Skip to main content
Log in

Acute Restraint Stress Augments 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine Neurotoxicity via Increased Toxin Uptake into the Brain in C57BL/6 Mice

  • Report
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

As an environmental risk factor, psychological stress may trigger the onset or accelerate the progression of Parkinson’s disease (PD). Here, we evaluated the effects of acute restraint stress on striatal dopaminergic terminals and the brain metabolism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which has been widely used for creating a mouse model of PD. Exposure to 2 h of restraint stress immediately after injection of a low dose of MPTP caused a severe loss of striatal dopaminergic terminals as indicated by decreases in the dopamine transporter protein and dopamine levels compared with MPTP administration alone. Both striatal 1-methyl-4-phenylpyridinium ion (MPP+) and MPTP concentrations were significantly increased by the application of restraint stress. Striatal monoamine oxidase-B, which catalyzes the oxidation of MPTP to MPP+, was not changed by the restraint stress. Our results indicate that the enhanced striatal dopaminergic terminal loss in the stressed mice is associated with an increase in the transport of neurotoxin into the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Olanow CW, Tatton WG. Etiology and pathogenesis of Parkinson’s disease. Annu Rev Neurosci 1999, 22: 123–144.

    Article  PubMed  CAS  Google Scholar 

  2. Mizuno Y, Yoshino H, Ikebe S, Hattori N, Kobayashi T, Shimoda-Matsubayashi S, et al. Mitochondrial dysfunction in Parkinson’s disease. Ann Neurol 1998, 44: S99–S109.

    Article  PubMed  CAS  Google Scholar 

  3. Li S, Le W. Milestones of Parkinson’s disease research: 200 years of history and beyond. Neurosci Bull 2017, 33: 598–602.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Djamshidian A, Lees AJ. Can stress trigger Parkinson’s disease? J Neurol Neurosurg Psychiatry 2014, 85: 878–881.

    Article  PubMed  Google Scholar 

  5. Snyder AM, Stricker EM, Zigmond MJ. Stress-induced neurological impairments in an animal model of parkinsonism. Ann Neurol 1985, 18: 544–551.

    Article  PubMed  CAS  Google Scholar 

  6. Smith AD, Castro SL, Zigmond MJ. Stress-induced Parkinson’s disease: a working hypothesis. Physiol Behav 2002, 77: 527–531.

    Article  PubMed  CAS  Google Scholar 

  7. Schuurman AG, van den Akker M, Ensinck KT, Metsemakers JF, Knottnerus JA, Leentjens AF, et al. Increased risk of Parkinson’s disease after depression: a retrospective cohort study. Neurology 2002, 58: 1501–1504.

    Article  PubMed  CAS  Google Scholar 

  8. Janakiraman U, Manivasagam T, Justin Thenmozhi A, Dhanalakshmi C, Essa MM, Song BJ, et al. Chronic mild stress augments MPTP induced neurotoxicity in a murine model of Parkinson’s disease. Physiol Behav 2017, 173:132–143.

    Article  PubMed  CAS  Google Scholar 

  9. Lauretti E, Di Meco A, Merali S, Praticò D. Chronic behavioral stress exaggerates motor deficit and neuroinflammation in the MPTP mouse model of Parkinson’s disease. Transl Psychiatry 2016, 6: e733.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. de Pablos RM, Herrera AJ, Espinosa-Oliva AM, Sarmiento M, Muñoz MF, Machado A, et al. Chronic stress enhances microglia activation and exacerbates death of nigral dopaminergic neurons under conditions of inflammation. J Neuroinflammation 2014, 11: 34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Mori A, Ohashi S, Nakai M, Moriizumi T, Mitsumoto Y. Neural mechanisms underlying motor dysfunction as detected by the tail suspension test in MPTP-treated C57BL/6 mice. Neurosci Res 2005, 51: 265–274.

    Article  PubMed  CAS  Google Scholar 

  12. Mitsumoto Y, Mori A, Ohashi S, Nakai M, Moriizumi T. Differential effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in the olfactory bulb and the striatum in mice. Neurosci Res 2005, 51: 111–115.

    Article  PubMed  CAS  Google Scholar 

  13. Desole MS, Esposito G, Fresu L, Migheli R, Enrico P, Miele M et al. Correlation between 1-methyl-4-phenylpyridinium ion (MPP+) levels, ascorbic acid oxidation and glutathione levels in the striatal synaptosomes of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated rat. Neurosci Lett 1993, 161: 121–123.

    Article  PubMed  CAS  Google Scholar 

  14. Suzuki O, Noguchi E, Yagi K. A simple fluorometric assay for type B monoamine oxidase activity in rat tissues. J Biochem 1976, 79: 1297–1299.

    Article  PubMed  CAS  Google Scholar 

  15. Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron 2003, 39: 889–909.

    Article  PubMed  CAS  Google Scholar 

  16. McEwen BS. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev 2007, 87: 873–904.

    Article  PubMed  Google Scholar 

  17. Lupien SJ, McEwen BS, Gunnar MR, Heim C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci 2009, 10: 434–445.

    Article  PubMed  CAS  Google Scholar 

  18. Goncharova ND. Stress responsiveness of the hypothalamic-pituitaryadrenal axis: age-related features of the vasopressinergic regulation. Front Endocrinol 2013, 4: 26.

    Article  Google Scholar 

  19. Esposito P, Chandler N, Kandere K, Basu S, Jacobson S, Connolly R, et al. Corticotropin-releasing hormone and brain mast cells regulate blood-brain-barrier permeability induced by acute stress. J Pharmacol Exp Ther 2002, 303: 1061–1066.

    Article  PubMed  CAS  Google Scholar 

  20. Esposito P, Gheorghe D, Kandere K, Pang X, Connolly R, Jacobson S, et al. Acute stress increases permeability of the blood-brain-barrier through activation of brain mast cells. Brain Res 2001, 888: 117–127.

    Article  PubMed  CAS  Google Scholar 

  21. Sarmento A, Borges N, Lima D. Influence of electrical stimulation of locus coeruleus on the rat blood-brain barrier permeability to sodium fluorescein. Acta Neurochir (Wien) 1994, 127: 215–219.

    Article  CAS  Google Scholar 

  22. Ohata M, Fredericks WR, Sundaram U, Rapoport SI. Effects of immobilization stress on regional cerebral blood flow in the conscious rat. J Cereb Blood Flow Metab 1981, 1: 187–194.

    Article  PubMed  CAS  Google Scholar 

  23. Roszkowski M, Bohacek J. Stress does not increase blood-brain barrier permeability in mice. J Cereb Blood Flow Metab 2016, 36: 1304–1315.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Urakami K, Masaki N, Shimoda K, Nishikawa S, Takahashi K. Increase of striatal dopamine turnover by stress in MPTP-treated mice. Clin Neuropharmacol 1988, 11: 360–368.

    Article  PubMed  CAS  Google Scholar 

  25. Li S, Wang Y, Wang F, Hu LF, Liu CF. A new perspective for Parkinson’s disease: circadian rhythm. Neurosci Bull 2017, 33: 62–72.

    Article  PubMed  CAS  Google Scholar 

  26. Muroyama A, Inaka M, Matsushima H, Sugino H, Marunaka Y, Mitsumoto Y. Enhanced susceptibility to MPTP neurotoxicity in magnesium-deficient C57BL/6 N mice. Neurosci Res 2009, 63: 72–75.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Specific Research Foundation of Hokuriku University (250100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhide Mitsumoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitsumoto, Y., Mori, A. Acute Restraint Stress Augments 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine Neurotoxicity via Increased Toxin Uptake into the Brain in C57BL/6 Mice. Neurosci. Bull. 34, 849–853 (2018). https://doi.org/10.1007/s12264-018-0254-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-018-0254-2

Keywords

Navigation