Advertisement

Neuroscience Bulletin

, Volume 34, Issue 6, pp 1119–1126 | Cite as

Role of Microtubule-Associated Protein in Autism Spectrum Disorder

  • Qiaoqiao Chang
  • Hua Yang
  • Min Wang
  • Hongen WeiEmail author
  • Fengyun HuEmail author
Review

Abstract

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social interaction and communication, along with repetitive and restrictive patterns of behaviors or interests. Normal brain development is crucial to behavior and cognition in adulthood. Abnormal brain development, such as synaptic and myelin dysfunction, is involved in the pathogenesis of ASD. Microtubules and microtubule-associated proteins (MAPs) are important in regulating the processes of brain development, including neuron production and synaptic formation, as well as myelination. Increasing evidence suggests that the level of MAPs are changed in autistic patients and mouse models of ASD. Here, we discuss the roles of MAPs.

Keywords

Autism spectrum disorder Microtubule-associated proteins Synapse Myelin 

Notes

Acknowledgements

This review was supported by National Natural Science Foundation of China (81671364 and 81201061), a China Postdoctoral Science Foundation Funded Project (2017M611195), and the Outstanding Youth Talents Program of Shanxi Province, China (2015009).

Compliance with Ethical Standards

Conflicts of interest

The authors declare that there are no conflicts of interest.

References

  1. 1.
    Davidovitch M, Hemo B, Manning-Courtney P, Fombonne E. Prevalence and incidence of autism spectrum disorder in an Israeli population. J Autism Dev Disord 2013, 43: 785–793.CrossRefGoogle Scholar
  2. 2.
    Christensen DL, Baio J, Van Naarden Braun K, Bilder D, Charles J, Constantino JN, et al. Prevalence and characteristics of autism spectrum disorder among children aged 8 years–Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2012. MMWR Surveill Summ 2016, 65: 1–23.CrossRefGoogle Scholar
  3. 3.
    Abrahams BS, Geschwind DH. Connecting genes to brain in the autism spectrum disorders. Arch Neurol 2010, 67: 395–399.CrossRefGoogle Scholar
  4. 4.
    Jorde LB, Hasstedt SJ, Ritvo ER, Mason-Brothers A, Freeman BJ, Pingree C, et al. Complex segregation analysis of autism. Am J Hum Genet 1991, 49: 932–938.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Bishop DV, Maybery M, Maley A, Wong D, Hill W, Hallmayer J. Using self-report to identify the broad phenotype in parents of children with autistic spectrum disorders: a study using the Autism-Spectrum Quotient. J Child Psychol Psychiatry 2004, 45: 1431–1436.CrossRefGoogle Scholar
  6. 6.
    Voineagu I, Wang X, Johnston P, Lowe JK, Tian Y, Horvath S, et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 2011, 474: 380–384.CrossRefGoogle Scholar
  7. 7.
    Parikshak NN, Luo R, Zhang A, Won H, Lowe JK, Chandran V, et al. Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell 2013, 155: 1008–1021.CrossRefGoogle Scholar
  8. 8.
    Vorstman JAS, Parr JR, Moreno-De-Luca D, Anney RJL, Nurnberger JI, Jr., Hallmayer JF. Autism genetics: opportunities and challenges for clinical translation. Nat Rev Genet 2017, 18: 362–376.CrossRefGoogle Scholar
  9. 9.
    Ziats MN, Grosvenor LP, Rennert OM. Functional genomics of human brain development and implications for autism spectrum disorders. Transl Psychiatry 2015, 5: e665.CrossRefGoogle Scholar
  10. 10.
    Varadinova M, Boyadjieva N. Epigenetic mechanisms: a possible link between autism spectrum disorders and fetal alcohol spectrum disorders. Pharmacol Res 2015, 102: 71–80.CrossRefGoogle Scholar
  11. 11.
    Lin YC, Frei JA, Kilander MB, Shen W, Blatt GJ. A subset of autism-associated genes regulate the structural stability of neurons. Front Cell Neurosci 2016, 10: 263.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Tomalski P, Johnson MH. The effects of early adversity on the adult and developing brain. Curr Opin Psychiatry 2010, 23: 233–238.CrossRefGoogle Scholar
  13. 13.
    Kubota T, Miyake K, Hirasawa T. Epigenetic understanding of gene-environment interactions in psychiatric disorders: a new concept of clinical genetics. Clin Epigenetics 2012, 4: 1.CrossRefGoogle Scholar
  14. 14.
    Homs A, Codina-Sola M, Rodriguez-Santiago B, Villanueva CM, Monk D, Cusco I, et al. Genetic and epigenetic methylation defects and implication of the ERMN gene in autism spectrum disorders. Transl Psychiatry 2016, 6: e855.CrossRefGoogle Scholar
  15. 15.
    Sweatt JD. The emerging field of neuroepigenetics. Neuron 2013, 80: 624-632.CrossRefGoogle Scholar
  16. 16.
    LaSalle JM, Powell WT, Yasui DH. Epigenetic layers and players underlying neurodevelopment. Trends Neurosci 2013, 36: 460–470.CrossRefGoogle Scholar
  17. 17.
    Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC. Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr 2005, 135: 1382–1386.CrossRefGoogle Scholar
  18. 18.
    Dong E, Nelson M, Grayson DR, Costa E, Guidotti A. Clozapine and sulpiride but not haloperidol or olanzapine activate brain DNA demethylation. Proc Natl Acad Sci U S A 2008, 105: 13614–13619.CrossRefGoogle Scholar
  19. 19.
    Sun W, Poschmann J, Cruz-Herrera Del Rosario R, Parikshak NN, Hajan HS, Kumar V, et al. Histone acetylome-wide association study of autism spectrum disorder. Cell 2016, 167: 1385–1397 e1311.Google Scholar
  20. 20.
    Mazina V, Gerdts J, Trinh S, Ankenman K, Ward T, Dennis MY, et al. Epigenetics of autism-related impairment: copy number variation and maternal infection. J Dev Behav Pediatr 2015, 36: 61–67.CrossRefGoogle Scholar
  21. 21.
    Lee BK, Magnusson C, Gardner RM, Blomstrom A, Newschaffer CJ, Burstyn I, et al. Maternal hospitalization with infection during pregnancy and risk of autism spectrum disorders. Brain Behav Immun 2015, 44: 100–105.CrossRefGoogle Scholar
  22. 22.
    Smith SE, Li J, Garbett K, Mirnics K, Patterson PH. Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci 2007, 27: 10695–10702.CrossRefGoogle Scholar
  23. 23.
    Wei H, Alberts I, Li X. Brain IL-6 and autism. Neuroscience 2013, 252: 320–325.CrossRefGoogle Scholar
  24. 24.
    Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 2005, 57: 67–81.CrossRefGoogle Scholar
  25. 25.
    Chez MG, Dowling T, Patel PB, Khanna P, Kominsky M. Elevation of tumor necrosis factor-alpha in cerebrospinal fluid of autistic children. Pediatr Neurol 2007, 36: 361–365.CrossRefGoogle Scholar
  26. 26.
    Wei H, Chadman KK, McCloskey DP, Sheikh AM, Malik M, Brown WT, et al. Brain IL-6 elevation causes neuronal circuitry imbalances and mediates autism-like behaviors. Biochim Biophys Acta 2012, 1822: 831–842.CrossRefGoogle Scholar
  27. 27.
    Wei H, Mori S, Hua K, Li X. Alteration of brain volume in IL-6 overexpressing mice related to autism. Int J Dev Neurosci 2012, 30: 554–559.CrossRefGoogle Scholar
  28. 28.
    Wei H, Zou H, Sheikh AM, Malik M, Dobkin C, Brown WT, et al. IL-6 is increased in the cerebellum of autistic brain and alters neural cell adhesion, migration and synaptic formation. J Neuroinflammation 2011, 8: 52.CrossRefGoogle Scholar
  29. 29.
    Wei H, Ma Y, Liu J, Ding C, Jin G, Wang Y, et al. Inhibition of IL-6 trans-signaling in the brain increases sociability in the BTBR mouse model of autism. Biochim Biophys Acta 2016, 1862: 1918–1925.CrossRefGoogle Scholar
  30. 30.
    Chaidez V, Hansen RL, Hertz-Picciotto I. Gastrointestinal problems in children with autism, developmental delays or typical development. J Autism Dev Disord 2014, 44: 1117–1127.CrossRefGoogle Scholar
  31. 31.
    Williams BL, Hornig M, Buie T, Bauman ML, Cho Paik M, Wick I, et al. Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PLoS One 2011, 6: e24585.CrossRefGoogle Scholar
  32. 32.
    Desbonnet L, Clarke G, Shanahan F, Dinan TG, Cryan JF. Microbiota is essential for social development in the mouse. Mol Psychiatry 2014, 19: 146–148.CrossRefGoogle Scholar
  33. 33.
    Coury DL, Ashwood P, Fasano A, Fuchs G, Geraghty M, Kaul A, et al. Gastrointestinal conditions in children with autism spectrum disorder: developing a research agenda. Pediatrics 2012, 130 Suppl 2: S160–168.CrossRefGoogle Scholar
  34. 34.
    Bourgeron T. From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat Rev Neurosci 2015, 16: 551–563.CrossRefGoogle Scholar
  35. 35.
    Wei H, Ma Y, Ding C, Jin G, Liu J, Chang Q, et al. Reduced glutamate release in adult btbr mouse model of autism spectrum disorder. Neurochem Res 2016, 41: 3129–3137.CrossRefGoogle Scholar
  36. 36.
    Tebartz van Elst L, Maier S, Fangmeier T, Endres D, Mueller GT, Nickel K, et al. Disturbed cingulate glutamate metabolism in adults with high-functioning autism spectrum disorder: evidence in support of the excitatory/inhibitory imbalance hypothesis. Mol Psychiatry 2014, 19: 1314–1325.CrossRefGoogle Scholar
  37. 37.
    Wei H, Ding C, Jin G, Yin H, Liu J, Hu F. Abnormal glutamate release in aged BTBR mouse model of autism. Int J Clin Exp Pathol 2015, 8: 10689–10697.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Zikopoulos B, Barbas H. Changes in prefrontal axons may disrupt the network in autism. J Neurosci 2010, 30: 14595–14609.CrossRefGoogle Scholar
  39. 39.
    Yu H, Bi W, Liu C, Zhao Y, Zhang D, Yue W. A hypothesis-driven pathway analysis reveals myelin-related pathways that contribute to the risk of schizophrenia and bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 2014, 51: 140–145.CrossRefGoogle Scholar
  40. 40.
    Haroutunian V, Katsel P, Roussos P, Davis KL, Altshuler LL, Bartzokis G. Myelination, oligodendrocytes, and serious mental illness. Glia 2014, 62: 1856–1877.CrossRefGoogle Scholar
  41. 41.
    Wei H, Ma Y, Liu J, Ding C, Hu F, Yu L. Proteomic analysis of cortical brain tissue from the BTBR mouse model of autism: evidence for changes in STOP and myelin-related proteins. Neuroscience 2016, 312: 26–34.CrossRefGoogle Scholar
  42. 42.
    Jones-Davis DM, Yang M, Rider E, Osbun NC, da Gente GJ, Li J, et al. Quantitative trait loci for interhemispheric commissure development and social behaviors in the BTBR T(+) tf/J mouse model of autism. PLoS One 2013, 8: e61829.CrossRefGoogle Scholar
  43. 43.
    Wolff JJ, Gerig G, Lewis JD, Soda T, Styner MA, Vachet C, et al. Altered corpus callosum morphology associated with autism over the first 2 years of life. Brain 2015, 138: 2046–2058.CrossRefGoogle Scholar
  44. 44.
    Halpain S, Dehmelt L. The MAP1 family of microtubule-associated proteins. Genome Biol 2006, 7: 224.CrossRefGoogle Scholar
  45. 45.
    Bonini SA, Mastinu A, Ferrari-Toninelli G, Memo M. Potential role of microtubule stabilizing agents in neurodevelopmental disorders. Int J Mol Sci 2017, 18. pii: E1627.Google Scholar
  46. 46.
    Geschwind DH, Levitt P. Autism spectrum disorders: developmental disconnection syndromes. Curr Opin Neurobiol 2007, 17: 103–111.CrossRefGoogle Scholar
  47. 47.
    Venoux M, Delmouly K, Milhavet O, Vidal-Eychenie S, Giorgi D, Rouquier S. Gene organization, evolution and expression of the microtubule-associated protein ASAP (MAP9). BMC Genom 2008, 9: 406.CrossRefGoogle Scholar
  48. 48.
    Barnes AP, Polleux F. Establishment of axon-dendrite polarity in developing neurons. Annu Rev Neurosci 2009, 32: 347–381.CrossRefGoogle Scholar
  49. 49.
    Bonini SA, Ferrari-Toninelli G, Montinaro M, Memo M. Notch signalling in adult neurons: a potential target for microtubule stabilization. Ther Adv Neurol Disord 2013, 6: 375–385.CrossRefGoogle Scholar
  50. 50.
    Wu Q, Liu J, Fang A, Li R, Bai Y, Kriegstein AR, et al. The dynamics of neuronal migration. Adv Exp Med Biol 2014, 800: 25–36.CrossRefGoogle Scholar
  51. 51.
    Munji RN, Choe Y, Li G, Siegenthaler JA, Pleasure SJ. Wnt signaling regulates neuronal differentiation of cortical intermediate progenitors. J Neurosci 2011, 31: 1676–1687.CrossRefGoogle Scholar
  52. 52.
    Gutierrez H, Davies AM. Regulation of neural process growth, elaboration and structural plasticity by NF-κB. Trends Neurosci 2011, 34: 316–325.CrossRefGoogle Scholar
  53. 53.
    Li J, Gu X, Ma Y, Calicchio ML, Kong D, Teng YD, et al. Nna1 mediates Purkinje cell dendritic development via lysyl oxidase propeptide and NF-κB signaling. Neuron 2010, 68: 45–60.CrossRefGoogle Scholar
  54. 54.
    Baas PW, Ahmad FJ. Beyond taxol: microtubule-based treatment of disease and injury of the nervous system. Brain 2013, 136: 2937–2951.CrossRefGoogle Scholar
  55. 55.
    Liu G, Dwyer T. Microtubule dynamics in axon guidance. Neurosci Bull 2014, 30: 569–583.CrossRefGoogle Scholar
  56. 56.
    Bowne-Anderson H, Hibbel A, Howard J. Regulation of microtubule growth and catastrophe: unifying theory and experiment. Trends Cell Biol 2015, 25: 769–779.CrossRefGoogle Scholar
  57. 57.
    Deloulme JC, Gory-Faure S, Mauconduit F, Chauvet S, Jonckheere J, Boulan B, et al. Microtubule-associated protein 6 mediates neuronal connectivity through Semaphorin 3E-dependent signalling for axonal growth. Nat Commun 2015, 6: 7246.CrossRefGoogle Scholar
  58. 58.
    Meixner A, Haverkamp S, Wassle H, Fuhrer S, Thalhammer J, Kropf N, et al. MAP1B is required for axon guidance and Is involved in the development of the central and peripheral nervous system. J Cell Biol 2000, 151: 1169–1178.CrossRefGoogle Scholar
  59. 59.
    Dehmelt L, Halpain S. The MAP2/Tau family of microtubule-associated proteins. Genome Biol 2005, 6: 204.CrossRefGoogle Scholar
  60. 60.
    Xu B, Zhang Y, Zhan S, Wang X, Zhang H, Meng X, et al. Proteomic profiling of brain and testis reveals the diverse changes in ribosomal proteins in fmr1 knockout mice. Neuroscience 2018, 371: 469–483.CrossRefGoogle Scholar
  61. 61.
    Klemmer P, Meredith RM, Holmgren CD, Klychnikov OI, Stahl-Zeng J, Loos M, et al. Proteomics, ultrastructure, and physiology of hippocampal synapses in a fragile X syndrome mouse model reveal presynaptic phenotype. J Biol Chem 2011, 286: 25495–25504.CrossRefGoogle Scholar
  62. 62.
    Zhang R, Zhou J, Ren J, Sun S, Di Y, Wang H, et al. Transcriptional and splicing dysregulation in the prefrontal cortex in valproic acid rat model of autism. Reprod Toxicol 2018, 77: 53–61.CrossRefGoogle Scholar
  63. 63.
    Barrett CE, Hennessey TM, Gordon KM, Ryan SJ, McNair ML, Ressler KJ, et al. Developmental disruption of amygdala transcriptome and socioemotional behavior in rats exposed to valproic acid prenatally. Mol Autism 2017, 8: 42.CrossRefGoogle Scholar
  64. 64.
    Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM. Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 2011, 14: 285–293.CrossRefGoogle Scholar
  65. 65.
    Anderson JS, Nielsen JA, Ferguson MA, Burback MC, Cox ET, Dai L, et al. Abnormal brain synchrony in Down Syndrome. Neuroimage Clin 2013, 2: 703–715.CrossRefGoogle Scholar
  66. 66.
    Broek JA, Guest PC, Rahmoune H, Bahn S. Proteomic analysis of post mortem brain tissue from autism patients: evidence for opposite changes in prefrontal cortex and cerebellum in synaptic connectivity-related proteins. Mol Autism 2014, 5: 41.CrossRefGoogle Scholar
  67. 67.
    Guerin A, Stavropoulos DJ, Diab Y, Chenier S, Christensen H, Kahr WH, et al. Interstitial deletion of 11q-implicating the KIRREL3 gene in the neurocognitive delay associated with Jacobsen syndrome. Am J Med Genet A 2012, 158A: 2551–2556.CrossRefGoogle Scholar
  68. 68.
    Sultana R, Yu CE, Yu J, Munson J, Chen D, Hua W, et al. Identification of a novel gene on chromosome 7q11.2 interrupted by a translocation breakpoint in a pair of autistic twins. Genomics 2002, 80: 129–134.CrossRefGoogle Scholar
  69. 69.
    Bernard LP, Zhang H. MARK/Par1 kinase is activated downstream of NMDA receptors through a PKA-dependent mechanism. PLoS One 2015, 10: e0124816.CrossRefGoogle Scholar
  70. 70.
    Javitt DC, Sweet RA. Auditory dysfunction in schizophrenia: integrating clinical and basic features. Nat Rev Neurosci 2015, 16: 535–550.CrossRefGoogle Scholar
  71. 71.
    Lefevre J, Savarin P, Gans P, Hamon L, Clement MJ, David MO, et al. Structural basis for the association of MAP6 protein with microtubules and its regulation by calmodulin. J Biol Chem 2013, 288: 24910–24922.CrossRefGoogle Scholar
  72. 72.
    Dowjat K, Adayev T, Kaczmarski W, Wegiel J, Hwang YW. Gene dosage-dependent association of DYRK1A with the cytoskeleton in the brain and lymphocytes of down syndrome patients. J Neuropathol Exp Neurol 2012, 71: 1100–1112.CrossRefGoogle Scholar
  73. 73.
    Tejedor FJ, Hammerle B. MNB/DYRK1A as a multiple regulator of neuronal development. FEBS J 2011, 278: 223–235.CrossRefGoogle Scholar
  74. 74.
    Volle J, Brocard J, Saoud M, Gory-Faure S, Brunelin J, Andrieux A, et al. Reduced expression of STOP/MAP6 in mice leads to cognitive deficits. Schizophr Bull 2013, 39: 969–978.CrossRefGoogle Scholar
  75. 75.
    Wei H, Sun S, Li Y, Yu S. Reduced plasma levels of microtubule-associated STOP/MAP6 protein in autistic patients. Psychiatry Res 2016, 245: 116–118.CrossRefGoogle Scholar
  76. 76.
    Eastwood SL, Lyon L, George L, Andrieux A, Job D, Harrison PJ. Altered expression of synaptic protein mRNAs in STOP (MAP6) mutant mice. J Psychopharmacol 2007, 21: 635–644.CrossRefGoogle Scholar
  77. 77.
    Galiano MR, Bosc C, Schweitzer A, Andrieux A, Job D, Hallak ME. Astrocytes and oligodendrocytes express different STOP protein isoforms. J Neurosci Res 2004, 78: 329–337.CrossRefGoogle Scholar
  78. 78.
    Bosc C, Frank R, Denarier E, Ronjat M, Schweitzer A, Wehland J, et al. Identification of novel bifunctional calmodulin-binding and microtubule-stabilizing motifs in STOP proteins. J Biol Chem 2001, 276: 30904–30913.CrossRefGoogle Scholar
  79. 79.
    Kajitani K, Thorne M, Samson M, Robertson GS. Nitric oxide synthase mediates the ability of darbepoetin alpha to improve the cognitive performance of STOP null mice. Neuropsychopharmacology 2010, 35: 1718–1728.CrossRefGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Neurology, Shanxi Provincial People’s HospitalAffiliate of Shanxi Medical UniversityTaiyuanChina

Personalised recommendations