interneurons. J Neurosci 2012, 32: 6335–6350.

    Article  PubMed  CAS  Google Scholar 

  26. Yin JC, Tully T. CREB and the formation of long-term memory. Curr Opin Neurobiol 1996, 6: 264–268.

    Article  PubMed  CAS  Google Scholar 

  27. Gong B, Vitolo OV, Trinchese F, Liu S, Shelanski M, Arancio O. Persistent improvement in synaptic and cognitive functions in an Alzheimer mouse model after rolipram treatment. J Clin Invest 2004, 114: 1624–1634.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Puzzo D, Vitolo O, Trinchese F, Jacob JP, Palmeri A, Arancio O. Amyloid-beta peptide inhibits activation of the nitric oxide/cGMP/cAMP-responsive element-binding protein pathway during hippocampal synaptic plasticity. J Neurosci 2005, 25: 6887–6897.

    Article  PubMed  CAS  Google Scholar 

  29. Matsuzaki K, Yamakuni T, Hashimoto M, Haque AM, Shido O, Mimaki Y, et al. Nobiletin restoring beta-amyloid-impaired CREB phosphorylation rescues memory deterioration in Alzheimer’s disease model rats. Neurosci Lett 2006, 400: 230–234.

    Article  PubMed  CAS  Google Scholar 

  30. Kim SH, Nairn AC, Cairns N, Lubec G. Decreased levels of ARPP-19 and PKA in brains of Down syndrome and Alzheimer’s disease. J Neural Transm Suppl 2001: 263–272.

  31. Sanchez-Mut JV, Aso E, Heyn H, Matsuda T, Bock C, Ferrer I, et al. Promoter hypermethylation of the phosphatase DUSP22 mediates PKA-dependent TAU phosphorylation and CREB activation in Alzheimer’s disease. Hippocampus 2014, 24: 363–368.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Saura CA, Valero J. The role of CREB signaling in Alzheimer’s disease and other cognitive disorders. Rev Neurosci 2011, 22: 153–169.

    Article  PubMed  CAS  Google Scholar 

  33. Tong L, Thornton PL, Balazs R, Cotman CW. Beta-amyloid-(1-42) impairs activity-dependent cAMP-response element-binding protein signaling in neurons at concentrations in which cell survival Is not compromised. J Biol Chem 2001, 276: 17301–17306.

    Article  PubMed  CAS  Google Scholar 

  34. Vitolo OV, Sant’Angelo A, Costanzo V, Battaglia F, Arancio O, Shelanski M. Amyloid beta-peptide inhibition of the PKA/CREB pathway and long-term potentiation: reversibility by drugs that enhance cAMP signaling. Proc Natl Acad Sci U S A 2002, 99: 13217–13221.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Espana J, Valero J, Minano-Molina AJ, Masgrau R, Martin E, Guardia-Laguarta C, et al. beta-Amyloid disrupts activity-dependent gene transcription required for memory through the CREB coactivator CRTC1. J Neurosci 2010, 30: 9402–9410.

    Article  PubMed  CAS  Google Scholar 

  36. Tai LM, Holloway KA, Male DK, Loughlin AJ, Romero IA. Amyloid-beta-induced occludin down-regulation and increased permeability in human brain endothelial cells is mediated by MAPK activation. J Cell Mol Med 2010, 14: 1101–1112.

    PubMed  CAS  Google Scholar 

  37. Kuo YC, Tsao CW. Neuroprotection against apoptosis of SK-N-MC cells using RMP-7- and lactoferrin-grafted liposomes carrying quercetin. Int J Nanomedicine 2017, 12: 2857–2869.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Wan Z, Mah D, Simtchouk S, Klegeris A, Little JP. Globular adiponectin induces a pro-inflammatory response in human astrocytic cells. Biochem Biophys Res Commun 2014, 446: 37–42.

    Article  PubMed  CAS  Google Scholar 

  39. Ghasemi R, Zarifkar A, Rastegar K, maghsoudi N, Moosavi M. Insulin protects against Abeta-induced spatial memory impairment, hippocampal apoptosis and MAPKs signaling disruption. Neuropharmacology 2014, 85: 113–120.

    Article  PubMed  CAS  Google Scholar 

  40. Ghasemi R, Zarifkar A, Rastegar K, Maghsoudi N, Moosavi M. Repeated intra-hippocampal injection of beta-amyloid 25-35 induces a reproducible impairment of learning and memory: considering caspase-3 and MAPKs activity. Eur J Pharmacol 2014, 726: 33–40.

    Article  PubMed  CAS  Google Scholar 

  41. Yao Y, Huang JZ, Chen L, Chen Y, Li X. In vivo and in vitro studies on the roles of p38 mitogen-activated protein kinase and NADPH-cytochrome P450 reductase in Alzheimer’s disease. Exp Ther Med 2017, 14: 4755–4760.

    PubMed  PubMed Central  Google Scholar 

  42. Schupf N, Lee JH, Pang D, Zigman WB, Tycko B, Krinsky-McHale S, et al. Epidemiology of estrogen and dementia in women with Down syndrome. Free Radic Biol Med 2018, 114: 62–68.

    Article  PubMed  CAS  Google Scholar 

  43. Goodman Y, Bruce AJ, Cheng B, Mattson MP. Estrogens attenuate and corticosterone exacerbates excitotoxicity, oxidative injury, and amyloid beta-peptide toxicity in hippocampal neurons. J Neurochem 1996, 66: 1836–1844.

    Article  PubMed  CAS  Google Scholar 

  44. Luine VN. Estradiol increases choline acetyltransferase activity in specific basal forebrain nuclei and projection areas of female rats. Exp Neurol 1985, 89: 484–490.

    Article  PubMed  CAS  Google Scholar 

  45. Lambert JC, Harris JM, Mann D, Lemmon H, Coates J, Cumming A, et al. Are the estrogen receptors involved in Alzheimer’s disease? Neurosci Lett 2001, 306: 193–197.

    Article  PubMed  CAS  Google Scholar 

  46. Behl C, Widmann M, Trapp T, Holsboer F. 17-beta estradiol protects neurons from oxidative stress-induced cell death in vitro. Biochem Biophys Res Commun 1995, 216: 473–482.

    Article  PubMed  CAS  Google Scholar 

  47. Bruce-Keller AJ, Keeling JL, Keller JN, Huang FF, Camondola S, Mattson MP. Antiinflammatory effects of estrogen on microglial activation. Endocrinology 2000, 141: 3646–3656.

    Article  PubMed  CAS  Google Scholar 

  48. Fester L, Prange-Kiel J, Jarry H, Rune GM. Estrogen synthesis in the hippocampus. Cell Tissue Res 2011, 345: 285–294.

    Article  PubMed  CAS  Google Scholar 

  49. Mukai H, Kimoto T, Hojo Y, Kawato S, Murakami G, Higo S, et al. Modulation of synaptic plasticity by brain estrogen in the hippocampus. Biochim Biophys Acta 2010, 1800: 1030–1044.

    Article  PubMed  CAS  Google Scholar 

  50. Grassi S, Tozzi A, Costa C, Tantucci M, Colcelli E, Scarduzio M, et al. Neural 17beta-estradiol facilitates long-term potentiation in the hippocampal CA1 region. Neuroscience 2011, 192: 67–73.

    Article  PubMed  CAS  Google Scholar 

  51. Christensen A, Pike CJ. Age-dependent regulation of obesity and Alzheimer-related outcomes by hormone therapy in female 3xTg-AD mice. PLoS One 2017, 12: e0178490.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Wroolie TE, Kenna HA, Williams KE, Rasgon NL. Cognitive effects of hormone therapy continuation or discontinuation in a sample of women at risk for Alzheimer disease. Am J Geriatr Psychiatry 2015, 23: 1117–1126.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lan YL, Zhao J, Li S. Update on the neuroprotective effect of estrogen receptor alpha against Alzheimer’s disease. J Alzheimers Dis 2015, 43: 1137–1148.

    Article  PubMed  CAS  Google Scholar 

  54. Pratap UP, Patil A, Sharma HR, Hima L, Chockalingam R, Hariharan MM, et al. Estrogen-induced neuroprotective and anti-inflammatory effects are dependent on the brain areas of middle-aged female rats. Brain Res Bull 2016, 124: 238–253.

    Article  PubMed  CAS  Google Scholar 

  55. Huff MO, Todd SL, Smith AL, Elpers JT, Smith AP, Murphy RD, et al. Arsenite and Cadmium activate MAPK/ERK via membrane estrogen receptors and G-protein coupled estrogen receptor signaling in human lung adenocarcinoma cells. Toxicol Sci 2016, 152: 62–71.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the participants for their generous dedication to the experiment. This work was partially funded by “Sanjin Scholars” of Shanxi Province and the National Natural Science Foundation of China (31471080, 31600865, and 31700918). It was sponsored by the Fund for Shanxi Key Subjects Construction, Shanxi “1331 Project” Key Subjects Construction, and Key Laboratory of Cellular Physiology (Shanxi Medical University) in Shanxi Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mei-Na Wu or Jin-Shun Qi.

Ethics declarations

Conflict of interest

All authors claim that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, JT., Wang, ZJ., Cai, HY. et al. Sex Differences in Neuropathology and Cognitive Behavior in APP/PS1/tau Triple-Transgenic Mouse Model of Alzheimer’s Disease. Neurosci. Bull. 34, 736–746 (2018). https://doi.org/10.1007/s12264-018-0268-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-018-0268-9

Keywords

Navigation