Expression and Function of Zinc-α2-Glycoprotein

  • Xin Wei
  • Xi Liu
  • Changhong Tan
  • Lijuan Mo
  • Hui Wang
  • Xi Peng
  • Fen Deng
  • Lifeng ChenEmail author


Zinc-α2-glycoprotein (ZAG), encoded by the AZGP1 gene, is a major histocompatibility complex I molecule and a lipid-mobilizing factor. ZAG has been demonstrated to promote lipid metabolism and glucose utilization, and to regulate insulin sensitivity. Apart from adipose tissue, skeletal muscle, liver, and kidney, ZAG also occurs in brain tissue, but its distribution in brain is debatable. Only a few studies have investigated ZAG in the brain. It has been found in the brains of patients with Krabbe disease and epilepsy, and in the cerebrospinal fluid of patients with Alzheimer disease, frontotemporal lobe dementia, and amyotrophic lateral sclerosis. Both ZAG protein and AZGP1 mRNA are decreased in epilepsy patients and animal models, while overexpression of ZAG suppresses seizure and epileptic discharges in animal models of epilepsy, but knowledge of the specific mechanism of ZAG in epilepsy is limited. In this review, we summarize the known roles and molecular mechanisms of ZAG in lipid metabolism and glucose metabolism, and in the regulation of insulin sensitivity, and discuss the possible mechanisms by which it suppresses epilepsy.


Zinc-α2-glycoprotein Metabolism Glucose Lipid Insulin sensitivity Neuron 



This review was supported by the National Natural Science Foundation of China (81771391, 81401073), Chongqing Municipal Public Health Bureau, Chongqing People’s Municipal Government (20142026), and the Program for Innovative Research Team of Chongqing Kuanren Hospital, China.

Conflict of interest

The authors declare that there is no conflict of interest.


  1. 1.
    Freije JP, Fueyo A, Uría JA, Velasco G, Sánchez LM, López-Boado YS, et al. Human Zn-alpha 2-glycoprotein: complete genomic sequence, identification of a related pseudogene and relationship to class I major histocompatibility complex genes. Genomics 1993, 18: 575–587.CrossRefGoogle Scholar
  2. 2.
    Pendás AM, Matilla T, Uría JA, Freije JP, Fueyo A, Estivill X, et al. Mapping of the human Zn-alpha 2-glycoprotein gene (AZGP1) to chromosome 7q22 by in situ hybridization. Cytogenet Cell Genet 1994, 66: 263–266.CrossRefGoogle Scholar
  3. 3.
    Uría JA, Fueyo A, Balbín M, Velasco G, Pendás AM, López-Otín C. Alternative splicing gives rise to two novel long isoforms of Zn-alpha 2-glycoprotein, a member of the immunoglobulin superfamily. Gene 1996, 169: 233–236.CrossRefGoogle Scholar
  4. 4.
    Hassan I, Ahmad F. Structural diversity of class I MHC-like molecules and its implications in binding specificities. Adv Protein Chem Struct Biol 2011, 83: 223–270.CrossRefGoogle Scholar
  5. 5.
    Kumar AA, Hati D, Thaker TM, Miah L, Cunningham P, Domene C, et al. Strong and weak zinc binding sites in human zinc-α2-glycoprotein. FEBS Lett 2013, 587: 3949–3954.CrossRefGoogle Scholar
  6. 6.
    Zahid H, Miah L, Lau AM, Brochard L, Hati D, Bui TT, et al. Zinc-induced oligomerization of zinc α2 glycoprotein reveals multiple fatty acid-binding sites. Biochem J 2016, 473: 43–54.CrossRefGoogle Scholar
  7. 7.
    Delker SL, West AP Jr, McDermott L, Kennedy MW, Bjorkman PJ. Crystallographic studies of ligand binding by Zn-alpha2-glycoprotein. J Struct Biol 2004, 148: 205–213.CrossRefGoogle Scholar
  8. 8.
    Marrades MP, Martínez JA, Moreno-Aliaga MJ. ZAG, a lipid mobilizing adipokine, is downregulated in human obesity. J Physiol Biochem 2008, 64: 61–66.CrossRefGoogle Scholar
  9. 9.
    Yeung DC, Lam KS, Wang Y, Tso AW, Xu A. Serum zinc-alpha2-glycoprotein correlates with adiposity, triglycerides, and the key components of the metabolic syndrome in Chinese subjects. J Clin Endocrinol Metab 2009, 94: 2531–2536.CrossRefGoogle Scholar
  10. 10.
    Tzanavari T, Bing C, Trayhurn P. Postnatal expression of zinc-alpha2-glycoprotein in rat white and brown adipose tissue. Mol Cell Endocrinol 2007, 279: 26–33.CrossRefGoogle Scholar
  11. 11.
    Russell ST, Tisdale MJ. Studies on the anti-obesity activity of zinc-α2-glycoprotein in the rat. Int J Obes (Lond) 2011, 35: 658–665.CrossRefGoogle Scholar
  12. 12.
    Zhu HJ, Ding HH, Deng JY, Pan H, Wang LJ, Li NS, et al. Inhibition of preadipocyte differentiation and adipogenesis by zinc-α2-glycoprotein treatment in 3T3-L1 cells. J Diabetes Investig 2013, 4: 252–260.CrossRefGoogle Scholar
  13. 13.
    Xiao X, Li H, Qi X, Wang Y, Xu C, Liu G, et al. Zinc alpha2 glycoprotein alleviates palmitic acid-induced intracellular lipid accumulation in hepatocytes. Mol Cell Endocrinol 2017, 439: 155–164.CrossRefGoogle Scholar
  14. 14.
    Choi JW, Liu H, Mukherjee R, Yun JW. Downregulation of fetuin-B and zinc-α2-glycoprotein is linked to impaired fatty acid metabolism in liver cells. Cell Physiol Biochem 2012, 30: 295–306.CrossRefGoogle Scholar
  15. 15.
    Elattar S, Dimri M, Satyanarayana A. The tumor secretory factor ZAG promotes white adipose tissue browning and energy wasting. FASEB J 2018, 32: 4727–4743.CrossRefGoogle Scholar
  16. 16.
    Bao Y, Bing C, Hunter L, Jenkins JR, Wabitsch M, Trayhurn P. Zinc-alpha2-glycoprotein, a lipid mobilizing factor, is expressed and secreted by human (SGBS) adipocytes. FEBS Lett 2005, 579: 41–47.CrossRefGoogle Scholar
  17. 17.
    Xiao XH, Qi XY, Wang YD, Ran L, Yang J, Zhang HL, et al. Zinc alpha2 glycoprotein promotes browning in adipocytes. Biochem Biophys Res Commun 2018, 496: 287–293.CrossRefGoogle Scholar
  18. 18.
    Sanders PM, Tisdale MJ. Effect of zinc-alpha2-glycoprotein (ZAG) on expression of uncoupling proteins in skeletal muscle and adipose tissue. Cancer Lett 2004, 212: 71–81.CrossRefGoogle Scholar
  19. 19.
    Balaz M, Ukropcova B, Kurdiova T, Gajdosechova L, Vlcek M, Janakova Z, et al. Adipokine zinc-α2-glycoprotein regulated by growth hormone and linked to insulin sensitivity. Obesity (Silver Spring) 2015, 23: 322–328.CrossRefGoogle Scholar
  20. 20.
    Balaž M, Ukropcova B, Kurdiova T, Vlcek M, Surova M, Krumpolec P, et al. Improved adipose tissue metabolism after 5-year growth hormone replacement therapy in growth hormone deficient adults: the role of zinc-α2-glycoprotein. Adipocyte 2014, 4: 113–122.Google Scholar
  21. 21.
    Gong FY, Zhang SJ, Deng JY, Zhu HJ, Pan H, Li NS, et al. Zinc-alpha2-glycoprotein is involved in regulation of body weight through inhibition of lipogenic enzymes in adipose tissue. Int J Obes (Lond) 2009, 33: 1023–1030.CrossRefGoogle Scholar
  22. 22.
    Wargent ET, O’Dowd JF, Zaibi MS, Gao D, Bing C, Trayhurn P, et al. Contrasts between the effects of zinc-α2-glycoprotein, a putative β3/2-adrenoceptor agonist and the β3/2-adrenoceptor agonist BRL35135 in C57Bl/6 (ob/ob) mice. J Endocrinol 2013, 216: 157–168.CrossRefGoogle Scholar
  23. 23.
    Russell ST, Tisdale MJ. Role of β-adrenergic receptors in the anti-obesity and anti-diabetic effects of zinc-α2-glycoprotien (ZAG). Biochim Biophys Acta 2012, 1821: 590–599.CrossRefGoogle Scholar
  24. 24.
    Ceperuelo-Mallafré V, Ejarque M, Duran X, Pachón G, Vázquez-Carballo A, Roche K, et al. Zinc-α2-glycoprotein modulates AKT-dependent insulin signaling in human adipocytes by activation of the PP2A phosphatase. PLoS One 2015, 10: e0129644.CrossRefGoogle Scholar
  25. 25.
    Balaz M, Vician M, Janakova Z, Kurdiova T, Surova M, Imrich R, et al. Subcutaneous adipose tissue zinc-α2-glycoprotein is associated with adipose tissue and whole-body insulin sensitivity. Obesity (Silver Spring) 2014, 22: 1821–1829.CrossRefGoogle Scholar
  26. 26.
    Barraco GM, Luciano R, Manco M. Zinc-α2 -glycoprotein is associated with insulin resistance in children. Obesity (Silver Spring) 2015, 23: 5–6.CrossRefGoogle Scholar
  27. 27.
    Mracek T, Ding Q, Tzanavari T, Kos K, Pinkney J, Wilding J, et al. The adipokine zinc-alpha2-glycoprotein (ZAG) is downregulated with fat mass expansion in obesity. Clin Endocrinol (Oxf) 2010, 72: 334–341.CrossRefGoogle Scholar
  28. 28.
    Lai Y, Chen J, Li L, Yin J, He J, Yang M, et al. Circulating zinc-α2-glycoprotein levels and insulin resistance in polycystic ovary syndrome. Sci Rep 2016, 6: 25934.CrossRefGoogle Scholar
  29. 29.
    Tian M, Liang Z, Liu R, Li K, Tan X, Luo Y, et al. Effects of sitagliptin on circulating zinc-α2-glycoprotein levels in newly diagnosed type 2 diabetes patients: a randomized trial. Eur J Endocrinol 2016, 174: 147–155.CrossRefGoogle Scholar
  30. 30.
    Qu C, Zhou X, Yang G, Li L, Liu H, Liang Z. The natural logarithm of zinc-α2-glycoprotein/HOMA-IR is a better predictor of insulin sensitivity than the product of triglycerides and glucose and the other lipid ratios. Cytokine 2016, 79: 96–102.CrossRefGoogle Scholar
  31. 31.
    Liao X, Wang X, Li H, Li L, Zhang G, Yang M, et al. Sodium-glucose cotransporter 2 (SGLT2) inhibitor increases circulating zinc-Α2-glycoprotein levels in patients with type 2 diabetes. Sci Rep 2016, 6: 32887.CrossRefGoogle Scholar
  32. 32.
    Selva DM, Lecube A, Hernández C, Baena JA, Fort JM, Simó R. Lower zinc-alpha2-glycoprotein production by adipose tissue and liver in obese patients unrelated to insulin resistance. J Clin Endocrinol Metab 2009, 94: 4499–4507.CrossRefGoogle Scholar
  33. 33.
    Russell ST, Tisdale MJ. Mechanism of attenuation of skeletal muscle atrophy by zinc-alpha2-glycoprotein. Endocrinology 2010, 151: 4696–4704.CrossRefGoogle Scholar
  34. 34.
    Mracek T, Gao D, Tzanavari T, Bao Y, Xiao X, Stocker C, et al. Downregulation of zinc-{alpha}2-glycoprotein in adipose tissue and liver of obese ob/ob mice and by tumour necrosis factor-alpha in adipocytes. J Endocrinol 2010, 204: 165–172.CrossRefGoogle Scholar
  35. 35.
    Gao D, Trayhurn P, Bing C. Macrophage-secreted factors inhibit ZAG expression and secretion by human adipocytes. Mol Cell Endocrinol 2010, 325: 135–142.CrossRefGoogle Scholar
  36. 36.
    Leal VO, Lobo JC, Stockler-Pinto MB, Farage NE, Abdalla DS, Leite M Jr, et al. Is zinc-α2-glycoprotein a cardiovascular protective factor for patients undergoing hemodialysis? Clin Chim Acta 2012, 413: 616–619.CrossRefGoogle Scholar
  37. 37.
    Kong B, Michalski CW, Hong X, Valkovskaya N, Rieder S, Abiatari I, et al. AZGP1 is a tumor suppressor in pancreatic cancer inducing mesenchymal-to-epithelial transdifferentiation by inhibiting TGF-β-mediated ERK signaling. Oncogene 2010, 29: 5146–5158.CrossRefGoogle Scholar
  38. 38.
    Xu MY, Chen R, Yu JX, Liu T, Qu Y, Lu LG. AZGP1 suppresses epithelial-to-mesenchymal transition and hepatic carcinogenesis by blocking TGFβ1-ERK2 pathways. Cancer Lett 2016, 374: 241–249.CrossRefGoogle Scholar
  39. 39.
    Sörensen-Zender I, Bhayana S, Susnik N, Rolli V, Batkai S, Baisantry A, et al. Zinc-α2-glycoprotein exerts antifibrotic effects in kidney and heart. J Am Soc Nephrol 2015, 26: 2568–2659.CrossRefGoogle Scholar
  40. 40.
    Chang L, Tian X, Lu Y, Jia M, Wu P, Huang P. Alpha-2-glycoprotein 1(AZGP1) regulates biological behaviors of LoVo cells by down-regulating mTOR signaling pathway and endogenous fatty acid synthesis. PLoS One 2014, 9: e99254.CrossRefGoogle Scholar
  41. 41.
    Tian H, Ge C, Zhao F, Zhu M, Zhang L, Huo Q, et al. Downregulation of AZGP1 by Ikaros and histone deacetylase promotes tumor progression through the PTEN/Akt and CD44s pathways in hepatocellular carcinoma. Carcinogenesis 2017, 38: 207–217.Google Scholar
  42. 42.
    Simó R, Hernández C, Sáez-López C, Soldevila B, Puig-Domingo M, Selva DM. Thyroid hormone upregulates zinc-α2-glycoprotein production in the liver but not in adipose tissue. PLoS One 2014, 9: e85753.CrossRefGoogle Scholar
  43. 43.
    Böhm M, Locke WJ, Sutherland RL, Kench JG, Henshall SM. A role for GATA-2 in transition to an aggressive phenotype in prostate cancer through modulation of key androgen-regulated genes. Oncogene 2009, 28: 3847–3856.CrossRefGoogle Scholar
  44. 44.
    Russell ST, Tisdale MJ. The role of glucocorticoids in the induction of zinc-alpha2-glycoprotein expression in adipose tissue in cancer cachexia. Br J Cancer 2005, 92: 876–881.CrossRefGoogle Scholar
  45. 45.
    Maślińska D, Laure-Kamionowska M, Maślińska S. Crosstalk in human brain between globoid cell leucodystrophy and zinc-a-2-glycoprotein (ZAG), a biomarker of lipid catabolism. Folia Neuropathol 2013, 51: 312–318.Google Scholar
  46. 46.
    Liu Y, Wang T, Liu X, Wei X, Xu T, Yin M, et al. Neuronal zinc-α2-glycoprotein is decreased in temporal lobe epilepsy in patients and rats. Neuroscience 2017, 357: 56–66.CrossRefGoogle Scholar
  47. 47.
    Chow ML, Pramparo T, Winn ME, Barnes CC, Li HR, Weiss L, et al. Age-dependent brain gene expression and copy number anomalies in autism suggest distinct pathological processes at young versus mature ages. PLoS Genet 2012, 8: e1002592.CrossRefGoogle Scholar
  48. 48.
    Matsuwaki T, Asakura R, Suzuki M, Yamanouchi K, Nishihara M. Age-dependent changes in progranulin expression in the mouse brain. J Reprod Dev 2011, 57: 113–119.CrossRefGoogle Scholar
  49. 49.
    Prüss H, Grosse G, Brunk I, Veh RW, Ahnert-Hilger G. Age-dependent axonal expression of potassium channel proteins during development in mouse hippocampus. Histochem Cell Biol 2010, 133: 301–312.CrossRefGoogle Scholar
  50. 50.
    Brettschneider J, Mogel H, Lehmensiek V, Ahlert T, Süssmuth S, Ludolph AC, et al. Proteome analysis of cerebrospinal fluid in amyotrophic lateral sclerosis (ALS). Neurochem Res 2008, 33:2358–2363.CrossRefGoogle Scholar
  51. 51.
    Hu Y, Hosseini A, Kauwe JS, Gross J, Cairns NJ, Goate AM, et al. Identification and validation of novel CSF biomarkers for early stages of Alzheimer’s disease. Proteom Clin Appl 2007, 1: 1373–1384.CrossRefGoogle Scholar
  52. 52.
    Hansson SF, Puchades M, Blennow K, Sjögren M, Davidsson P. Validation of a prefractionation method followed by two-dimensional electrophoresis—applied to cerebrospinal fluid proteins from frontotemporal dementia patients. Proteome Sci 2004, 2: 7.CrossRefGoogle Scholar
  53. 53.
    Liu X, Ou S, Xu T, Liu S, Yuan J, Huang H, et al. New differentially expressed genes and differential DNA methylation underlying refractory epilepsy. Oncotarget 2016, 7: 87402–87416.Google Scholar
  54. 54.
    Liu Y, Wang T, Liu X, Wen Y, Xu T, Yu X, et al. Overexpression of zinc-α2-glycoprotein suppressed seizures and seizure-related neuroflammation in pentylenetetrazolkindled rats. J Neuroinflammation 2018, 15: 92.CrossRefGoogle Scholar
  55. 55.
    Yang M, Liu R, Li S, Luo Y, Zhang Y, Zhang L, et al. Zinc-α2-glycoprotein is associated with insulin resistance in humans and is regulated by hyperglycemia, hyperinsulinemia, or liraglutide administration: cross-sectional and interventional studies in normal subjects, insulin-resistant subjects, and subjects with newly diagnosed diabetes. Diabetes Care 2013, 36: 1074–1082.CrossRefGoogle Scholar
  56. 56.
    Koshal P, Kumar P. Neurochemical modulation involved in the beneficial effect of liraglutide, GLP-1 agonist on PTZ kindling epilepsy-induced comorbidities in mice. Mol Cell Biochem 2016, 415: 77–87.CrossRefGoogle Scholar
  57. 57.
    Koshal P, Kumar P. Effect of liraglutide on corneal kindling epilepsy induced depression and cognitive impairment in mice. Neurochem Res 2016, 41: 1741–1750.CrossRefGoogle Scholar
  58. 58.
    Takahashi S, Iizumi T, Mashima K, Abe T, Suzuki N. Roles and regulation of ketogenesis in cultured astroglia and neurons under hypoxia and hypoglycemia. ASN Neuro 2014, 6. pii: 1759091414550997.Google Scholar
  59. 59.
    Guzmán M, Blázquez C. Ketone body synthesis in the brain: possible neuroprotective effects. Prostaglandins Leukot Essent Fatty Acids 2004, 70: 287–292.CrossRefGoogle Scholar
  60. 60.
    Kim DY, Simeone KA, Simeone TA, Pandya JD, Wilke JC, Ahn Y, et al. Ketone bodies mediate antiseizure effects through mitochondrial permeability transition. Ann Neurol 2015, 78: 77–87.CrossRefGoogle Scholar
  61. 61.
    Melo IS, Santos YM, Costa MA, Pacheco AL, Silva NK, Cardoso-Sousa L, et al. Inhibition of sodium glucose cotransporters following status epilepticus induced by intrahippocampal pilocarpine affects neurodegeneration process in hippocampus. Epilepsy Behav 2016, 61: 258–268.CrossRefGoogle Scholar
  62. 62.
    Auvin S. Fatty acid oxidation and epilepsy. Epilepsy Res 2012, 100:224–228.CrossRefGoogle Scholar
  63. 63.
    Taha AY, Burnham WM, Auvin S. Polyunsaturated fatty acids and epilepsy. Epilepsia 2010, 51:1348–1358.CrossRefGoogle Scholar
  64. 64.
    Ferrannini E, Baldi S, Frascerra S, Astiarraga B, Heise T, Bizzotto R, et al. Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes 2016, 65: 1190–1195.CrossRefGoogle Scholar
  65. 65.
    Lorigados Pedre L, Morales Chacón LM, Orozco Suárez S, Pavón Fuentes N, Estupiñán Díaz B, Serrano Sánchez T, et al. Inflammatory mediators in epilepsy. Curr Pharm Des 2013, 19: 6766–6772.CrossRefGoogle Scholar
  66. 66.
    Zhu F, Kai J, Chen L, Wu M, Dong J, Wang Q, et al. Akt inhibitor perifosine prevents epileptogenesis in a rat model of temporal lobe epilepsy. Neurosci Bull 2018, 34: 283–290.CrossRefGoogle Scholar
  67. 67.
    Liu J, Spéder P, Brand AH. Control of brain development and homeostasis by local and systemic insulin signalling. Diabetes Obes Metab 2014, 16 Suppl 1: 16–20.CrossRefGoogle Scholar
  68. 68.
    Gralle M. The neuronal insulin receptor in its environment. J Neurochem 2017, 140: 359–367.CrossRefGoogle Scholar
  69. 69.
    Hermann BP, Sager MA, Koscik RL, Young K, Nakamura K. Vascular, inflammatory, and metabolic factors associated with cognition in aging persons with chronic epilepsy. Epilepsia 2017, 58: e152–e156.CrossRefGoogle Scholar
  70. 70.
    Wang L, Liu G, He M, Shen L, Shen D, Lu Y, et al. Increased insulin receptor expression in anterior temporal neocortex of patients with intractable epilepsy. J Neurol Sci 2010, 296: 64–68.CrossRefGoogle Scholar
  71. 71.
    Dafoulas GE, Toulis KA, Mccorry D, Kumarendran B, Thomas GN, Willis BH, et al. Type 1 diabetes mellitus and risk of incident epilepsy: a population-based, open-cohort study. Diabetologia 2017, 60: 258–261.CrossRefGoogle Scholar
  72. 72.
    Che F, Fu Q, Li X, Gao N, Qi F, Sun Z, et al. Association of insulin receptor H1085H C > T, insulin receptor substrate 1 G972R and insulin receptor substrate 2 1057G/A polymorphisms with refractory temporal lobe epilepsy in Han Chinese. Seizure 2015, 25: 178–180.CrossRefGoogle Scholar
  73. 73.
    Wan Q, Xiong ZG, Man HY, Ackerley CA, Braunton J, Lu WY, et al. Recruitment of functional GABA(A) receptors to postsynaptic domains by insulin. Nature 1997, 388: 686–690.CrossRefGoogle Scholar
  74. 74.
    Kovacs P, Hajnal A. In vivo electrophysiological effects of insulin in the rat brain. Neuropeptides 2009, 43: 283–293.CrossRefGoogle Scholar
  75. 75.
    Figlewicz DP. Endocrine regulation of neurotransmitter transporters. Epilepsy Res 1999, 37: 203–210.CrossRefGoogle Scholar
  76. 76.
    Chiu SL, Chen CM, Cline HT. Insulin receptor signaling regulates synapse number, dendritic plasticity, and circuit function in vivo. Neuron 2008, 58: 708–719.CrossRefGoogle Scholar
  77. 77.
    Dixon-Salazar TJ, Fourgeaud L, Tyler CM, Poole JR, Park JJ, Boulanger LM. MHC class I limits hippocampal synapse density by inhibiting neuronal insulin receptor signaling. J Neurosci 2014, 34: 11844–11856.CrossRefGoogle Scholar
  78. 78.
    Levy N, Milikovsky DZ, Baranauskas G, Vinogradov E, David Y, Ketzef M, et al. Differential TGF-β signaling in glial subsets underlies IL-6-mediated epileptogenesis in mice. J Immunol 2015, 195: 1713–1722 .CrossRefGoogle Scholar
  79. 79.
    Bar-Klein G, Cacheaux LP, Kamintsky L, Prager O, Weissberg I, Schoknecht K, et al. Losartan prevents acquired epilepsy via TGF-β signaling suppression. Ann Neurol 2014, 75: 864–875.CrossRefGoogle Scholar
  80. 80.
    Nateri AS, Raivich G, Gebhardt C, Da Costa C, Naumann H, Vreugdenhil M, et al. Activation causes epilepsy by stimulating NMDA receptor activity. EMBO J 2007, 26: 4891–4901.CrossRefGoogle Scholar
  81. 81.
    Itoh T, Kaibuchi K, Masuda T, Yamamoto T, Matsuura Y, Maeda A, et al. A protein factor for ras p21-dependent activation of mitogenactivated protein (MAP) kinase through MAP kinase kinase. Proc Natl Acad Sci U S A 1993, 90: 975–979.CrossRefGoogle Scholar
  82. 82.
    Cunningham AJ, Murray CA, O’Neill LA, Lynch MA, O’Connor JJ. Interleukin-1 beta (IL-1 beta) and tumour necrosis factor (TNF) inhibit long-term potentiation in the rat dentate gyrus in vitro. Neurosci Lett 1996, 203: 17–20.CrossRefGoogle Scholar
  83. 83.
    Probert L, Akassoglou K, Pasparakis M, Kontogeorgos G, Kollias G. Spontaneous inflammatory demyelinating disease in transgenic mice showing central nervous system-specific expression of tumor necrosis factor alpha. Proc Natl Acad Sci U S A 1995, 92: 11294–11298.CrossRefGoogle Scholar
  84. 84.
    Chen L, Liu X, Wang H, Qu M. Gastrodin attenuates pentylenetetrazole-induced seizures by modulating the mitogen-activated protein kinase-associated inflammatory responses in mice. Neurosci Bull 2017, 33: 264–272.CrossRefGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS 2019

Authors and Affiliations

  • Xin Wei
    • 1
  • Xi Liu
    • 1
  • Changhong Tan
    • 1
  • Lijuan Mo
    • 1
  • Hui Wang
    • 1
  • Xi Peng
    • 1
  • Fen Deng
    • 1
  • Lifeng Chen
    • 1
    Email author
  1. 1.Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina

Personalised recommendations