Advertisement

Neuroscience Bulletin

, Volume 34, Issue 6, pp 1111–1118 | Cite as

Clinical Research on Alzheimer’s Disease: Progress and Perspectives

  • Bin-Lu Sun
  • Wei-Wei Li
  • Chi Zhu
  • Wang-Sheng Jin
  • Fan Zeng
  • Yu-Hui Liu
  • Xian-Le Bu
  • Jie Zhu
  • Xiu-Qing YaoEmail author
  • Yan-Jiang WangEmail author
Review

Abstract

Alzheimer’s disease (AD), the most common type of dementia, is becoming a major challenge for global health and social care. However, the current understanding of AD pathogenesis is limited, and no early diagnosis and disease-modifying therapy are currently available. During the past year, significant progress has been made in clinical research on the diagnosis, prevention, and treatment of AD. In this review, we summarize the latest achievements, including diagnostic biomarkers, polygenic hazard score, amyloid and tau PET imaging, clinical trials targeting amyloid-beta (Aβ), tau, and neurotransmitters, early intervention, and primary prevention and systemic intervention approaches, and provide novel perspectives for further efforts to understand and cure the disease.

Keywords

Alzheimer’s disease Amyloid-beta Tau Immunotherapy BACE1 inhibitor 5-HT6 receptor antagonist Primary prevention Positron emission tomographic imaging Biomarker 

Notes

Acknowledgements

This review was supported by the the Chinese Ministry of Science and Technology (2016YFC1306401).

Compliance with Ethical Standards

Conflict of interest

All authors claim that there are no conflicts of interest.

References

  1. 1.
    Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol 2014, 13: 614–629.CrossRefGoogle Scholar
  2. 2.
    Livingston G, Sommerlad A, Orgeta V, Costafreda SG, Huntley J, Ames D, et al. Dementia prevention, intervention, and care. Lancet 2017, 390: 2673–2734.CrossRefGoogle Scholar
  3. 3.
    Wang QH, Wang X, Bu XL, Lian Y, Xiang Y, Luo HB, et al. Comorbidity burden of dementia: a hospital-based retrospective study from 2003 to 2012 in seven cities in China. Neurosci Bull 2017, 33: 703–710.CrossRefGoogle Scholar
  4. 4.
    Li C, Gotz J. Tau-based therapies in neurodegeneration: opportunities and challenges. Nat Rev Drug Discov 2017, 16: 863–883.CrossRefGoogle Scholar
  5. 5.
    Chetelat G. Multimodal neuroimaging in Alzheimer’s disease: early diagnosis, physiopathological mechanisms, and impact of lifestyle. J Alzheimers Dis 2018.  https://doi.org/10.3233/jad-179920.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Misra MK, Damotte V, Hollenbach JA. The immunogenetics of neurological disease. Immunology 2018, 153: 399–414.PubMedGoogle Scholar
  7. 7.
    Frisoni GB, Boccardi M, Barkhof F, Blennow K, Cappa S, Chiotis K, et al. Strategic roadmap for an early diagnosis of Alzheimer’s disease based on biomarkers. Lancet Neurol 2017, 16: 661–676.CrossRefGoogle Scholar
  8. 8.
    O’Bryant SE, Mielke MM, Rissman RA, Lista S, Vanderstichele H, Zetterberg H, et al. Blood-based biomarkers in Alzheimer disease: current state of the science and a novel collaborative paradigm for advancing from discovery to clinic. Alzheimers Dement 2017, 13: 45–58.CrossRefGoogle Scholar
  9. 9.
    Snyder HM, Carrillo MC, Grodstein F, Henriksen K, Jeromin A, Lovestone S, et al. Developing novel blood-based biomarkers for Alzheimer’s disease. Alzheimers Dement 2014, 10: 109–114.CrossRefGoogle Scholar
  10. 10.
    Kim HJ, Park KW, Kim TE, Im JY, Shin HS, Kim S, et al. Elevation of the plasma Abeta40/Abeta42 ratio as a diagnostic marker of sporadic early-onset Alzheimer’s disease. J Alzheimers Dis 2015, 48: 1043–1050.CrossRefGoogle Scholar
  11. 11.
    Koyama A, Okereke OI, Yang T, Blacker D, Selkoe DJ, Grodstein F. Plasma amyloid-beta as a predictor of dementia and cognitive decline: a systematic review and meta-analysis. Arch Neurol 2012, 69: 824–831.CrossRefGoogle Scholar
  12. 12.
    Petersen RC, Aisen PS, Beckett LA, Donohue MC, Gamst AC, Harvey DJ, et al. Alzheimer’s Disease Neuroimaging Initiative (ADNI): clinical characterization. Neurology 2010, 74: 201–209.CrossRefGoogle Scholar
  13. 13.
    Fandos N, Perez-Grijalba V, Pesini P, Olmos S, Bossa M, Villemagne VL, et al. Plasma amyloid beta 42/40 ratios as biomarkers for amyloid beta cerebral deposition in cognitively normal individuals. Alzheimers Dement (Amst) 2017, 8: 179–187.Google Scholar
  14. 14.
    Ovod V, Ramsey KN, Mawuenyega KG, Bollinger JG, Hicks T, Schneider T, et al. Amyloid beta concentrations and stable isotope labeling kinetics of human plasma specific to central nervous system amyloidosis. Alzheimers Dement 2017, 13: 841–849.CrossRefGoogle Scholar
  15. 15.
    Nakamura A, Kaneko N, Villemagne VL, Kato T, Doecke J, Doré V, et al. High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature 2018, 554: 249–254.CrossRefGoogle Scholar
  16. 16.
    Buckley RF, Hanseeuw B, Schultz AP, Vannini P, Aghjayan SL, Properzi MJ, et al. Region-specific association of subjective cognitive decline with tauopathy independent of global beta-amyloid burden. JAMA Neurol 2017, 74: 1455–1463.CrossRefGoogle Scholar
  17. 17.
    Varma VR, Oommen AM, Varma S, Casanova R, An Y, Andrews RM, et al. Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: a targeted metabolomics study. PLoS Med 2018, 15: e1002482.CrossRefGoogle Scholar
  18. 18.
    Sagare A, Deane R, Bell RD, Johnson B, Hamm K, Pendu R, et al. Clearance of amyloid-beta by circulating lipoprotein receptors. Nat Med 2007, 13: 1029–1031.CrossRefGoogle Scholar
  19. 19.
    Mortberg E, Zetterberg H, Nordmark J, Blennow K, Catry C, Decraemer H, et al. Plasma tau protein in comatose patients after cardiac arrest treated with therapeutic hypothermia. Acta Anaesthesiol Scand 2011, 55: 1132–1138.CrossRefGoogle Scholar
  20. 20.
    Yang SY, Chiu MJ, Chen TF, Horng HE. Detection of plasma biomarkers using immunomagnetic reduction: a promising method for the early diagnosis of Alzheimer’s disease. Neurol Ther 2017, 6: 37–56.CrossRefGoogle Scholar
  21. 21.
    Lue LF, Sabbagh MN, Chiu MJ, Jing N, Snyder NL, Schmitz C, et al. Plasma levels of Abeta42 and Tau identified probable Alzheimer’s dementia: findings in two cohorts. Front Aging Neurosci 2017, 9: 226.CrossRefGoogle Scholar
  22. 22.
    Mattsson N, Andreasson U, Zetterberg H, Blennow K. Alzheimer’s disease neuroimaging initiative. Association of plasma neurofilament light with neurodegeneration in patients with Alzheimer disease. JAMA Neurol 2017, 74: 557–566.CrossRefGoogle Scholar
  23. 23.
    Zetterberg H, Skillback T, Mattsson N, Trojanowski JQ, Portelius E, Shaw LM, et al. Association of cerebrospinal fluid neurofilament light concentration With Alzheimer disease progression. JAMA Neurol 2016, 73: 60–67.CrossRefGoogle Scholar
  24. 24.
    Desikan RS, Fan CC, Wang Y, Schork AJ, Cabral HJ, Cupples LA, et al. Genetic assessment of age-associated Alzheimer disease risk: development and validation of a polygenic hazard score. PLoS Med 2017, 14: e1002258.CrossRefGoogle Scholar
  25. 25.
    Tan CH, Fan CC, Mormino EC, Sugrue LP, Broce IJ, Hess CP, et al. Polygenic hazard score: an enrichment marker for Alzheimer’s associated amyloid and tau deposition. Acta Neuropathol 2018, 135: 85–93.CrossRefGoogle Scholar
  26. 26.
    Sepulcre J, Grothe MJ, Sabuncu M, Chhatwal J, Schultz AP, Hanseeuw B, et al. Hierarchical organization of Tau and amyloid deposits in the cerebral cortex. JAMA Neurol 2017, 74: 813–820.CrossRefGoogle Scholar
  27. 27.
    Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 2016, 8: 595–608.CrossRefGoogle Scholar
  28. 28.
    Wang J, Gu BJ, Masters CL, Wang YJ. A systemic view of Alzheimer disease—insights from amyloid-beta metabolism beyond the brain. Nat Rev Neurol 2017, 13: 612–623.CrossRefGoogle Scholar
  29. 29.
    Kennedy ME, Stamford AW, Chen X, Cox K, Cumming JN, Dockendorf MF, et al. The BACE1 inhibitor verubecestat (MK-8931) reduces CNS β-amyloid in animal models and in Alzheimer’s disease patients. Sci Transl Med 2016, 8(363): 363ra150.CrossRefGoogle Scholar
  30. 30.
    Maher-Edwards G, Dixon R, Hunter J, Gold M, Hopton G, Jacobs G, et al. SB-742457 and donepezil in Alzheimer disease: a randomized, placebo-controlled study. Int J Geriatr Psychiatry 2011, 26: 536–544.CrossRefGoogle Scholar
  31. 31.
    Siemers ER, Sundell KL, Carlson C, Case M, Sethuraman G, Liu-Seifert H, et al. Phase 3 solanezumab trials: secondary outcomes in mild Alzheimer’s disease patients. Alzheimers Dement 2016, 12: 110–120.CrossRefGoogle Scholar
  32. 32.
    Honig LS, Vellas B, Woodward M, Boada M, Bullock R, Borrie M, et al. Trial of Solanezumab for mild dementia due to Alzheimer’s disease. N Engl J Med 2018, 378: 321–330.CrossRefGoogle Scholar
  33. 33.
    Sevigny J, Chiao P, Bussiere T, Weinreb PH, Williams L, Maier M, et al. The antibody aducanumab reduces Abeta plaques in Alzheimer’s disease. Nature 2016, 537: 50–56.CrossRefGoogle Scholar
  34. 34.
    Adolfsson O, Pihlgren M, Toni N, Varisco Y, Buccarello AL, Antoniello K, et al. An effector-reduced anti-beta-amyloid (Abeta) antibody with unique abeta binding properties promotes neuroprotection and glial engulfment of Abeta. J Neurosci 2012, 32: 9677–9689.CrossRefGoogle Scholar
  35. 35.
    Ostrowitzki S, Deptula D, Thurfjell L, Barkhof F, Bohrmann B, Brooks DJ, et al. Mechanism of amyloid removal in patients with Alzheimer disease treated with gantenerumab. Arch Neurol 2012, 69: 198–207.CrossRefGoogle Scholar
  36. 36.
    Liu YH, Giunta B, Zhou HD, Tan J, Wang YJ. Immunotherapy for Alzheimer disease: the challenge of adverse effects. Nat Rev Neurol 2012, 8: 465–469.CrossRefGoogle Scholar
  37. 37.
    Busche MA, Grienberger C, Keskin AD, Song B, Neumann U, Staufenbiel M, et al. Decreased amyloid-beta and increased neuronal hyperactivity by immunotherapy in Alzheimer’s models. Nat Neurosci 2015, 18: 1725–1727.CrossRefGoogle Scholar
  38. 38.
    Jack CR, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 2013, 12: 207–216.CrossRefGoogle Scholar
  39. 39.
    Wischik CM, Staff RT, Wischik DJ, Bentham P, Murray AD, Storey JM, et al. Tau aggregation inhibitor therapy: an exploratory phase 2 study in mild or moderate Alzheimer’s disease. J Alzheimers Dis 2015, 44: 705–720.CrossRefGoogle Scholar
  40. 40.
    Mullard A. Pharma pumps up anti-tau Alzheimer pipeline despite first phase III failure. Nat Rev Drug Discov 2016, 15: 591–592.CrossRefGoogle Scholar
  41. 41.
    Wilcock GK, Gauthier S, Frisoni GB, Jia J, Hardlund JH, Moebius HJ, et al. Potential of low dose leuco-methylthioninium bis(hydromethanesulphonate) (LMTM) monotherapy for treatment of mild Alzheimer’s disease: cohort analysis as modified primary outcome in a phase III clinical trial. J Alzheimers Dis 2018, 61: 435–457.CrossRefGoogle Scholar
  42. 42.
    Novak P, Schmidt R, Kontsekova E, Zilka N, Kovacech B, Skrabana R, et al. Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimer’s disease: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Neurol 2017, 16: 123–134.CrossRefGoogle Scholar
  43. 43.
    West T, Hu Y, Verghese PB, Bateman RJ, Braunstein JB, Fogelman I, et al. Preclinical and clinical development of ABBV-8E12, a humanized anti-Tau antibody, for treatment of Alzheimer’s disease and other tauopathies. J Prev Alzheimers Dis 2017, 4: 236–241.PubMedGoogle Scholar
  44. 44.
    Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 2012, 367: 795–804.CrossRefGoogle Scholar
  45. 45.
    Villeda SA, Plambeck KE, Middeldorp J, Castellano JM, Mosher KI, Luo J, et al. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat Med 2014, 20: 659–663.CrossRefGoogle Scholar
  46. 46.
    Middeldorp J, Lehallier B, Villeda SA, Miedema SS, Evans E, Czirr E, et al. Preclinical assessment of young blood plasma for Alzheimer disease. JAMA Neurol 2016, 73: 1325–1333.CrossRefGoogle Scholar
  47. 47.
    Xiang Y, Bu XL, Liu YH, Zhu C, Shen LL, Jiao SS, et al. Physiological amyloid-beta clearance in the periphery and its therapeutic potential for Alzheimer’s disease. Acta Neuropathol 2015, 130: 487–499.CrossRefGoogle Scholar
  48. 48.
    Castellano JM, Mosher KI, Abbey RJ, McBride AA, James ML, Berdnik D, et al. Human umbilical cord plasma proteins revitalize hippocampal function in aged mice. Nature 2017, 544: 488–492.CrossRefGoogle Scholar
  49. 49.
    Bu XL, Xiang Y, Jin WS, Wang J, Shen LL, Huang ZL, et al. Blood-derived amyloid-beta protein induces Alzheimer’s disease pathologies. Mol Psychiatry 2017.  https://doi.org/10.1038/mp.2017.204.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Jin WS, Shen LL, Bu XL, Zhang WW, Chen SH, Huang ZL, et al. Peritoneal dialysis reduces amyloid-beta plasma levels in humans and attenuates Alzheimer-associated phenotypes in an APP/PS1 mouse model. Acta Neuropathol 2017, 134: 207–220.CrossRefGoogle Scholar
  51. 51.
    Pan X, Chen Z, Fei G, Pan S, Bao W, Ren S, et al. Long-term cognitive improvement after benfotiamine administration in patients with Alzheimer’s disease. Neurosci Bull 2016, 32: 591–596.CrossRefGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Bin-Lu Sun
    • 1
  • Wei-Wei Li
    • 1
  • Chi Zhu
    • 1
  • Wang-Sheng Jin
    • 1
  • Fan Zeng
    • 1
  • Yu-Hui Liu
    • 1
  • Xian-Le Bu
    • 1
  • Jie Zhu
    • 1
  • Xiu-Qing Yao
    • 1
    Email author
  • Yan-Jiang Wang
    • 1
    • 2
    Email author
  1. 1.Department of NeurologyDaping Hospital, Third Military Medical UniversityChongqingChina
  2. 2.State Key Laboratory of Trauma, Burn and Combined InjuryInstitute of Surgery Research, Daping Hospital, Third Military Medical UniversityChongqingChina

Personalised recommendations