Neuroscience Bulletin

, Volume 34, Issue 3, pp 507–516 | Cite as

ZNF804A Variation May Affect Hippocampal-Prefrontal Resting-State Functional Connectivity in Schizophrenic and Healthy Individuals

Original Article

Abstract

The ZNF804A variant rs1344706 has consistently been associated with schizophrenia and plays a role in hippocampal-prefrontal functional connectivity during working memory. Whether the effect exists in the resting state and in patients with schizophrenia remains unclear. In this study, we investigated the ZNF804A polymorphism at rs1344706 in 92 schizophrenic patients and 99 healthy controls of Han Chinese descent, and used resting-state functional magnetic resonance imaging to explore the functional connectivity in the participants. We found a significant main effect of genotype on the resting-state functional connectivity (RSFC) between the hippocampus and the dorsolateral prefrontal cortex (DLPFC) in both schizophrenic patients and healthy controls. The homozygous ZNF804A rs1344706 genotype (AA) conferred a high risk of schizophrenia, and also exhibited significantly decreased resting functional coupling between the left hippocampus and right DLPFC (F(2,165) = 13.43, P < 0.001). The RSFC strength was also correlated with cognitive performance and the severity of psychosis in schizophrenia. The current findings identified the neural impact of the ZNF804A rs1344706 on hippocampal-prefrontal RSFC associated with schizophrenia.

Keywords

Schizophrenia ZNF804A Imaging genetics Hippocampus Dorsolateral prefrontal cortex 

Notes

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2016YFC1307000 and 2015BAI13B01), the National Natural Science Foundation of China (91432304, 81370032, 81571313 and 81221002), Capital Health Development Research (2016-2-4112), and Beijing Nova Program Interdisciplinary Studies Cooperative Project (Z161100004916038). We thank the Department of Radiology, The Third Hospital, Peking University, for providing the equipment for neuroimaging. We thank all the participants in this study.

Compliance with Ethical Standards

Conflict of interest

All authors claim that there are no conflicts of interest.

Supplementary material

12264_2018_221_MOESM1_ESM.pdf (415 kb)
Supplementary material 1 (PDF 404 kb)

References

  1. 1.
    Sullivan PF, Kendler KS, Neale MC. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 2003, 60: 1187–1192.CrossRefPubMedGoogle Scholar
  2. 2.
    Bienvenu OJ, Davydow DS, Kendler KS. Psychiatric ‘diseases’ versus behavioral disorders and degree of genetic influence. Psychol Med 2011, 41: 33–40.CrossRefPubMedGoogle Scholar
  3. 3.
    van Erp TG, Hibar DP, Rasmussen JM, Glahn DC, Pearlson GD, Andreassen OA, et al. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol Psychiatry 2016, 21: 585.CrossRefPubMedGoogle Scholar
  4. 4.
    Hibar DP, Stein JL, Renteria ME, Arias-Vasquez A, Desrivieres S, Jahanshad N, et al. Common genetic variants influence human subcortical brain structures. Nature 2015, 520: 224–229.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Meyer-Lindenberg A. From maps to mechanisms through neuroimaging of schizophrenia. Nature 2010, 468: 194–202.CrossRefPubMedGoogle Scholar
  6. 6.
    Bogdan R, Salmeron BJ, Carey CE, Agrawal A, Calhoun VD, Garavan H, et al. Imaging genetics and genomics in psychiatry: A critical review of progress and potential. Biol Psychiatry 2017, 82: 165–175.CrossRefPubMedGoogle Scholar
  7. 7.
    Bahner F, Demanuele C, Schweiger J, Gerchen MF, Zamoscik V, Ueltzhoffer K, et al. Hippocampal-dorsolateral prefrontal coupling as a species-conserved cognitive mechanism: a human translational imaging study. Neuropsychopharmacology 2015, 40: 1674–1681.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bähner F, Meyer-Lindenberg A. Hippocampal–prefrontal connectivity as a translational phenotype for schizophrenia. Eur Neuropsychopharmacol 2017, 27: 93–106.CrossRefPubMedGoogle Scholar
  9. 9.
    Meyer-Lindenberg AS, Olsen RK, Kohn PD, Brown T, Egan MF, Weinberger DR, et al. Regionally specific disturbance of dorsolateral prefrontal-hippocampal functional connectivity in schizophrenia. Arch Gen Psychiatry 2005, 62: 379–386.CrossRefPubMedGoogle Scholar
  10. 10.
    Rasetti R, Sambataro F, Chen Q, Callicott JH, Mattay VS, Weinberger DR. Altered cortical network dynamics: a potential intermediate phenotype for schizophrenia and association with ZNF804A. Arch Gen Psychiatry 2011, 68: 1207–1217.CrossRefPubMedGoogle Scholar
  11. 11.
    Esslinger C, Walter H, Kirsch P, Erk S, Schnell K, Arnold C, et al. Neural mechanisms of a genome-wide supported psychosis variant. Science 2009, 324: 605.CrossRefPubMedGoogle Scholar
  12. 12.
    Paulus FM, Bedenbender J, Krach S, Pyka M, Krug A, Sommer J, et al. Association of rs1006737 in CACNA1C with alterations in prefrontal activation and fronto-hippocampal connectivity. Hum Brain Mapp 2014, 35: 1190–1200.CrossRefPubMedGoogle Scholar
  13. 13.
    O’Donovan MC, Craddock N, Norton N, Williams H, Peirce T, Moskvina V, et al. Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat Genet 2008, 40: 1053–1055.CrossRefPubMedGoogle Scholar
  14. 14.
    Li M, Shi CJ, Shi YY, Luo XJ, Zheng XB, Li ZQ, et al. ZNF804A and schizophrenia susceptibility in Asian populations. Am J Med Genet B Neuropsychiatr Genet 2012, 159B: 794–802.CrossRefPubMedGoogle Scholar
  15. 15.
    Wang J, Zhao S, Shugart YY, Zhou Z, Jin C, Yuan J, et al. No association between ZNF804A rs1344706 and schizophrenia in a case-control study of Han Chinese. Neurosci Lett 2016, 618: 14–18.CrossRefPubMedGoogle Scholar
  16. 16.
    Zhang C, Wang Z, Hong W, Wu Z, Peng D, Fang Y. ZNF804A genetic variation confers risk to bipolar disorder. Mol Neurobiol 2016, 53: 2936–2943.CrossRefPubMedGoogle Scholar
  17. 17.
    Rao S, Yao Y, Ryan J, Jin C, Xu Y, Huang X, et al. Genetic association of rs1344706 in ZNF804A with bipolar disorder and schizophrenia susceptibility in Chinese populations. Sci Rep 2017, 7: 41140.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Girgenti MJ, LoTurco JJ, Maher BJ. ZNF804a regulates expression of the schizophrenia-associated genes PRSS16, COMT, PDE4B, and DRD2. PLoS One 2012, 7: e32404.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Deans PJM, Raval P, Sellers KJ, Gatford NJF, Halai S, Duarte RRR, et al. Psychosis risk candidate ZNF804A localizes to synapses and regulates neurite formation and dendritic spine structure. Biol Psychiatry 2017, 82: 49–61.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Chang H, Xiao X, Li M. The schizophrenia risk gene ZNF804A: clinical associations, biological mechanisms and neuronal functions. Mol Psychiatry 2017, 22: 944–953.CrossRefPubMedGoogle Scholar
  21. 21.
    Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014, 511: 421–427.CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Wassink TH, Epping EA, Rudd D, Axelsen M, Ziebell S, Fleming FW, et al. Influence of ZNF804a on brain structure volumes and symptom severity in individuals with schizophrenia. Arch Gen Psychiatry 2012, 69: 885–892.CrossRefPubMedGoogle Scholar
  23. 23.
    Donohoe G, Rose E, Frodl T, Morris D, Spoletini I, Adriano F, et al. ZNF804A risk allele is associated with relatively intact gray matter volume in patients with schizophrenia. Neuroimage 2011, 54: 2132–2137.CrossRefPubMedGoogle Scholar
  24. 24.
    Esslinger C, Kirsch P, Haddad L, Mier D, Sauer C, Erk S, et al. Cognitive state and connectivity effects of the genome-wide significant psychosis variant in ZNF804A. Neuroimage 2011, 54: 2514–2523.CrossRefPubMedGoogle Scholar
  25. 25.
    Paulus FM, Krach S, Bedenbender J, Pyka M, Sommer J, Krug A, et al. Partial support for ZNF804A genotype-dependent alterations in prefrontal connectivity. Hum Brain Mapp 2013, 34: 304–313.CrossRefPubMedGoogle Scholar
  26. 26.
    Strauss E, Sherman EM, Spreen O. A Compendium of Neuropsychological Tests: Administration, Norms, and Commentary. Oxford University Press, 2006.Google Scholar
  27. 27.
    Wechsler D. WAIS-III, Wechsler Adult Intelligence Scale: Administration and Scoring Manual. Psychological Corporation, 1997.Google Scholar
  28. 28.
    Wechsler D. WMS-R: Wechsler memory scale-revised: manual. Psychological Corporation, 1984.Google Scholar
  29. 29.
    Knowles EE, Weiser M, David AS, Glahn DC, Davidson M, Reichenberg A. The puzzle of processing speed, memory, and executive function impairments in schizophrenia: fitting the pieces together. Biol Psychiatry 2015, 78: 786–793.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Reichenberg A, Harvey PD. Neuropsychological impairments in schizophrenia: Integration of performance-based and brain imaging findings. Psychol Bull 2007, 133: 833–858.CrossRefPubMedGoogle Scholar
  31. 31.
    Dickinson D, Ramsey ME, Gold JM. Overlooking the obvious: a meta-analytic comparison of digit symbol coding tasks and other cognitive measures in schizophrenia. Arch Gen Psychiatry 2007, 64: 532–542.CrossRefPubMedGoogle Scholar
  32. 32.
    Zheng F, Zhang Y, Xie W, Li W, Jin C, Mi W, et al. Further evidence for genetic association of CACNA1C and schizophrenia: new risk loci in a Han Chinese population and a meta-analysis. Schizophr Res 2014, 152: 105–110.CrossRefPubMedGoogle Scholar
  33. 33.
    Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002, 15: 273–289.CrossRefPubMedGoogle Scholar
  34. 34.
    Zhang X, Yu JT, Li J, Wang C, Tan L, Liu B, et al. Bridging Integrator 1 (BIN1) genotype effects on working memory, hippocampal volume, and functional connectivity in young healthy individuals. Neuropsychopharmacology 2015, 40: 1794–1803.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Zhao X, Tian L, Yan J, Yue W, Yan H, Zhang D. Abnormal rich-club organization associated with compromised cognitive function in patients with schizophrenia and their unaffected parents. Neurosci Bull 2017, 33: 445–454.CrossRefPubMedGoogle Scholar
  36. 36.
    Voineskos AN, Lerch JP, Felsky D, Tiwari A, Rajji TK, Miranda D, et al. The ZNF804A gene: characterization of a novel neural risk mechanism for the major psychoses. Neuropsychopharmacology 2011, 36: 1871–1878.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    O’Donoghue T, Morris DW, Fahey C, Da Costa A, Moore S, Cummings E, et al. Effects of ZNF804A on auditory P300 response in schizophrenia. Transl Psychiatry 2014, 4: e345.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Zhang Z, Chen X, Yu P, Zhang Q, Sun X, Gu H, et al. Effect of rs1344706 in the ZNF804A gene on the connectivity between the hippocampal formation and posterior cingulate cortex. Schizophr Res 2016, 170: 48–54.CrossRefPubMedGoogle Scholar
  39. 39.
    Dong D, Wang Y, Chang X, Luo C, Yao D. Dysfunction of large-scale brain networks in schizophrenia: a meta-analysis of resting-state functional connectivity. Schizophr Bull 2018, 44: 168–181.CrossRefPubMedGoogle Scholar
  40. 40.
    Lynall ME, Bassett DS, Kerwin R, McKenna PJ, Kitzbichler M, Muller U, et al. Functional connectivity and brain networks in schizophrenia. J Neurosci 2010, 30: 9477–9487.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Plaschke RN, Cieslik EC, Muller VI, Hoffstaedter F, Plachti A, Varikuti DP, et al. On the integrity of functional brain networks in schizophrenia, Parkinson’s disease, and advanced age: Evidence from connectivity-based single-subject classification. Hum Brain Mapp 2017, 38: 5845–5858.CrossRefPubMedGoogle Scholar
  42. 42.
    Hu ML, Zong XF, Mann JJ, Zheng JJ, Liao YH, Li ZC, et al. A review of the functional and anatomical default mode network in schizophrenia. Neurosci Bull 2017, 33: 73–84.CrossRefPubMedGoogle Scholar
  43. 43.
    Tregellas JR, Davalos DB, Rojas DC, Waldo MC, Gibson L, Wylie K, et al. Increased hemodynamic response in the hippocampus, thalamus and prefrontal cortex during abnormal sensory gating in schizophrenia. Schizophr Res 2007, 92: 262–272.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Zhu J, Zhuo C, Xu L, Liu F, Qin W, Yu C. Altered coupling between resting-state cerebral blood flow and functional connectivity in schizophrenia. Schizophr Bull 2017, 43: 1363–1374.CrossRefPubMedGoogle Scholar
  45. 45.
    Duan AR, Varela C, Zhang Y, Shen Y, Xiong L, Wilson MA, et al. Delta frequency optogenetic stimulation of the thalamic nucleus reuniens is sufficient to produce working memory deficits: relevance to schizophrenia. Biol Psychiatry 2015, 77: 1098–1107.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Amad A, Cachia A, Gorwood P, Pins D, Delmaire C, Rolland B, et al. The multimodal connectivity of the hippocampal complex in auditory and visual hallucinations. Mol Psychiatry 2014, 19: 184–191.CrossRefPubMedGoogle Scholar
  47. 47.
    Zhou Y, Shu N, Liu Y, Song M, Hao Y, Liu H, et al. Altered resting-state functional connectivity and anatomical connectivity of hippocampus in schizophrenia. Schizophr Res 2008, 100: 120–132.CrossRefPubMedGoogle Scholar
  48. 48.
    Rotarska-Jagiela A, van de Ven V, Oertel-Knochel V, Uhlhaas PJ, Vogeley K, Linden DE. Resting-state functional network correlates of psychotic symptoms in schizophrenia. Schizophr Res 2010, 117: 21–30.CrossRefPubMedGoogle Scholar
  49. 49.
    Walters JT, Corvin A, Owen MJ, Williams H, Dragovic M, Quinn EM, et al. Psychosis susceptibility gene ZNF804A and cognitive performance in schizophrenia. Arch Gen Psychiatry 2010, 67: 692–700.CrossRefPubMedGoogle Scholar
  50. 50.
    Chen M, Xu Z, Zhai J, Bao X, Zhang Q, Gu H, et al. Evidence of IQ-modulated association between ZNF804A gene polymorphism and cognitive function in schizophrenia patients. Neuropsychopharmacology 2012, 37: 1572–1578.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Thurin K, Rasetti R, Sambataro F, Safrin M, Chen Q, Callicott JH, et al. Effects of ZNF804A on neurophysiologic measures of cognitive control. Mol Psychiatry 2013, 18: 852–854.CrossRefPubMedGoogle Scholar
  52. 52.
    Manoach DS, Gollub RL, Benson ES, Searl MM, Goff DC, Halpern E, et al. Schizophrenic subjects show aberrant fMRI activation of dorsolateral prefrontal cortex and basal ganglia during working memory performance. Biol Psychiatry 2000, 48: 99–109.CrossRefPubMedGoogle Scholar
  53. 53.
    Callicott JH, Bertolino A, Mattay VS, Langheim FJ, Duyn J, Coppola R, et al. Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited. Cereb Cortex 2000, 10: 1078–1092.CrossRefPubMedGoogle Scholar
  54. 54.
    Harrison PJ. The hippocampus in schizophrenia: a review of the neuropathological evidence and its pathophysiological implications. Psychopharmacology (Berl) 2004, 174: 151–162.CrossRefGoogle Scholar
  55. 55.
    Mossner R, Schuhmacher A, Wagner M, Lennertz L, Steinbrecher A, Quednow BB, et al. The schizophrenia risk gene ZNF804A influences the antipsychotic response of positive schizophrenia symptoms. Eur Arch Psychiatry Clin Neurosci 2012, 262: 193–197.CrossRefPubMedGoogle Scholar
  56. 56.
    Zhang J, Wu X, Diao F, Gan Z, Zhong Z, Wei Q, et al. Association analysis of ZNF804A (zinc finger protein 804A) rs1344706 with therapeutic response to atypical antipsychotics in first-episode Chinese patients with schizophrenia. Compr Psychiatry 2012, 53: 1044–1048.CrossRefPubMedGoogle Scholar
  57. 57.
    Guella I, Sequeira A, Rollins B, Morgan L, Myers RM, Watson SJ, et al. Evidence of allelic imbalance in the schizophrenia susceptibility gene ZNF804A in human dorsolateral prefrontal cortex. Schizophr Res 2014, 152: 111–116.CrossRefPubMedGoogle Scholar
  58. 58.
    Riley B, Thiselton D, Maher BS, Bigdeli T, Wormley B, McMichael GO, et al. Replication of association between schizophrenia and ZNF804A in the Irish Case-Control Study of Schizophrenia sample. Mol Psychiatry 2010, 15: 29–37.CrossRefPubMedGoogle Scholar
  59. 59.
    Schultz CC, Nenadic I, Riley B, Vladimirov VI, Wagner G, Koch K, et al. ZNF804A and cortical structure in schizophrenia: in vivo and postmortem studies. Schizophr Bull 2014, 40: 532–541.CrossRefPubMedGoogle Scholar
  60. 60.
    Tao R, Cousijn H, Jaffe AE, Burnet PW, Edwards F, Eastwood SL, et al. Expression of ZNF804A in human brain and alterations in schizophrenia, bipolar disorder, and major depressive disorder: a novel transcript fetally regulated by the psychosis risk variant rs1344706. JAMA Psychiatry 2014, 71: 1112–1120.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Yuyanan Zhang
    • 1
    • 2
  • Hao Yan
    • 1
    • 2
  • Jinmin Liao
    • 1
    • 2
  • Hao Yu
    • 1
    • 2
    • 3
  • Sisi Jiang
    • 1
    • 2
  • Qi Liu
    • 1
  • Dai Zhang
    • 1
    • 2
    • 4
  • Weihua Yue
    • 1
    • 2
  1. 1.Institute of Mental HealthPeking University Sixth HospitalBeijingChina
  2. 2.Key Laboratory of Mental HealthMinistry of Health and National Clinical Research Center for Mental Disorders (Peking University)BeijingChina
  3. 3.Department of PsychiatryJining Medical UniversityJiningChina
  4. 4.Peking-Tsinghua Joint Center for Life Sciences and PKU-IDG/McGovern Institute for Brain ResearchPeking UniversityBeijingChina

Personalised recommendations