Advertisement

Neuroscience Bulletin

, Volume 34, Issue 1, pp 120–142 | Cite as

Regulation of Pain and Itch by TRP Channels

  • Carlene Moore
  • Rupali Gupta
  • Sven-Eric Jordt
  • Yong ChenEmail author
  • Wolfgang B. LiedtkeEmail author
Review

Abstract

Nociception is an important physiological process that detects harmful signals and results in pain perception. In this review, we discuss important experimental evidence involving some TRP ion channels as molecular sensors of chemical, thermal, and mechanical noxious stimuli to evoke the pain and itch sensations. Among them are the TRPA1 channel, members of the vanilloid subfamily (TRPV1, TRPV3, and TRPV4), and finally members of the melastatin group (TRPM2, TRPM3, and TRPM8). Given that pain and itch are pro-survival, evolutionarily-honed protective mechanisms, care has to be exercised when developing inhibitory/modulatory compounds targeting specific pain/itch-TRPs so that physiological protective mechanisms are not disabled to a degree that stimulus-mediated injury can occur. Such events have impeded the development of safe and effective TRPV1-modulating compounds and have diverted substantial resources. A beneficial outcome can be readily accomplished via simple dosing strategies, and also by incorporating medicinal chemistry design features during compound design and synthesis. Beyond clinical use, where compounds that target more than one channel might have a place and possibly have advantageous features, highly specific and high-potency compounds will be helpful in mechanistic discovery at the structure-function level.

Keywords

TRP channels Pain Itch Nociceptors Inflammation Lipids Temperature Hyperalgesia Nerve damage Neuropathic pain Mechanotransduction Allodynia 

Notes

Acknowledgements

All the research works cited in this review were supported by the National Institutes of Health, USA (DE018549, UL1TR001117, P30AR066527, and AR48182 to WL, AR48182-S1 to WL as co-investigator; F33DE024668 and K12DE022793 to YC), the US Department of Defense (W81XWH-13-1-0299 to WL), and the Harrington Discovery Institute, Cleveland OH (to WL).

Author Contributions

All authors wrote the paper and approved the final version.

References

  1. 1.
    Dhand A, Aminoff MJ. The neurology of itch. Brain 2014, 137: 313–322.PubMedCrossRefGoogle Scholar
  2. 2.
    Nilius B, Flockerzi V (Eds.). Mammalian Transient Receptor Potential (TRP) Cation Channels. Springer-Verlag Berlin Heidelberg, 2014.Google Scholar
  3. 3.
    Julius D. TRP channels and pain. Annu Rev Cell Dev Biol 2013, 29: 355–384.PubMedCrossRefGoogle Scholar
  4. 4.
    Wu LJ, Sweet TB, Clapham DE. International Union of Basic and Clinical Pharmacology. LXXVI. Current progress in the mammalian TRP ion channel family. Pharmacol Rev 2010, 62: 381–404.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Lindy AS, Parekh PK, Zhu R, Kanju P, Chintapalli SV, Tsvilovskyy V, et al. TRPV channel-mediated calcium transients in nociceptor neurons are dispensable for avoidance behaviour. Nat Commun 2014, 5: 4734.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Owsianik G, Talavera K, Voets T, Nilius B. Permeation and selectivity of TRP channels. Annu Rev Physiol 2006, 68: 685–717.PubMedCrossRefGoogle Scholar
  7. 7.
    Owsianik G, D’Hoedt D, Voets T, Nilius B. Structure-function relationship of the TRP channel superfamily. Rev Physiol Biochem Pharmacol 2006, 156: 61–90.PubMedGoogle Scholar
  8. 8.
    Grant AD, Cottrell GS, Amadesi S, Trevisani M, Nicoletti P, Materazzi S, et al. Protease-activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice. J Physiol 2007, 578: 715–733.PubMedCrossRefGoogle Scholar
  9. 9.
    Jaquemar D, Schenker T, Trueb B. An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts. J Biol Chem 1999, 274: 7325–7333.PubMedCrossRefGoogle Scholar
  10. 10.
    Latorre R, Zaelzer C, Brauchi S. Structure-functional intimacies of transient receptor potential channels. Q Rev Biophys 2009, 42: 201–246.PubMedCrossRefGoogle Scholar
  11. 11.
    Gees M, Colsoul B, Nilius B. The role of transient receptor potential cation channels in Ca2+ signaling. Cold Spring Harb Perspect Biol 2010, 2: a003962.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Chen J, Kang D, Xu J, Lake M, Hogan JO, Sun C, et al. Species differences and molecular determinant of TRPA1 cold sensitivity. Nat Commun 2013, 4: 2501.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Karashima Y, Talavera K, Everaerts W, Janssens A, Kwan KY, Vennekens R, et al. TRPA1 acts as a cold sensor in vitro and in vivo. Proc Natl Acad Sci U S A 2009, 106: 1273–1278.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    McKemy DD. How cold is it? TRPM8 and TRPA1 in the molecular logic of cold sensation. Mol Pain 2005, 1: 16.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Moldenhauer H, Latorre R, Grandl J. The pore-domain of TRPA1 mediates the inhibitory effect of the antagonist 6-methyl-5-(2-(trifluoromethyl)phenyl)-1H-indazole. PLoS One 2014, 9: e106776.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Jabba S, Goyal R, Sosa-Pagan JO, Moldenhauer H, Wu J, Kalmeta B, et al. Directionality of temperature activation in mouse TRPA1 ion channel can be inverted by single-point mutations in ankyrin repeat six. Neuron 2014, 82: 1017–1031.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, et al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 2004, 41: 849–857.PubMedCrossRefGoogle Scholar
  18. 18.
    Caspani O, Zurborg S, Labuz D, Heppenstall PA. The contribution of TRPM8 and TRPA1 channels to cold allodynia and neuropathic pain. PLoS One 2009, 4: e7383.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Nozadze I, Tsiklauri N, Gurtskaia G, Tsagareli MG. Role of thermo TRPA1 and TRPV1 channels in heat, cold, and mechanical nociception of rats. Behav Pharmacol 2016, 27: 29–36.PubMedCrossRefGoogle Scholar
  20. 20.
    Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Hogestatt ED, et al. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 2004, 427: 260–265.PubMedCrossRefGoogle Scholar
  21. 21.
    Bautista DM, Movahed P, Hinman A, Axelsson HE, Sterner O, Hogestatt ED, et al. Pungent products from garlic activate the sensory ion channel TRPA1. Proc Natl Acad Sci U S A 2005, 102: 12248–12252.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Macpherson LJ, Geierstanger BH, Viswanath V, Bandell M, Eid SR, Hwang S, et al. The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin. Curr Biol 2005, 15: 929–934.PubMedCrossRefGoogle Scholar
  23. 23.
    Hinman A, Chuang HH, Bautista DM, Julius D. TRP channel activation by reversible covalent modification. Proc Natl Acad Sci U S A 2006, 103: 19564–19568.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Macpherson LJ, Dubin AE, Evans MJ, Marr F, Schultz PG, Cravatt BF, et al. Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 2007, 445: 541–545.PubMedCrossRefGoogle Scholar
  25. 25.
    Materazzi S, Fusi C, Benemei S, Pedretti P, Patacchini R, Nilius B, et al. TRPA1 and TRPV4 mediate paclitaxel-induced peripheral neuropathy in mice via a glutathione-sensitive mechanism. Pflugers Arch 2012, 463: 561–569.PubMedCrossRefGoogle Scholar
  26. 26.
    Bang S, Yoo S, Yang TJ, Cho H, Hwang SW. 17(R)-resolvin D1 specifically inhibits transient receptor potential ion channel vanilloid 3 leading to peripheral antinociception. Br J Pharmacol 2012, 165: 683–692.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Xu H, Delling M, Jun JC, Clapham DE. Oregano, thyme and clove–derived flavors and skin sensitizers activate specific TRP channels. Nat Neurosci 2006, 9: 628–635.PubMedCrossRefGoogle Scholar
  28. 28.
    Escalera J, von Hehn CA, Bessac BF, Sivula M, Jordt SE. TRPA1 mediates the noxious effects of natural sesquiterpene deterrents. J Biol Chem 2008, 283: 24136–24144.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Yang MQ, Ye LL, Liu XL, Qi XM, Lv JD, Wang G, et al. Gingerol activates noxious cold ion channel TRPA1 in gastrointestinal tract. Chin J Nat Med 2016, 14: 434–440.PubMedGoogle Scholar
  30. 30.
    Kobayashi K, Fukuoka T, Obata K, Yamanaka H, Dai Y, Tokunaga A, et al. Distinct expression of TRPM8, TRPA1, and TRPV1 mRNAs in rat primary afferent neurons with adelta/c-fibers and colocalization with trk receptors. J Comp Neurol 2005, 493: 596–606.PubMedCrossRefGoogle Scholar
  31. 31.
    Nassenstein C, Kwong K, Taylor-Clark T, Kollarik M, Macglashan DM, Braun A, et al. Expression and function of the ion channel TRPA1 in vagal afferent nerves innervating mouse lungs. J Physiol 2008, 586: 1595–1604.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Taylor-Clark TE, Undem BJ. Ozone activates airway nerves via the selective stimulation of TRPA1 ion channels. J Physiol 2010, 588: 423–433.PubMedCrossRefGoogle Scholar
  33. 33.
    Guimaraes MZP, Jordt SE. TRPA1: A sensory channel of many talents. In: Liedtke WB, Heller S (Eds.). TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades. Boca Raton (FL): CRC Press/Taylor & Francis, 2007.Google Scholar
  34. 34.
    Bessac BF, Jordt SE. Breathtaking TRP channels: TRPA1 and TRPV1 in airway chemosensation and reflex control. Physiology (Bethesda) 2008, 23: 360–370.Google Scholar
  35. 35.
    Bessac BF, Sivula M, von Hehn CA, Escalera J, Cohn L, Jordt SE. TRPA1 is a major oxidant sensor in murine airway sensory neurons. J Clin Invest 2008, 118: 1899–1910.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, Poblete J, et al. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 2006, 124: 1269–1282.PubMedCrossRefGoogle Scholar
  37. 37.
    Andre E, Campi B, Materazzi S, Trevisani M, Amadesi S, Massi D, et al. Cigarette smoke-induced neurogenic inflammation is mediated by alpha,beta-unsaturated aldehydes and the TRPA1 receptor in rodents. J Clin Invest 2008, 118: 2574–2582.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Kichko TI, Kobal G, Reeh PW. Cigarette smoke has sensory effects through nicotinic and TRPA1 but not TRPV1 receptors on the isolated mouse trachea and larynx. Am J Physiol Lung Cell Mol Physiol 2015, 309: L812–820.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Brone B, Peeters PJ, Marrannes R, Mercken M, Nuydens R, Meert T, et al. Tear gasses CN, CR, and CS are potent activators of the human TRPA1 receptor. Toxicol Appl Pharmacol 2008, 231: 150–156.PubMedCrossRefGoogle Scholar
  40. 40.
    Bessac BF, Sivula M, von Hehn CA, Caceres AI, Escalera J, Jordt SE. Transient receptor potential ankyrin 1 antagonists block the noxious effects of toxic industrial isocyanates and tear gases. FASEB J 2009, 23: 1102–1114.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Gu Q, Lin RL. Heavy metals zinc, cadmium, and copper stimulate pulmonary sensory neurons via direct activation of TRPA1. J Appl Physiol (1985) 2010, 108: 891–897.Google Scholar
  42. 42.
    Andersson DA, Gentry C, Moss S, Bevan S. Clioquinol and pyrithione activate TRPA1 by increasing intracellular Zn2+. Proc Natl Acad Sci U S A 2009, 106: 8374–8379.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Hu H, Bandell M, Petrus MJ, Zhu MX, Patapoutian A. Zinc activates damage-sensing TRPA1 ion channels. Nat Chem Biol 2009, 5: 183–190.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Hazari MS, Haykal-Coates N, Winsett DW, Krantz QT, King C, Costa DL, et al. TRPA1 and sympathetic activation contribute to increased risk of triggered cardiac arrhythmias in hypertensive rats exposed to diesel exhaust. Environ Health Perspect 2011, 119: 951–957.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Kurhanewicz N, McIntosh-Kastrinsky R, Tong H, Ledbetter A, Walsh L, Farraj A, et al. TRPA1 mediates changes in heart rate variability and cardiac mechanical function in mice exposed to acrolein. Toxicol Appl Pharmacol 2017, 324: 51–60.PubMedCrossRefGoogle Scholar
  46. 46.
    Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 2003, 112: 819–829.PubMedCrossRefGoogle Scholar
  47. 47.
    Knowlton WM, Bifolck-Fisher A, Bautista DM, McKemy DD. TRPM8, but not TRPA1, is required for neural and behavioral responses to acute noxious cold temperatures and cold-mimetics in vivo. Pain 2010, 150: 340–350.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    de Oliveira C, Garami A, Lehto SG, Pakai E, Tekus V, Pohoczky K, et al. Transient receptor potential channel ankyrin-1 is not a cold sensor for autonomic thermoregulation in rodents. J Neurosci 2014, 34: 4445–4452.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Touska F, Winter Z, Mueller A, Vlachova V, Larsen J, Zimmermann K. Comprehensive thermal preference phenotyping in mice using a novel automated circular gradient assay. Temperature (Austin) 2016, 3: 77–91.CrossRefGoogle Scholar
  50. 50.
    Chen J, Joshi SK, DiDomenico S, Perner RJ, Mikusa JP, Gauvin DM, et al. Selective blockade of TRPA1 channel attenuates pathological pain without altering noxious cold sensation or body temperature regulation. Pain 2011, 152: 1165–1172.PubMedCrossRefGoogle Scholar
  51. 51.
    Zappia KJ, O’Hara CL, Moehring F, Kwan KY, Stucky CL. Sensory neuron-specific deletion of TRPA1 results in mechanical cutaneous sensory deficits. eNeuro 2017, 4.Google Scholar
  52. 52.
    Yarmolinsky DA, Peng Y, Pogorzala LA, Rutlin M, Hoon MA, Zuker CS. Coding and plasticity in the mammalian thermosensory system. Neuron 2016, 92: 1079–1092.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Kwan KY, Allchorne AJ, Vollrath MA, Christensen AP, Zhang DS, Woolf CJ, et al. TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 2006, 50: 277–289.PubMedCrossRefGoogle Scholar
  54. 54.
    Babes A, Sauer SK, Moparthi L, Kichko TI, Neacsu C, Namer B, et al. Photosensitization in porphyrias and photodynamic therapy involves TRPA1 and TRPV1. J Neurosci 2016, 36: 5264–5278.PubMedCrossRefGoogle Scholar
  55. 55.
    Moparthi L, Survery S, Kreir M, Simonsen C, Kjellbom P, Hogestatt ED, et al. Human TRPA1 is intrinsically cold- and chemosensitive with and without its N-terminal ankyrin repeat domain. Proc Natl Acad Sci U S A 2014, 111: 16901–16906.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Laursen WJ, Anderson EO, Hoffstaetter LJ, Bagriantsev SN, Gracheva EO. Species-specific temperature sensitivity of TRPA1. Temperature (Austin) 2015, 2: 214–226.CrossRefGoogle Scholar
  57. 57.
    Cattaruzza F, Spreadbury I, Miranda-Morales M, Grady EF, Vanner S, Bunnett NW. Transient receptor potential ankyrin-1 has a major role in mediating visceral pain in mice. Am J Physiol Gastrointest Liver Physiol 2010, 298: G81–91.PubMedCrossRefGoogle Scholar
  58. 58.
    Vetter I, Touska F, Hess A, Hinsbey R, Sattler S, Lampert A, et al. Ciguatoxins activate specific cold pain pathways to elicit burning pain from cooling. EMBO J 2012, 31: 3795–3808.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Obata K, Katsura H, Mizushima T, Yamanaka H, Kobayashi K, Dai Y, et al. TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. J Clin Invest 2005, 115: 2393–2401.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Nassini R, Gees M, Harrison S, De Siena G, Materazzi S, Moretto N, et al. Oxaliplatin elicits mechanical and cold allodynia in rodents via TRPA1 receptor stimulation. Pain 2011, 152: 1621–1631.PubMedCrossRefGoogle Scholar
  61. 61.
    Zhao M, Isami K, Nakamura S, Shirakawa H, Nakagawa T, Kaneko S. Acute cold hypersensitivity characteristically induced by oxaliplatin is caused by the enhanced responsiveness of TRPA1 in mice. Mol Pain 2012, 8: 55.PubMedPubMedCentralGoogle Scholar
  62. 62.
    del Camino D, Murphy S, Heiry M, Barrett LB, Earley TJ, Cook CA, et al. TRPA1 contributes to cold hypersensitivity. J Neurosci 2010, 30: 15165–15174.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Miyake T, Nakamura S, Zhao M, So K, Inoue K, Numata T, et al. Cold sensitivity of TRPA1 is unveiled by the prolyl hydroxylation blockade-induced sensitization to ROS. Nat Commun 2016, 7: 12840.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Wei H, Hamalainen MM, Saarnilehto M, Koivisto A, Pertovaara A. Attenuation of mechanical hypersensitivity by an antagonist of the TRPA1 ion channel in diabetic animals. Anesthesiology 2009, 111: 147–154.PubMedCrossRefGoogle Scholar
  65. 65.
    Koivisto A, Hukkanen M, Saarnilehto M, Chapman H, Kuokkanen K, Wei H, et al. Inhibiting TRPA1 ion channel reduces loss of cutaneous nerve fiber function in diabetic animals: sustained activation of the TRPA1 channel contributes to the pathogenesis of peripheral diabetic neuropathy. Pharmacol Res 2012, 65: 149–158.PubMedCrossRefGoogle Scholar
  66. 66.
    Ohkawara S, Tanaka-Kagawa T, Furukawa Y, Jinno H. Methylglyoxal activates the human transient receptor potential ankyrin 1 channel. J Toxicol Sci 2012, 37: 831–835.PubMedCrossRefGoogle Scholar
  67. 67.
    Andersson DA, Gentry C, Light E, Vastani N, Vallortigara J, Bierhaus A, et al. Methylglyoxal evokes pain by stimulating TRPA1. PLoS One 2013, 8: e77986.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Petrus M, Peier AM, Bandell M, Hwang SW, Huynh T, Olney N, et al. A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition. Mol Pain 2007, 3: 40.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    de la Roche J, Eberhardt MJ, Klinger AB, Stanslowsky N, Wegner F, Koppert W, et al. The molecular basis for species-specific activation of human TRPA1 protein by protons involves poorly conserved residues within transmembrane domains 5 and 6. J Biol Chem 2013, 288: 20280–20292.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Schwarz MG, Namer B, Reeh PW, Fischer MJM. TRPA1 and TRPV1 antagonists do not inhibit human acidosis-induced pain. J Pain 2017, 18: 526–534.PubMedCrossRefGoogle Scholar
  71. 71.
    Trevisani M, Siemens J, Materazzi S, Bautista DM, Nassini R, Campi B, et al. 4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. Proc Natl Acad Sci U S A 2007, 104: 13519–13524.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Andersson DA, Gentry C, Moss S, Bevan S. Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J Neurosci 2008, 28: 2485–2494.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Nozawa K, Kawabata-Shoda E, Doihara H, Kojima R, Okada H, Mochizuki S, et al. TRPA1 regulates gastrointestinal motility through serotonin release from enterochromaffin cells. Proc Natl Acad Sci U S A 2009, 106: 3408–3413.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Bellono NW, Bayrer JR, Leitch DB, Castro J, Zhang C, O’Donnell TA, et al. Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell 2017, 170: 185-198.e116.Google Scholar
  75. 75.
    Liu B, Escalera J, Balakrishna S, Fan L, Caceres AI, Robinson E, et al. TRPA1 controls inflammation and pruritogen responses in allergic contact dermatitis. FASEB J 2013, 27: 3549–3563.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Trankner D, Hahne N, Sugino K, Hoon MA, Zuker C. Population of sensory neurons essential for asthmatic hyperreactivity of inflamed airways. Proc Natl Acad Sci U S A 2014, 111: 11515–11520.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Yanaga A, Goto H, Nakagawa T, Hikiami H, Shibahara N, Shimada Y. Cinnamaldehyde induces endothelium-dependent and -independent vasorelaxant action on isolated rat aorta. Biol Pharm Bull 2006, 29: 2415–2418.PubMedCrossRefGoogle Scholar
  78. 78.
    Nassini R, Materazzi S, Vriens J, Prenen J, Benemei S, De Siena G, et al. The ‘headache tree’ via umbellulone and TRPA1 activates the trigeminovascular system. Brain 2012, 135: 376–390.PubMedCrossRefGoogle Scholar
  79. 79.
    Edelmayer RM, Le LN, Yan J, Wei X, Nassini R, Materazzi S, et al. Activation of TRPA1 on dural afferents: a potential mechanism of headache pain. Pain 2012, 153: 1949–1958.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Kunkler PE, Ballard CJ, Pellman JJ, Zhang L, Oxford GS, Hurley JH. Intraganglionic signaling as a novel nasal-meningeal pathway for TRPA1-dependent trigeminovascular activation by inhaled environmental irritants. PLoS One 2014, 9: e103086.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Kunkler PE, Zhang L, Pellman JJ, Oxford GS, Hurley JH. Sensitization of the trigeminovascular system following environmental irritant exposure. Cephalalgia 2015, 35: 1192–1201.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Kunkler PE, Ballard CJ, Oxford GS, Hurley JH. TRPA1 receptors mediate environmental irritant-induced meningeal vasodilatation. Pain 2011, 152: 38–44.PubMedCrossRefGoogle Scholar
  83. 83.
    Benemei S, Fusi C, Trevisan G, Geppetti P. The TRPA1 channel in migraine mechanism and treatment. Br J Pharmacol 2014, 171: 2552–2567.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Benemei S, De Logu F, Li Puma S, Marone IM, Coppi E, Ugolini F, et al. The anti-migraine component of butterbur extracts, isopetasin, desensitizes peptidergic nociceptors by acting on TRPA1 cation channel. Br J Pharmacol 2017.Google Scholar
  85. 85.
    Materazzi S, Benemei S, Fusi C, Gualdani R, De Siena G, Vastani N, et al. Parthenolide inhibits nociception and neurogenic vasodilatation in the trigeminovascular system by targeting the TRPA1 channel. Pain 2013, 154: 2750–2758.PubMedCrossRefGoogle Scholar
  86. 86.
    Nassini R, Materazzi S, Benemei S, Geppetti P. The TRPA1 channel in inflammatory and neuropathic pain and migraine. Rev Physiol Biochem Pharmacol 2014, 167: 1–43.PubMedCrossRefGoogle Scholar
  87. 87.
    Caceres AI, Brackmann M, Elia MD, Bessac BF, del Camino D, D’Amours M, et al. A sensory neuronal ion channel essential for airway inflammation and hyperreactivity in asthma. Proc Natl Acad Sci U S A 2009, 106: 9099–9104.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Hox V, Vanoirbeek JA, Alpizar YA, Voedisch S, Callebaut I, Bobic S, et al. Crucial role of transient receptor potential ankyrin 1 and mast cells in induction of nonallergic airway hyperreactivity in mice. Am J Respir Crit Care Med 2013, 187: 486–493.PubMedCrossRefGoogle Scholar
  89. 89.
    Trevisan G, Hoffmeister C, Rossato MF, Oliveira SM, Silva MA, Ineu RP, et al. Transient receptor potential ankyrin 1 receptor stimulation by hydrogen peroxide is critical to trigger pain during monosodium urate-induced inflammation in rodents. Arthritis Rheum 2013, 65: 2984–2995.PubMedCrossRefGoogle Scholar
  90. 90.
    Horvath A, Tekus V, Boros M, Pozsgai G, Botz B, Borbely E, et al. Transient receptor potential ankyrin 1 (TRPA1) receptor is involved in chronic arthritis: in vivo study using TRPA1-deficient mice. Arthritis Res Ther 2016, 18: 6.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Moilanen LJ, Hamalainen M, Lehtimaki L, Nieminen RM, Moilanen E. Urate crystal induced inflammation and joint pain are reduced in transient receptor potential ankyrin 1 deficient mice–potential role for transient receptor potential ankyrin 1 in gout. PLoS One 2015, 10: e0117770.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Liu Z, Hu Y, Yu X, Xi J, Fan X, Tse CM, et al. Allergen challenge sensitizes TRPA1 in vagal sensory neurons and afferent C-fiber subtypes in guinea pig esophagus. Am J Physiol Gastrointest Liver Physiol 2015, 308: G482–488.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Terada Y, Fujimura M, Nishimura S, Tsubota M, Sekiguchi F, Nishikawa H, et al. Contribution of TRPA1 as a downstream signal of proteinase-activated receptor-2 to pancreatic pain. J Pharmacol Sci 2013, 123: 284–287.PubMedCrossRefGoogle Scholar
  94. 94.
    Cattaruzza F, Johnson C, Leggit A, Grady E, Schenk AK, Cevikbas F, et al. Transient receptor potential ankyrin 1 mediates chronic pancreatitis pain in mice. Am J Physiol Gastrointest Liver Physiol 2013, 304: G1002–1012.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Vermeulen W, De Man JG, De Schepper HU, Bult H, Moreels TG, Pelckmans PA, et al. Role of TRPV1 and TRPA1 in visceral hypersensitivity to colorectal distension during experimental colitis in rats. Eur J Pharmacol 2013, 698: 404–412.PubMedCrossRefGoogle Scholar
  96. 96.
    Brozmanova M, Ru F, Surdenikova L, Mazurova L, Taylor-Clark T, Kollarik M. Preferential activation of the vagal nodose nociceptive subtype by TRPA1 agonists in the guinea pig esophagus. Neurogastroenterol Motil 2011, 23: e437–445.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Schwartz ES, Christianson JA, Chen X, La JH, Davis BM, Albers KM, et al. Synergistic role of TRPV1 and TRPA1 in pancreatic pain and inflammation. Gastroenterology 2011, 140: 1283-1291.e1281–1282.Google Scholar
  98. 98.
    Mitrovic M, Shahbazian A, Bock E, Pabst MA, Holzer P. Chemo-nociceptive signalling from the colon is enhanced by mild colitis and blocked by inhibition of transient receptor potential ankyrin 1 channels. Br J Pharmacol 2010, 160: 1430–1442.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Kondo T, Obata K, Miyoshi K, Sakurai J, Tanaka J, Miwa H, et al. Transient receptor potential A1 mediates gastric distention-induced visceral pain in rats. Gut 2009, 58: 1342–1352.PubMedCrossRefGoogle Scholar
  100. 100.
    Yu S, Gao G, Peterson BZ, Ouyang A. TRPA1 in mast cell activation-induced long-lasting mechanical hypersensitivity of vagal afferent C-fibers in guinea pig esophagus. Am J Physiol Gastrointest Liver Physiol 2009, 297: G34–42.PubMedCrossRefGoogle Scholar
  101. 101.
    Yu S, Ouyang A. TRPA1 in bradykinin-induced mechanical hypersensitivity of vagal C fibers in guinea pig esophagus. Am J Physiol Gastrointest Liver Physiol 2009, 296: G255–265.PubMedCrossRefGoogle Scholar
  102. 102.
    Yang J, Li Y, Zuo X, Zhen Y, Yu Y, Gao L. Transient receptor potential ankyrin-1 participates in visceral hyperalgesia following experimental colitis. Neurosci Lett 2008, 440: 237–241.PubMedCrossRefGoogle Scholar
  103. 103.
    Kimball ES, Prouty SP, Pavlick KP, Wallace NH, Schneider CR, Hornby PJ. Stimulation of neuronal receptors, neuropeptides and cytokines during experimental oil of mustard colitis. Neurogastroenterol Motil 2007, 19: 390–400.PubMedCrossRefGoogle Scholar
  104. 104.
    Kistner K, Siklosi N, Babes A, Khalil M, Selescu T, Zimmermann K, et al. Systemic desensitization through TRPA1 channels by capsazepine and mustard oil - a novel strategy against inflammation and pain. Sci Rep 2016, 6: 28621.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Kremeyer B, Lopera F, Cox JJ, Momin A, Rugiero F, Marsh S, et al. A gain-of-function mutation in TRPA1 causes familial episodic pain syndrome. Neuron 2010, 66: 671–680.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Zima V, Witschas K, Hynkova A, Zimova L, Barvik I, Vlachova V. Structural modeling and patch-clamp analysis of pain-related mutation TRPA1-N855S reveal inter-subunit salt bridges stabilizing the channel open state. Neuropharmacology 2015, 93: 294–307.PubMedCrossRefGoogle Scholar
  107. 107.
    Gupta R, Saito S, Mori Y, Itoh SG, Okumura H, Tominaga M. Structural basis of TRPA1 inhibition by HC-030031 utilizing species-specific differences. Sci Rep 2016, 6: 37460.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Gallo V, Dijk FN, Holloway JW, Ring SM, Koppelman GH, Postma DS, et al. TRPA1 gene polymorphisms and childhood asthma. Pediatr Allergy Immunol 2017, 28: 191–198.PubMedCrossRefGoogle Scholar
  109. 109.
    Bell JT, Loomis AK, Butcher LM, Gao F, Zhang B, Hyde CL, et al. Differential methylation of the TRPA1 promoter in pain sensitivity. Nat Commun 2014, 5: 2978.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Oehler B, Kistner K, Martin C, Schiller J, Mayer R, Mohammadi M, et al. Inflammatory pain control by blocking oxidized phospholipid-mediated TRP channel activation. Sci Rep 2017, 7: 5447.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Pereira I, Mendes SJ, Pereira DM, Muniz TF, Colares VL, Monteiro CR, et al. Transient receptor potential ankyrin 1 channel expression on peripheral blood leukocytes from rheumatoid arthritic patients and correlation with pain and disability. Front Pharmacol 2017, 8: 53.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Fernandes ES, Russell FA, Alawi KM, Sand C, Liang L, Salamon R, et al. Environmental cold exposure increases blood flow and affects pain sensitivity in the knee joints of CFA-induced arthritic mice in a TRPA1-dependent manner. Arthritis Res Ther 2016, 18: 7.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Garrison SR, Stucky CL. Contribution of transient receptor potential ankyrin 1 to chronic pain in aged mice with complete Freund’s adjuvant-induced arthritis. Arthritis Rheumatol 2014, 66: 2380–2390.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Bautista DM, Pellegrino M, Tsunozaki M. TRPA1: A gatekeeper for inflammation. Annu Rev Physiol 2013, 75: 181–200.PubMedCrossRefGoogle Scholar
  115. 115.
    Brain SD. TRPV1 and TRPA1 channels in inflammatory pain: elucidating mechanisms. Ann N Y Acad Sci 2011, 1245: 36–37.PubMedCrossRefGoogle Scholar
  116. 116.
    Fernandes ES, Russell FA, Spina D, McDougall JJ, Graepel R, Gentry C, et al. A distinct role for transient receptor potential ankyrin 1, in addition to transient receptor potential vanilloid 1, in tumor necrosis factor alpha-induced inflammatory hyperalgesia and Freund’s complete adjuvant-induced monarthritis. Arthritis Rheum 2011, 63: 819–829.PubMedCrossRefGoogle Scholar
  117. 117.
    Kochukov MY, McNearney TA, Fu Y, Westlund KN. Thermosensitive TRP ion channels mediate cytosolic calcium response in human synoviocytes. Am J Physiol Cell Physiol 2006, 291: C424–432.PubMedCrossRefGoogle Scholar
  118. 118.
    Zappia KJ, Garrison SR, Hillery CA, Stucky CL. Cold hypersensitivity increases with age in mice with sickle cell disease. Pain 2014, 155: 2476–2485.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Hillery CA, Kerstein PC, Vilceanu D, Barabas ME, Retherford D, Brandow AM, et al. Transient receptor potential vanilloid 1 mediates pain in mice with severe sickle cell disease. Blood 2011, 118: 3376–3383.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Kittaka H, Uchida K, Fukuta N, Tominaga M. Lysophosphatidic acid-induced itch is mediated by signalling of LPA5 receptor, phospholipase D and TRPA1/TRPV1. J Physiol 2017, 595: 2681–2698.PubMedCrossRefGoogle Scholar
  121. 121.
    Cevikbas F, Wang X, Akiyama T, Kempkes C, Savinko T, Antal A, et al. A sensory neuron-expressed IL-31 receptor mediates T helper cell-dependent itch: Involvement of TRPV1 and TRPA1. J Allergy Clin Immunol 2014, 133: 448–460.PubMedCrossRefGoogle Scholar
  122. 122.
    Wilson SR, Gerhold KA, Bifolck-Fisher A, Liu Q, Patel KN, Dong X, et al. TRPA1 is required for histamine-independent, Mas-related G protein-coupled receptor-mediated itch. Nat Neurosci 2011, 14: 595–602.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Liu B, Tai Y, Achanta S, Kaelberer MM, Caceres AI, Shao X, et al. IL-33/ST2 signaling excites sensory neurons and mediates itch response in a mouse model of poison ivy contact allergy. Proc Natl Acad Sci U S A 2016, 113: E7572–E7579.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Wilson SR, The L, Batia LM, Beattie K, Katibah GE, McClain SP, et al. The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell 2013, 155: 285–295.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Liu T, Ji RR. Oxidative stress induces itch via activation of transient receptor potential subtype ankyrin 1 in mice. Neurosci Bull 2012, 28: 145–154.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Liang J, Bi H, Ji W. Involvement of TRPA1 in ET-1-induced pain-like behavior in mice. Neuroreport 2010, 21: 201–205.PubMedCrossRefGoogle Scholar
  127. 127.
    Liang J, Ji Q, Ji W. Role of transient receptor potential ankyrin subfamily member 1 in pruritus induced by endothelin-1. Neurosci Lett 2011, 492: 175–178.PubMedCrossRefGoogle Scholar
  128. 128.
    Kido-Nakahara M, Buddenkotte J, Kempkes C, Ikoma A, Cevikbas F, Akiyama T, et al. Neural peptidase endothelin-converting enzyme 1 regulates endothelin 1-induced pruritus. J Clin Invest 2014, 124: 2683–2695.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Chen Y, Williams SH, McNulty AL, Hong JH, Lee SH, Rothfusz NE, et al. Temporomandibular joint pain: a critical role for Trpv4 in the trigeminal ganglion. Pain 2013, 154: 1295–1304.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Bressan E, Touska F, Vetter I, Kistner K, Kichko TI, Teixeira NB, et al. Crotalphine desensitizes TRPA1 ion channels to alleviate inflammatory hyperalgesia. Pain 2016, 157: 2504–2516.PubMedCrossRefGoogle Scholar
  131. 131.
    Chen Y, Fang Q, Wang Z, Zhang JY, MacLeod AS, Hall RP, et al. Transient receptor potential vanilloid 4 ion channel functions as a pruriceptor in epidermal keratinocytes to evoke histaminergic itch. J Biol Chem 2016, 291: 10252–10262.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Morita T, McClain SP, Batia LM, Pellegrino M, Wilson SR, Kienzler MA, et al. HTR7 mediates serotonergic acute and chronic itch. Neuron 2015, 87: 124–138.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Alemi F, Kwon E, Poole DP, Lieu T, Lyo V, Cattaruzza F, et al. The TGR5 receptor mediates bile acid-induced itch and analgesia. J Clin Invest 2013, 123: 1513–1530.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Zhao P, Lieu T, Barlow N, Metcalf M, Veldhuis NA, Jensen DD, et al. Cathepsin S causes inflammatory pain via biased agonism of PAR2 and TRPV4. J Biol Chem 2014, 289: 27215–27234.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Chen L, Liu C, Liu L. Osmolality-induced tuning of action potentials in trigeminal ganglion neurons. Neurosci Lett 2009, 452: 79–83.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Wilson SR, Nelson AM, Batia L, Morita T, Estandian D, Owens DM, et al. The ion channel TRPA1 is required for chronic itch. J Neurosci 2013, 33: 9283–9294.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Oh MH, Oh SY, Lu J, Lou H, Myers AC, Zhu Z, et al. TRPA1-dependent pruritus in IL-13-induced chronic atopic dermatitis. J Immunol 2013, 191: 5371–5382.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Andrade EL, Meotti FC, Calixto JB. TRPA1 antagonists as potential analgesic drugs. Pharmacol Ther 2012, 133: 189–204.PubMedCrossRefGoogle Scholar
  139. 139.
    Baraldi PG, Romagnoli R, Saponaro G, Aghazadeh Tabrizi M, Baraldi S, Pedretti P, et al. 7-Substituted-pyrrolo[3,2-d]pyrimidine-2,4-dione derivatives as antagonists of the transient receptor potential ankyrin 1 (TRPA1) channel: a promising approach for treating pain and inflammation. Bioorg Med Chem 2012, 20: 1690–1698.PubMedCrossRefGoogle Scholar
  140. 140.
    Birkholz TR, Beane WS. The planarian TRPA1 homolog mediates extraocular behavioral responses to near-ultraviolet light. J Exp Biol 2017, 220: 2616–2625.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Chaudhuri J, Bose N, Gong J, Hall D, Rifkind A, Bhaumik D, et al. A Caenorhabditis elegans model elucidates a conserved role for TRPA1-Nrf signaling in reactive alpha-dicarbonyl detoxification. Curr Biol 2016, 26: 3014–3025.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Zhang X. Targeting TRP ion channels for itch relief. Naunyn Schmiedebergs Arch Pharmacol 2015, 388: 389–399.PubMedCrossRefGoogle Scholar
  143. 143.
    Xiao R, Zhang B, Dong Y, Gong J, Xu T, Liu J, et al. A genetic program promotes C. elegans longevity at cold temperatures via a thermosensitive TRP channel. Cell 2013, 152: 806–817.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Garrity PA. Neuroscience: Feel the light. Nature 2010, 468: 900–901.PubMedCrossRefGoogle Scholar
  145. 145.
    Yin J, Kuebler WM. Mechanotransduction by TRP channels: general concepts and specific role in the vasculature. Cell Biochem Biophys 2010, 56: 1–18.PubMedCrossRefGoogle Scholar
  146. 146.
    Prober DA, Zimmerman S, Myers BR, McDermott BM, Jr., Kim SH, Caron S, et al. Zebrafish TRPA1 channels are required for chemosensation but not for thermosensation or mechanosensory hair cell function. J Neurosci 2008, 28: 10102–10110.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Kindt KS, Viswanath V, Macpherson L, Quast K, Hu H, Patapoutian A, et al. Caenorhabditis elegans TRPA-1 functions in mechanosensation. Nat Neurosci 2007, 10: 568–577.PubMedCrossRefGoogle Scholar
  148. 148.
    Montell C. The TRP superfamily of cation channels. Sci STKE 2005, 2005: re3.Google Scholar
  149. 149.
    Viswanath V, Story GM, Peier AM, Petrus MJ, Lee VM, Hwang SW, et al. Opposite thermosensor in fruitfly and mouse. Nature 2003, 423: 822–823.PubMedCrossRefGoogle Scholar
  150. 150.
    Lee JE, Kim Y, Kim KH, Lee DY, Lee Y. Contribution of Drosophila TRPA1 to metabolism. PLoS One 2016, 11: e0152935.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Guntur AR, Gu P, Takle K, Chen J, Xiang Y, Yang CH. Drosophila TRPA1 isoforms detect UV light via photochemical production of H2O2. Proc Natl Acad Sci U S A 2015, 112: E5753–5761.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Braun AP. Structural remodeling of the N-terminus tunes TRPA1 channel activation and regulates behavioral responses in Drosophila. Channels (Austin) 2012, 6: 50–51.CrossRefGoogle Scholar
  153. 153.
    Neely GG, Keene AC, Duchek P, Chang EC, Wang QP, Aksoy YA, et al. TrpA1 regulates thermal nociception in Drosophila. PLoS One 2011, 6: e24343.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Kwon Y, Kim SH, Ronderos DS, Lee Y, Akitake B, Woodward OM, et al. Drosophila TRPA1 channel is required to avoid the naturally occurring insect repellent citronellal. Curr Biol 2010, 20: 1672–1678.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Kim SH, Lee Y, Akitake B, Woodward OM, Guggino WB, Montell C. Drosophila TRPA1 channel mediates chemical avoidance in gustatory receptor neurons. Proc Natl Acad Sci U S A 2010, 107: 8440–8445.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Kang K, Pulver SR, Panzano VC, Chang EC, Griffith LC, Theobald DL, et al. Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception. Nature 2010, 464: 597–600.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Rosenzweig M, Brennan KM, Tayler TD, Phelps PO, Patapoutian A, Garrity PA. The Drosophila ortholog of vertebrate TRPA1 regulates thermotaxis. Genes Dev 2005, 19: 419–424.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, Schmitz C, et al. ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 2001, 411: 595–599.PubMedCrossRefGoogle Scholar
  159. 159.
    Koh WU, Choi SS, Kim JH, Yoon HJ, Ahn HS, Lee SK, et al. The preventive effect of resiniferatoxin on the development of cold hypersensitivity induced by spinal nerve ligation: involvement of TRPM8. BMC Neurosci 2016, 17: 38.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Liedtke WB. Deconstructing mammalian thermoregulation. Proc Natl Acad Sci U S A 2017, 114: 1765–1767.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Kraft R, Grimm C, Grosse K, Hoffmann A, Sauerbruch S, Kettenmann H, et al. Hydrogen peroxide and ADP-ribose induce TRPM2-mediated calcium influx and cation currents in microglia. Am J Physiol Cell Physiol 2004, 286: C129–137.PubMedCrossRefGoogle Scholar
  162. 162.
    Yamamoto S, Shimizu S, Kiyonaka S, Takahashi N, Wajima T, Hara Y, et al. TRPM2-mediated Ca2+influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration. Nat Med 2008, 14: 738–747.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Matsumoto K, Takagi K, Kato A, Ishibashi T, Mori Y, Tashima K, et al. Role of transient receptor potential melastatin 2 (TRPM2) channels in visceral nociception and hypersensitivity. Exp Neurol 2016, 285: 41–50.PubMedCrossRefGoogle Scholar
  164. 164.
    Haraguchi K, Kawamoto A, Isami K, Maeda S, Kusano A, Asakura K, et al. TRPM2 contributes to inflammatory and neuropathic pain through the aggravation of pronociceptive inflammatory responses in mice. J Neurosci 2012, 32: 3931–3941.PubMedCrossRefGoogle Scholar
  165. 165.
    Chung MK, Asgar J, Lee J, Shim MS, Dumler C, Ro JY. The role of TRPM2 in hydrogen peroxide-induced expression of inflammatory cytokine and chemokine in rat trigeminal ganglia. Neuroscience 2015, 297: 160–169.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Akiyama T, Ivanov M, Nagamine M, Davoodi A, Carstens MI, Ikoma A, et al. Involvement of TRPV4 in serotonin-evoked scratching. J Invest Dermatol 2016, 136: 154–160.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Wagner TF, Loch S, Lambert S, Straub I, Mannebach S, Mathar I, et al. Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic beta cells. Nat Cell Biol 2008, 10: 1421–1430.PubMedCrossRefGoogle Scholar
  168. 168.
    Vriens J, Owsianik G, Hofmann T, Philipp SE, Stab J, Chen X, et al. TRPM3 is a nociceptor channel involved in the detection of noxious heat. Neuron 2011, 70: 482–494.PubMedCrossRefGoogle Scholar
  169. 169.
    Held K, Kichko T, De Clercq K, Klaassen H, Van Bree R, Vanherck JC, et al. Activation of TRPM3 by a potent synthetic ligand reveals a role in peptide release. Proc Natl Acad Sci U S A 2015, 112: E1363–1372.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Krugel U, Straub I, Beckmann H, Schaefer M. Primidone inhibits TRPM3 and attenuates thermal nociception in vivo. Pain 2017, 158: 856–867.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    McKemy DD, Neuhausser WM, Julius D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 2002, 416: 52–58.PubMedCrossRefGoogle Scholar
  172. 172.
    Peier AM. A TRP channel that senses cold stimuli and menthol. Cell 2002, 108: 705–715.PubMedCrossRefGoogle Scholar
  173. 173.
    Knowlton WM, Palkar R, Lippoldt EK, McCoy DD, Baluch F, Chen J, et al. A sensory-labeled line for cold: TRPM8-expressing sensory neurons define the cellular basis for cold, cold pain, and cooling-mediated analgesia. J Neurosci 2013, 33: 2837–2848.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Bautista DM, Siemens J, Glazer JM, Tsuruda PR, Basbaum AI, Stucky CL, et al. The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 2007, 448: 204–208.PubMedCrossRefGoogle Scholar
  175. 175.
    Dhaka A, Murray AN, Mathur J, Earley TJ, Petrus MJ, Patapoutian A. TRPM8 is required for cold sensation in mice. Neuron 2007, 54: 371–378.PubMedCrossRefGoogle Scholar
  176. 176.
    Colburn RW, Lubin ML, Stone DJ, Jr., Wang Y, Lawrence D, D’Andrea MR, et al. Attenuated cold sensitivity in TRPM8 null mice. Neuron 2007, 54: 379–386.PubMedCrossRefGoogle Scholar
  177. 177.
    Xing H, Chen M, Ling J, Tan W, Gu JG. TRPM8 mechanism of cold allodynia after chronic nerve injury. J Neurosci 2007, 27: 13680–13690.PubMedCrossRefGoogle Scholar
  178. 178.
    Liu B, Fan L, Balakrishna S, Sui A, Morris JB, Jordt SE. TRPM8 is the principal mediator of menthol-induced analgesia of acute and inflammatory pain. Pain 2013, 154: 2169–2177.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Mueller-Tribbensee SM, Karna M, Khalil M, Neurath MF, Reeh PW, Engel MA. Differential contribution of TRPA1, TRPV4 and TRPM8 to colonic nociception in mice. PLoS One 2015, 10: e0128242.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Caceres AI, Liu B, Jabba SV, Achanta S, Morris JB, Jordt SE. Transient Receptor Potential Cation Channel Subfamily M Member 8 channels mediate the anti-inflammatory effects of eucalyptol. Br J Pharmacol 2017, 174: 867–879.PubMedCrossRefGoogle Scholar
  181. 181.
    Allchorne AJ, Broom DC, Woolf CJ. Detection of cold pain, cold allodynia and cold hyperalgesia in freely behaving rats. Mol Pain 2005, 1: 36.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Lippoldt EK, Elmes RR, McCoy DD, Knowlton WM, McKemy DD. Artemin, a glial cell line-derived neurotrophic factor family member, induces TRPM8-dependent cold pain. J Neurosci 2013, 33: 12543–12552.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Lippoldt EK, Ongun S, Kusaka GK, McKemy DD. Inflammatory and neuropathic cold allodynia are selectively mediated by the neurotrophic factor receptor GFRalpha3. Proc Natl Acad Sci U S A 2016, 113: 4506–4511.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Rohacs T, Lopes CM, Michailidis I, Logothetis DE. PI(4,5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat Neurosci 2005, 8: 626–634.PubMedCrossRefGoogle Scholar
  185. 185.
    Premkumar LS, Raisinghani M, Pingle SC, Long C, Pimentel F. Downregulation of transient receptor potential melastatin 8 by protein kinase C-mediated dephosphorylation. J Neurosci 2005, 25: 11322–11329.PubMedCrossRefGoogle Scholar
  186. 186.
    Andersson DA, Nash M, Bevan S. Modulation of the cold-activated channel TRPM8 by lysophospholipids and polyunsaturated fatty acids. J Neurosci 2007, 27: 3347–3355.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Gentry C, Stoakley N, Andersson DA, Bevan S. The roles of iPLA2, TRPM8 and TRPA1 in chemically induced cold hypersensitivity. Mol Pain 2010, 6: 4.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Knowlton WM, Daniels RL, Palkar R, McCoy DD, McKemy DD. Pharmacological blockade of TRPM8 ion channels alters cold and cold pain responses in mice. PLoS One 2011, 6: e25894.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Lehto SG, Weyer AD, Zhang M, Youngblood BD, Wang J, Wang W, et al. AMG2850, a potent and selective TRPM8 antagonist, is not effective in rat models of inflammatory mechanical hypersensitivity and neuropathic tactile allodynia. Naunyn Schmiedebergs Arch Pharmacol 2015, 388: 465–476.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Ramachandran R, Hyun E, Zhao L, Lapointe TK, Chapman K, Hirota CL, et al. TRPM8 activation attenuates inflammatory responses in mouse models of colitis. Proc Natl Acad Sci U S A 2013, 110: 7476–7481.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Willis DN, Liu B, Ha MA, Jordt SE, Morris JB. Menthol attenuates respiratory irritation responses to multiple cigarette smoke irritants. FASEB J 2011, 25: 4434–4444.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Frolich M, Enk A, Diepgen TL, Weisshaar E. Successful treatment of therapy-resistant pruritus in lichen amyloidosis with menthol. Acta Derm Venereol 2009, 89: 524–526.PubMedCrossRefGoogle Scholar
  193. 193.
    Haught JM, Jukic DM, English JC, 3rd. Hydroxyethyl starch-induced pruritus relieved by a combination of menthol and camphor. J Am Acad Dermatol 2008, 59: 151–153.PubMedCrossRefGoogle Scholar
  194. 194.
    Kardon AP, Polgar E, Hachisuka J, Snyder LM, Cameron D, Savage S, et al. Dynorphin acts as a neuromodulator to inhibit itch in the dorsal horn of the spinal cord. Neuron 2014, 82: 573–586.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Frias B, Merighi A. Capsaicin, nociception and pain. Molecules 2016, 21.Google Scholar
  196. 196.
    Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 1997, 389: 816–824.PubMedCrossRefGoogle Scholar
  197. 197.
    Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 2000, 288: 306–313.PubMedCrossRefGoogle Scholar
  198. 198.
    Cavanaugh DJ, Lee H, Lo L, Shields SD, Zylka MJ, Basbaum AI, et al. Distinct subsets of unmyelinated primary sensory fibers mediate behavioral responses to noxious thermal and mechanical stimuli. Proc Natl Acad Sci U S A 2009, 106: 9075–9080.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Huang D, Li S, Dhaka A, Story GM, Cao YQ. Expression of the transient receptor potential channels TRPV1, TRPA1 and TRPM8 in mouse trigeminal primary afferent neurons innervating the dura. Mol Pain 2012, 8: 66.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Hwang SJ, Oh JM, Valtschanoff JG. Expression of the vanilloid receptor TRPV1 in rat dorsal root ganglion neurons supports different roles of the receptor in visceral and cutaneous afferents. Brain Res 2005, 1047: 261–266.PubMedCrossRefGoogle Scholar
  201. 201.
    Li Y, Cai J, Han Y, Xiao X, Meng XL, Su L, et al. Enhanced function of TRPV1 via up-regulation by insulin-like growth factor-1 in a rat model of bone cancer pain. Eur J Pain 2014, 18: 774–784.PubMedCrossRefGoogle Scholar
  202. 202.
    Zhao Q, Wang W, Wang R, Cheng Y. TRPV1 and neuropeptide receptor immunoreactivity and expression in the rat lung and brainstem after lung ischemia-reperfusion injury. J Surg Res 2016, 203: 183–192.PubMedCrossRefGoogle Scholar
  203. 203.
    Dinh QT, Groneberg DA, Peiser C, Mingomataj E, Joachim RA, Witt C, et al. Substance P expression in TRPV1 and trkA-positive dorsal root ganglion neurons innervating the mouse lung. Respir Physiol Neurobiol 2004, 144: 15–24.PubMedCrossRefGoogle Scholar
  204. 204.
    Vass Z, Dai CF, Steyger PS, Jancso G, Trune DR, Nuttall AL. Co-localization of the vanilloid capsaicin receptor and substance P in sensory nerve fibers innervating cochlear and vertebro-basilar arteries. Neuroscience 2004, 124: 919–927.PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    De Logu F, Patacchini R, Fontana G, Geppetti P. TRP functions in the broncho-pulmonary system. Semin Immunopathol 2016, 38: 321–329.PubMedCrossRefGoogle Scholar
  206. 206.
    Lehmann R, Schobel N, Hatt H, van Thriel C. The involvement of TRP channels in sensory irritation: a mechanistic approach toward a better understanding of the biological effects of local irritants. Arch Toxicol 2016, 90: 1399–1413.PubMedCrossRefGoogle Scholar
  207. 207.
    Spicarova D, Palecek J. The role of the TRPV1 endogenous agonist N-Oleoyldopamine in modulation of nociceptive signaling at the spinal cord level. J Neurophysiol 2009, 102: 234–243.PubMedCrossRefGoogle Scholar
  208. 208.
    Spicarova D, Palecek J. The role of spinal cord vanilloid (TRPV1) receptors in pain modulation. Physiol Res 2008, 57 Suppl 3: S69–77.PubMedGoogle Scholar
  209. 209.
    Cavanaugh DJ, Chesler AT, Braz JM, Shah NM, Julius D, Basbaum AI. Restriction of transient receptor potential vanilloid-1 to the peptidergic subset of primary afferent neurons follows its developmental downregulation in nonpeptidergic neurons. J Neurosci 2011, 31: 10119–10127.PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Cavanaugh DJ, Chesler AT, Jackson AC, Sigal YM, Yamanaka H, Grant R, et al. Trpv1 reporter mice reveal highly restricted brain distribution and functional expression in arteriolar smooth muscle cells. J Neurosci 2011, 31: 5067–5077.PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Zaelzer C, Hua P, Prager-Khoutorsky M, Ciura S, Voisin DL, Liedtke W, et al. DeltaN-TRPV1: A molecular co-detector of body temperature and osmotic stress. Cell Rep 2015, 13: 23–30.PubMedCrossRefGoogle Scholar
  212. 212.
    Davis JB, Gray J, Gunthorpe MJ, Hatcher JP, Davey PT, Overend P, et al. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 2000, 405: 183–187.PubMedCrossRefGoogle Scholar
  213. 213.
    Morales-Lazaro SL, Simon SA, Rosenbaum T. The role of endogenous molecules in modulating pain through transient receptor potential vanilloid 1 (TRPV1). J Physiol 2013, 591: 3109–3121.PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Woo DH, Jung SJ, Zhu MH, Park CK, Kim YH, Oh SB, et al. Direct activation of transient receptor potential vanilloid 1(TRPV1) by diacylglycerol (DAG). Mol Pain 2008, 4: 42.PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Brauchi S, Orta G, Mascayano C, Salazar M, Raddatz N, Urbina H, et al. Dissection of the components for PIP2 activation and thermosensation in TRP channels. Proc Natl Acad Sci U S A 2007, 104: 10246–10251.PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Moriyama T, Higashi T, Togashi K, Iida T, Segi E, Sugimoto Y, et al. Sensitization of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins. Mol Pain 2005, 1: 3.PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Morales-Lazaro SL, Llorente I, Sierra-Ramirez F, Lopez-Romero AE, Ortiz-Renteria M, Serrano-Flores B, et al. Inhibition of TRPV1 channels by a naturally occurring omega-9 fatty acid reduces pain and itch. Nat Commun 2016, 7: 13092.PubMedPubMedCentralCrossRefGoogle Scholar
  218. 218.
    Bolcskei K, Helyes Z, Szabo A, Sandor K, Elekes K, Nemeth J, et al. Investigation of the role of TRPV1 receptors in acute and chronic nociceptive processes using gene-deficient mice. Pain 2005, 117: 368–376.PubMedCrossRefGoogle Scholar
  219. 219.
    Kanai Y, Nakazato E, Fujiuchi A, Hara T, Imai A. Involvement of an increased spinal TRPV1 sensitization through its up-regulation in mechanical allodynia of CCI rats. Neuropharmacology 2005, 49: 977–984.PubMedCrossRefGoogle Scholar
  220. 220.
    Yamamoto W, Sugiura A, Nakazato-Imasato E, Kita Y. Characterization of primary sensory neurons mediating static and dynamic allodynia in rat chronic constriction injury model. J Pharm Pharmacol 2008, 60: 717–722.PubMedCrossRefGoogle Scholar
  221. 221.
    Fukuoka T, Tokunaga A, Tachibana T, Dai Y, Yamanaka H, Noguchi K. VR1, but not P2X(3), increases in the spared L4 DRG in rats with L5 spinal nerve ligation. Pain 2002, 99: 111–120.PubMedCrossRefGoogle Scholar
  222. 222.
    Dong F, Du YR, Xie W, Strong JA, He XJ, Zhang JM. Increased function of the TRPV1 channel in small sensory neurons after local inflammation or in vitro exposure to the pro-inflammatory cytokine GRO/KC. Neurosci Bull 2012, 28: 155–164.PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Pabbidi RM, Yu SQ, Peng S, Khardori R, Pauza ME, Premkumar LS. Influence of TRPV1 on diabetes-induced alterations in thermal pain sensitivity. Mol Pain 2008, 4: 9.PubMedPubMedCentralCrossRefGoogle Scholar
  224. 224.
    Hong S, Wiley JW. Early painful diabetic neuropathy is associated with differential changes in the expression and function of vanilloid receptor 1. J Biol Chem 2005, 280: 618–627.PubMedCrossRefGoogle Scholar
  225. 225.
    Cui YY, Xu H, Wu HH, Qi J, Shi J, Li YQ. Spatio-temporal expression and functional involvement of transient receptor potential vanilloid 1 in diabetic mechanical allodynia in rats. PLoS One 2014, 9: e102052.PubMedPubMedCentralCrossRefGoogle Scholar
  226. 226.
    Han Y, Li Y, Xiao X, Liu J, Meng XL, Liu FY, et al. Formaldehyde up-regulates TRPV1 through MAPK and PI3K signaling pathways in a rat model of bone cancer pain. Neurosci Bull 2012, 28: 165–172.PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    Beyak MJ, Vanner S. Inflammation-induced hyperexcitability of nociceptive gastrointestinal DRG neurones: the role of voltage-gated ion channels. Neurogastroenterol Motil 2005, 17: 175–186.PubMedCrossRefGoogle Scholar
  228. 228.
    Hicks GA. TRP channels as therapeutic targets: hot property, or time to cool down? Neurogastroenterol Motil 2006, 18: 590–594.PubMedCrossRefGoogle Scholar
  229. 229.
    Makimura Y, Ito K, Kuwahara M, Tsubone H. Augmented activity of the pelvic nerve afferent mediated by TRP channels in dextran sulfate sodium (DSS)-induced colitis of rats. J Vet Med Sci 2012, 74: 1007–1013.PubMedCrossRefGoogle Scholar
  230. 230.
    Jones RC, 3rd, Xu L, Gebhart GF. The mechanosensitivity of mouse colon afferent fibers and their sensitization by inflammatory mediators require transient receptor potential vanilloid 1 and acid-sensing ion channel 3. J Neurosci 2005, 25: 10981–10989.PubMedCrossRefGoogle Scholar
  231. 231.
    Winston J, Shenoy M, Medley D, Naniwadekar A, Pasricha PJ. The vanilloid receptor initiates and maintains colonic hypersensitivity induced by neonatal colon irritation in rats. Gastroenterology 2007, 132: 615–627.PubMedCrossRefGoogle Scholar
  232. 232.
    Xu GY, Winston JH, Shenoy M, Yin H, Pendyala S, Pasricha PJ. Transient receptor potential vanilloid 1 mediates hyperalgesia and is up-regulated in rats with chronic pancreatitis. Gastroenterology 2007, 133: 1282–1292.PubMedCrossRefGoogle Scholar
  233. 233.
    Sun S, Dong X. Trp channels and itch. Semin Immunopathol 2016, 38: 293–307.PubMedCrossRefGoogle Scholar
  234. 234.
    Sulk M, Seeliger S, Aubert J, Schwab VD, Cevikbas F, Rivier M, et al. Distribution and expression of non-neuronal transient receptor potential (TRPV) ion channels in rosacea. J Invest Dermatol 2012, 132: 1253–1262.PubMedCrossRefGoogle Scholar
  235. 235.
    Li L, Liu C, Chen L, Chen L. Hypotonicity modulates tetrodotoxin-sensitive sodium current in trigeminal ganglion neurons. Mol Pain 2011, 7: 27.PubMedPubMedCentralCrossRefGoogle Scholar
  236. 236.
    Stander S, Moormann C, Schumacher M, Buddenkotte J, Artuc M, Shpacovitch V, et al. Expression of vanilloid receptor subtype 1 in cutaneous sensory nerve fibers, mast cells, and epithelial cells of appendage structures. Exp Dermatol 2004, 13: 129–139.PubMedCrossRefGoogle Scholar
  237. 237.
    Gibson RA, Robertson J, Mistry H, McCallum S, Fernando D, Wyres M, et al. A randomised trial evaluating the effects of the TRPV1 antagonist SB705498 on pruritus induced by histamine, and cowhage challenge in healthy volunteers. PLoS One 2014, 9: e100610.PubMedPubMedCentralCrossRefGoogle Scholar
  238. 238.
    Numata T, Shimizu T, Okada Y. Direct mechano-stress sensitivity of TRPM7 channel. Cell Physiol Biochem 2007, 19: 1–8.PubMedCrossRefGoogle Scholar
  239. 239.
    Hondoh A, Ishida Y, Ugawa S, Ueda T, Shibata Y, Yamada T, et al. Distinct expression of cold receptors (TRPM8 and TRPA1) in the rat nodose-petrosal ganglion complex. Brain Res 2010, 1319: 60-69.PubMedCrossRefGoogle Scholar
  240. 240.
    Liu T, Xu ZZ, Park CK, Berta T, Ji RR. Toll-like receptor 7 mediates pruritus. Nat Neurosci 2010, 13: 1460–1462.PubMedPubMedCentralCrossRefGoogle Scholar
  241. 241.
    Barajon I, Serrao G, Arnaboldi F, Opizzi E, Ripamonti G, Balsari A, et al. Toll-like receptors 3, 4, and 7 are expressed in the enteric nervous system and dorsal root ganglia. J Histochem Cytochem 2009, 57: 1013–1023.PubMedPubMedCentralCrossRefGoogle Scholar
  242. 242.
    Peier AM, Reeve AJ, Andersson DA, Moqrich A, Earley TJ, Hergarden AC, et al. A heat-sensitive TRP channel expressed in keratinocytes. Science 2002, 296: 2046–2049.PubMedCrossRefGoogle Scholar
  243. 243.
    Xu H, Ramsey IS, Kotecha SA, Moran MM, Chong JA, Lawson D, et al. TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 2002, 418: 181–186.PubMedCrossRefGoogle Scholar
  244. 244.
    Vogt–Eisele AK, Weber K, Sherkheli MA, Vielhaber G, Panten J, Gisselmann G, et al. Monoterpenoid agonists of TRPV3. Br J Pharmacol 2007, 151: 530–540.Google Scholar
  245. 245.
    Hu HZ, Xiao R, Wang C, Gao N, Colton CK, Wood JD, et al. Potentiation of TRPV3 channel function by unsaturated fatty acids. J Cell Physiol 2006, 208: 201–212.PubMedPubMedCentralCrossRefGoogle Scholar
  246. 246.
    Brash AR. Arachidonic acid as a bioactive molecule. J Clin Invest 2001, 107: 1339–1345.PubMedPubMedCentralCrossRefGoogle Scholar
  247. 247.
    Holstein SA, Hohl RJ. Isoprenoids: remarkable diversity of form and function. Lipids 2004, 39: 293–309.PubMedCrossRefGoogle Scholar
  248. 248.
    Bang S, Yoo S, Yang TJ, Cho H, Hwang SW. Farnesyl pyrophosphate is a novel pain-producing molecule via specific activation of TRPV3. J Biol Chem 2010, 285: 19362–19371.PubMedPubMedCentralCrossRefGoogle Scholar
  249. 249.
    Huang SM, Lee H, Chung MK, Park U, Yu YY, Bradshaw HB, et al. Overexpressed transient receptor potential vanilloid 3 ion channels in skin keratinocytes modulate pain sensitivity via prostaglandin E2. J Neurosci 2008, 28: 13727–13737.PubMedPubMedCentralCrossRefGoogle Scholar
  250. 250.
    Moqrich A, Hwang SW, Earley TJ, Petrus MJ, Murray AN, Spencer KS, et al. Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 2005, 307: 1468–1472.PubMedCrossRefGoogle Scholar
  251. 251.
    Andersson DA, Gentry C, Bevan S. TRPA1 has a key role in the somatic pro-nociceptive actions of hydrogen sulfide. PLoS One 2012, 7: e46917.PubMedPubMedCentralCrossRefGoogle Scholar
  252. 252.
    Yoshioka T, Imura K, Asakawa M, Suzuki M, Oshima I, Hirasawa T, et al. Impact of the Gly573Ser substitution in TRPV3 on the development of allergic and pruritic dermatitis in mice. J Invest Dermatol 2009, 129: 714–722.PubMedCrossRefGoogle Scholar
  253. 253.
    Lin Z, Chen Q, Lee M, Cao X, Zhang J, Ma D, et al. Exome sequencing reveals mutations in TRPV3 as a cause of Olmsted syndrome. Am J Hum Genet 2012, 90: 558–564.PubMedPubMedCentralCrossRefGoogle Scholar
  254. 254.
    Liedtke W, Choe Y, Marti-Renom MA, Bell AM, Denis CS, Sali A, et al. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 2000, 103: 525–535.PubMedPubMedCentralCrossRefGoogle Scholar
  255. 255.
    Cenac N, Altier C, Chapman K, Liedtke W, Zamponi G, Vergnolle N. Transient receptor potential vanilloid-4 has a major role in visceral hypersensitivity symptoms. Gastroenterology 2008, 135: 937–946, 946 e931–932.Google Scholar
  256. 256.
    Zhang Y, Wang YH, Ge HY, Arendt-Nielsen L, Wang R, Yue SW. A transient receptor potential vanilloid 4 contributes to mechanical allodynia following chronic compression of dorsal root ganglion in rats. Neurosci Lett 2008, 432: 222–227.PubMedCrossRefGoogle Scholar
  257. 257.
    Suzuki M, Mizuno A, Kodaira K, Imai M. Impaired pressure sensation in mice lacking TRPV4. J Biol Chem 2003, 278: 22664–22668.PubMedCrossRefGoogle Scholar
  258. 258.
    Chen L, Liu C, Liu L. Changes in osmolality modulate voltage-gated calcium channels in trigeminal ganglion neurons. Brain Res 2008, 1208: 56–66.PubMedPubMedCentralCrossRefGoogle Scholar
  259. 259.
    Chen J. The evolutionary divergence of TRPA1 channel: heat-sensitive, cold-sensitive and temperature-insensitive. Temperature (Austin) 2015, 2: 158–159.CrossRefGoogle Scholar
  260. 260.
    Rajasekhar P, Poole DP, Liedtke W, Bunnett NW, Veldhuis NA. P2Y1 Receptor Activation of the TRPV4 Ion Channel Enhances Purinergic Signaling in Satellite Glial Cells. J Biol Chem 2015, 290: 29051–29062.PubMedPubMedCentralCrossRefGoogle Scholar
  261. 261.
    Benfenati V, Amiry-Moghaddam M, Caprini M, Mylonakou MN, Rapisarda C, Ottersen OP, et al. Expression and functional characterization of transient receptor potential vanilloid-related channel 4 (TRPV4) in rat cortical astrocytes. Neuroscience 2007, 148: 876–892.PubMedCrossRefGoogle Scholar
  262. 262.
    Konno M, Shirakawa H, Iida S, Sakimoto S, Matsutani I, Miyake T, et al. Stimulation of transient receptor potential vanilloid 4 channel suppresses abnormal activation of microglia induced by lipopolysaccharide. Glia 2012, 60: 761–770.PubMedCrossRefGoogle Scholar
  263. 263.
    Shibasaki K, Suzuki M, Mizuno A, Tominaga M. Effects of body temperature on neural activity in the hippocampus: regulation of resting membrane potentials by transient receptor potential vanilloid 4. J Neurosci 2007, 27: 1566–1575.PubMedCrossRefGoogle Scholar
  264. 264.
    Shibasaki K, Sugio S, Takao K, Yamanaka A, Miyakawa T, Tominaga M, et al. TRPV4 activation at the physiological temperature is a critical determinant of neuronal excitability and behavior. Pflugers Arch 2015, 467: 2495–2507.PubMedCrossRefGoogle Scholar
  265. 265.
    Kanju P, Liedtke W. Pleiotropic function of TRPV4 ion channels in the central nervous system. Exp Physiol 2016, 101: 1472–1476.PubMedPubMedCentralCrossRefGoogle Scholar
  266. 266.
    Phan MN, Leddy HA, Votta BJ, Kumar S, Levy DS, Lipshutz DB, et al. Functional characterization of TRPV4 as an osmotically sensitive ion channel in porcine articular chondrocytes. Arthritis Rheum 2009, 60: 3028–3037.PubMedPubMedCentralCrossRefGoogle Scholar
  267. 267.
    Watanabe H, Vriens J, Suh SH, Benham CD, Droogmans G, Nilius B. Heat-evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J Biol Chem 2002, 277: 47044–47051.PubMedCrossRefGoogle Scholar
  268. 268.
    Chen Y, Kanju P, Fang Q, Lee SH, Parekh PK, Lee W, et al. TRPV4 is necessary for trigeminal irritant pain and functions as a cellular formalin receptor. Pain 2014, 155: 2662–2672.PubMedPubMedCentralCrossRefGoogle Scholar
  269. 269.
    Li J, Ghio AJ, Cho SH, Brinckerhoff CE, Simon SA, Liedtke W. Diesel exhaust particles activate the matrix-metalloproteinase-1 gene in human bronchial epithelia in a beta-arrestin-dependent manner via activation of RAS. Environ Health Perspect 2009, 117: 400–409.PubMedCrossRefGoogle Scholar
  270. 270.
    Alessandri-Haber N, Dina OA, Chen X, Levine JD. TRPC1 and TRPC6 channels cooperate with TRPV4 to mediate mechanical hyperalgesia and nociceptor sensitization. J Neurosci 2009, 29: 6217–6228.PubMedPubMedCentralCrossRefGoogle Scholar
  271. 271.
    D’Aldebert E, Cenac N, Rousset P, Martin L, Rolland C, Chapman K, et al. Transient receptor potential vanilloid 4 activated inflammatory signals by intestinal epithelial cells and colitis in mice. Gastroenterology 2011, 140: 275–285.PubMedCrossRefGoogle Scholar
  272. 272.
    Kwon M, Baek SH, Park CK, Chung G, Oh SB. Single-cell RT-PCR and immunocytochemical detection of mechanosensitive transient receptor potential channels in acutely isolated rat odontoblasts. Arch Oral Biol 2014, 59: 1266–1271.PubMedCrossRefGoogle Scholar
  273. 273.
    Alessandri-Haber N, Yeh JJ, Boyd AE, Parada CA, Chen X, Reichling DB, et al. Hypotonicity induces TRPV4-mediated nociception in rat. Neuron 2003, 39: 497–511.PubMedCrossRefGoogle Scholar
  274. 274.
    Cao DS, Yu SQ, Premkumar LS. Modulation of transient receptor potential Vanilloid 4-mediated membrane currents and synaptic transmission by protein kinase C. Mol Pain 2009, 5: 5.PubMedPubMedCentralGoogle Scholar
  275. 275.
    Liedtke W, Tobin DM, Bargmann CI, Friedman JM. Mammalian TRPV4 (VR-OAC) directs behavioral responses to osmotic and mechanical stimuli in C. elegans. Proc Natl Acad Sci U S A 2003, 100: 14531–14536.PubMedPubMedCentralCrossRefGoogle Scholar
  276. 276.
    Vandewauw I, Owsianik G, Voets T. Systematic and quantitative mRNA expression analysis of TRP channel genes at the single trigeminal and dorsal root ganglion level in mouse. BMC Neurosci 2013, 14: 21.PubMedPubMedCentralCrossRefGoogle Scholar
  277. 277.
    Liedtke W, Friedman JM. Abnormal osmotic regulation in trpv4-/- mice. Proc Natl Acad Sci U S A 2003, 100: 13698–13703.PubMedPubMedCentralCrossRefGoogle Scholar
  278. 278.
    Alessandri-Haber N, Joseph E, Dina OA, Liedtke W, Levine JD. TRPV4 mediates pain-related behavior induced by mild hypertonic stimuli in the presence of inflammatory mediator. Pain 2005, 118: 70–79.PubMedCrossRefGoogle Scholar
  279. 279.
    Alessandri-Haber N, Dina OA, Joseph EK, Reichling D, Levine JD. A transient receptor potential vanilloid 4-dependent mechanism of hyperalgesia is engaged by concerted action of inflammatory mediators. J Neurosci 2006, 26: 3864–3874.PubMedCrossRefGoogle Scholar
  280. 280.
    Zhao P, Lieu T, Barlow N, Sostegni S, Haerteis S, Korbmacher C, et al. Neutrophil elastase activates protease-activated receptor-2 (par2) and transient receptor potential vanilloid 4 (trpv4) to cause inflammation and pain. J Biol Chem 2015, 290: 13875–13887.PubMedPubMedCentralCrossRefGoogle Scholar
  281. 281.
    Denadai–Souza A, Martin L, de Paula MA, de Avellar MC, Muscara MN, Vergnolle N, et al. Role of transient receptor potential vanilloid 4 in rat joint inflammation. Arthritis Rheum 2012, 64: 1848–1858.Google Scholar
  282. 282.
    O’Conor CJ, Ramalingam S, Zelenski NA, Benefield HC, Rigo I, Little D, et al. Cartilage-specific knockout of the mechanosensory ion channel TRPV4 decreases age-related osteoarthritis. Sci Rep 2016, 6: 29053.PubMedPubMedCentralCrossRefGoogle Scholar
  283. 283.
    Moore C, Cevikbas F, Pasolli HA, Chen Y, Kong W, Kempkes C, et al. UVB radiation generates sunburn pain and affects skin by activating epidermal TRPV4 ion channels and triggering endothelin-1 signaling. Proc Natl Acad Sci U S A 2013, 110: E3225–3234.PubMedPubMedCentralCrossRefGoogle Scholar
  284. 284.
    Alessandri-Haber N, Dina OA, Yeh JJ, Parada CA, Reichling DB, Levine JD. Transient receptor potential vanilloid 4 is essential in chemotherapy-induced neuropathic pain in the rat. J Neurosci 2004, 24: 4444–4452.PubMedCrossRefGoogle Scholar
  285. 285.
    Chen Y, Yang C, Wang ZJ. Proteinase-activated receptor 2 sensitizes transient receptor potential vanilloid 1, transient receptor potential vanilloid 4, and transient receptor potential ankyrin 1 in paclitaxel-induced neuropathic pain. Neuroscience 2011, 193: 440–451.PubMedCrossRefGoogle Scholar
  286. 286.
    Kanju P, Chen Y, Lee W, Yeo M, Lee SH, Romac J, et al. Small molecule dual-inhibitors of TRPV4 and TRPA1 for attenuation of inflammation and pain. Sci Rep 2016, 6: 26894.PubMedPubMedCentralCrossRefGoogle Scholar
  287. 287.
    Ding XL, Wang YH, Ning LP, Zhang Y, Ge HY, Jiang H, et al. Involvement of TRPV4-NO-cGMP-PKG pathways in the development of thermal hyperalgesia following chronic compression of the dorsal root ganglion in rats. Behav Brain Res 2010, 208: 194–201.PubMedCrossRefGoogle Scholar
  288. 288.
    Wang C, Ning LP, Wang YH, Zhang Y, Ding XL, Ge HY, et al. Nuclear factor-kappa B mediates TRPV4-NO pathway involved in thermal hyperalgesia following chronic compression of the dorsal root ganglion in rats. Behav Brain Res 2011, 221: 19–24.PubMedCrossRefGoogle Scholar
  289. 289.
    Qu YJ, Zhang X, Fan ZZ, Huai J, Teng YB, Zhang Y, et al. Effect of TRPV4-p38 MAPK pathway on neuropathic pain in rats with chronic compression of the dorsal root ganglion. Biomed Res Int 2016, 2016: 6978923.PubMedPubMedCentralGoogle Scholar
  290. 290.
    Brierley SM, Page AJ, Hughes PA, Adam B, Liebregts T, Cooper NJ, et al. Selective role for TRPV4 ion channels in visceral sensory pathways. Gastroenterology 2008, 134: 2059–2069.PubMedPubMedCentralCrossRefGoogle Scholar
  291. 291.
    Sipe WE, Brierley SM, Martin CM, Phillis BD, Cruz FB, Grady EF, et al. Transient receptor potential vanilloid 4 mediates protease activated receptor 2-induced sensitization of colonic afferent nerves and visceral hyperalgesia. Am J Physiol Gastrointest Liver Physiol 2008, 294: G1288–1298.PubMedCrossRefGoogle Scholar
  292. 292.
    Cenac N, Bautzova T, Le Faouder P, Veldhuis NA, Poole DP, Rolland C, et al. Quantification and potential functions of endogenous agonists of transient receptor potential channels in patients with irritable bowel syndrome. Gastroenterology 2015, 149: 433–444 e437.Google Scholar
  293. 293.
    Ceppa E, Cattaruzza F, Lyo V, Amadesi S, Pelayo JC, Poole DP, et al. Transient receptor potential ion channels V4 and A1 contribute to pancreatitis pain in mice. Am J Physiol Gastrointest Liver Physiol 2010, 299: G556–571.PubMedPubMedCentralCrossRefGoogle Scholar
  294. 294.
    Zhang LP, Ma F, Abshire SM, Westlund KN. Prolonged high fat/alcohol exposure increases TRPV4 and its functional responses in pancreatic stellate cells. Am J Physiol Regul Integr Comp Physiol 2013, 304: R702–711.PubMedPubMedCentralCrossRefGoogle Scholar
  295. 295.
    Zhang LP, Kline RHt, Deevska G, Ma F, Nikolova-Karakashian M, Westlund KN. Alcohol and high fat induced chronic pancreatitis: TRPV4 antagonist reduces hypersensitivity. Neuroscience 2015, 311: 166–179.PubMedPubMedCentralCrossRefGoogle Scholar
  296. 296.
    Wei X, Edelmayer RM, Yan J, Dussor G. Activation of TRPV4 on dural afferents produces headache-related behavior in a preclinical rat model. Cephalalgia 2011, 31: 1595–1600.PubMedPubMedCentralCrossRefGoogle Scholar
  297. 297.
    McNamara CR, Mandel-Brehm J, Bautista DM, Siemens J, Deranian KL, Zhao M, et al. TRPA1 mediates formalin-induced pain. Proc Natl Acad Sci U S A 2007, 104: 13525–13530.PubMedPubMedCentralCrossRefGoogle Scholar
  298. 298.
    Kim S, Barry DM, Liu XY, Yin S, Munanairi A, Meng QT, et al. Facilitation of TRPV4 by TRPV1 is required for itch transmission in some sensory neuron populations. Sci Signal 2016, 9: ra71.Google Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of NeurologyDuke University Medical CenterDurhamUSA
  2. 2.Department of AnesthesiologyDuke University Medical CenterDurhamUSA

Personalised recommendations