Skip to main content
Log in

Feeling Hot and Cold: Thermal Sensation in Drosophila

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Sensing environmental temperature is crucial for animal life. The model animal, Drosophila melanogaster, can be investigated with a large number of genetic tools, which have greatly facilitated studies of the cellular and molecular mechanisms of thermal sensing. At the molecular level, a group of proteins, including Transient Receptor Potential channels and ionotropic receptors, have been characterized as potential thermal sensors in both larval and adult Drosophila. At the cellular and circuit levels, peripheral and central thermosensory neurons have been identified. More interestingly, thermal information has been found to be specifically encoded by specific central neurons. In this short review, we mainly survey the progress in understanding the molecular mechanisms of thermosensation and the neuronal mechanisms of thermal information processing in the brain of Drosophila. Other recent temperature-related findings such as its impact on neurosecretion and thermotactic behavior in Drosophila are also introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Schreider E. Geographical distribution of the body-weight/body-surface ratio. Nature 1950, 165: 286.

    Article  CAS  PubMed  Google Scholar 

  2. Ruff CB. Morphological adaptation to climate in modern and fossil hominids.Yearb Phys Anthropol 1994, 37: 65–107.

    Article  Google Scholar 

  3. Bergmann C. “Über die Verhältnisse der Wärmeökonomie der ThierezuihrerGrösse”. Göttinger Studien 1847, 3: 595–708.

  4. Neel JV. The interrelations of temperature, body size, and character expression in Drosophila melanogaster. Genetics 1940, 25: 225–250.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Nunney L, Cheung W. The effect of temperature on body size and fecundityin female Drosophila melanogaster: evidence for adaptive plasticity. Evolution 1997, 51: 1529–1535.

    Article  Google Scholar 

  6. Angilletta MJ, Steury TD, Sears MW. Temperature, growth rate and body size in ectotherms: fitting pieces of a life-history puzzle. Integr Comp Biol 2004, 44: 498–509.

    Article  PubMed  Google Scholar 

  7. Xiao R, Liu J, Xu XZ. Thermosensation and longevity. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015, 201: 857–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kidd PB, Young MW, Siggia ED. Temperature compensation and temperature sensation in the circadian clock. Proc Natl Acad Sci U S A 2015, 112: E6284–6292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Snyder LM, Ross SE. Itch and its inhibition by counter stimuli. Handb Exp Pharmacol 2015, 226: 191–206.

    Article  CAS  PubMed  Google Scholar 

  10. Julius D. TRP channels and pain. Annu Rev Cell Dev Biol 2013, 29: 355–384.

    Article  CAS  PubMed  Google Scholar 

  11. Viswanath V, Story GM, Peier AM, Petrus MJ, Lee VM, Hwang SW, et al. Opposite thermosensor in fruitfly and mouse. Nature 2003, 423: 822–823.

    Article  CAS  PubMed  Google Scholar 

  12. Feng Q. Temperature sensing by thermal TRP channels: thermodynamic basis and molecular insights. Curr Top Membr 2014, 74: 19–50.

  13. Palkar R, Lippoldt EK, McKemy DD. The molecular and cellular basis of thermosensation in mammals.Curr Opin Neurobiol 2015, 34: 14–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Aoki I, Mori I. Molecular biology of thermosensory transduction in C. elegans. Curr Opin Neurobiol 2015, 34: 117–124.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang X. Molecular sensors and modulators of thermoreception. Channels (Austin) 2015, 9: 73–81.

    Article  Google Scholar 

  16. Vriens J, Nilius B, Voets T. Peripheral thermosensation in mammals. Nat Rev Neurosci 2014, 15: 573–589.

    Article  CAS  PubMed  Google Scholar 

  17. Vriens J, Owsianik G, Hofmann T, Philipp SE, Stab J, Chen X, et al. TRPM3 is a nociceptor channel involved in the detection of noxious heat. Neuron 2011, 70: 482–494.

    Article  CAS  PubMed  Google Scholar 

  18. Patapoutian A, Peier AM, Story GM, Viswanath V. ThermoTRP channels and beyond: mechanisms of temperature sensation. Nat Rev Neurosci 2003, 4: 529–539.

    Article  CAS  PubMed  Google Scholar 

  19. Dhaka A, Viswanath V, Patapoutian A. Trp ion channels and temperature sensation. Annu Rev Neurosci 2006, 29: 135–161.

    Article  CAS  PubMed  Google Scholar 

  20. Barbagallo B, Garrity PA. Temperature sensation in Drosophila. Curr Opin Neurobiol 2015, 34: 8–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sengupta P, Garrity P. Sensing temperature. Curr Biol 2013, 23: R304–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dillon ME, Wang G, Garrity PA, Huey RB. Review: Thermal preference in Drosophila. J Therm Biol 2009, 34: 109–119.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rosenzweig M, Brennan KM, Tayler TD, Phelps PO, Patapoutian A, Garrity PA. The Drosophila ortholog of vertebrate TRPA1 regulates thermotaxis. Genes Dev 2005, 19: 419–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kwon Y, Shim HS, Wang X, Montell C. Control of thermotactic behavior via coupling of a TRP channel to a phospholipase C signaling cascade. Nat Neurosci 2008, 11: 871–873.

    Article  CAS  PubMed  Google Scholar 

  25. Gallio M, Ofstad TA, Macpherson LJ, Wang JW, Zuker CS. The coding of temperature in the Drosophila brain. Cell 2011, 144: 614–624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lahiri S, Shen K, Klein M, Tang A, Kane E, Gershow M, et al. Two alternating motor programs drive navigation in Drosophila larva. PLoS One 2011, 6:e23180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Klein M, Afonso B, Vonner AJ, Hernandez-Nunez L, Berck M, Tabone CJ, et al. Sensory determinants of behavioral dynamics in Drosophila thermotaxis. Proc Natl Acad Sci U S A 2015, 112: E220–229.

    Article  CAS  PubMed  Google Scholar 

  28. Tian L, Hires SA, Mao T, Huber D, Chiappe ME, Chalasani SH, et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 2009, 6: 875–881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu L, Yermolaieva O, Johnson WA, Abboud FM, Welsh MJ. Identification and function ofthermosensory neurons in Drosophila larvae. Nat Neurosci 2003, 6: 267–273.

    Article  CAS  PubMed  Google Scholar 

  30. Hamada FN, Rosenzweig M, Kang K, Pulver SR, Ghezzi A, Jegla TJ, et al. An internal thermal sensor controlling temperature preference in Drosophila. Nature 2008, 454: 217–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kang K, Panzano VC, Chang EC, Ni L, Dainis AM, Jenkins AM, et al. Modulation of TRPA1 thermal sensitivity enables sensory discrimination in Drosophila. Nature 2011, 481: 76–80.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ni L, Bronk P, Chang EC, Lowell AM, Flam JO, Panzano VC, et al. A gustatory receptor paralogue controls rapid warmth avoidance in Drosophila. Nature 2013, 500: 580–584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Masuyama K, Zhang Y, Rao Y, Wang JW. Mapping neural circuits with activity-dependent nuclear import of a transcription factor. J Neurogenet 2012, 26: 89–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li Q, Gong Z. Cold-sensing regulates Drosophila growth through insulin-producing cells. Nat Commun 2015, 6: 10083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ni L, Klein M, Svec KV, Budelli G, Chang EC, Ferrer AJ, et al. the ionotropic receptors IR21a and IR25a mediate cool sensing in Drosophila. Elife 2016, 5: e13254.

    PubMed  PubMed Central  Google Scholar 

  36. Kwon JY, Dahanukar A, Weiss LA, Carlson JR. Molecular and cellularorganization of the taste system in the Drosophila larva. J Neurosci 2011, 31: 15300–15309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Asahina K, Louis M, Piccinotti S, Vosshall LB, A circuit supporting concentration-invariant odor perception in Drosophila. J Biol 2009, 8: 9.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Frank DD, Jouandet GC, Kearney PJ, Macpherson LJ, Gallio M. Temperature representation in the Drosophila brain. Nature 2015, 519: 358–361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu WW, Mazor O, Wilson RI. Thermosensory processing in the Drosophila brain. Nature 2015, 519: 353–357.

    Article  CAS  PubMed  Google Scholar 

  40. Florence TJ, Reiser MB. Neuroscience: hot on the trail of temperature processing. Nature 2015, 519: 296–297.

    Article  CAS  PubMed  Google Scholar 

  41. Tomchik SM. Dopaminergic neurons encode a distributed, asymmetric representation of temperature in Drosophila. J Neurosci 2013, 33: 2166–2176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tan CH, McNaughton PA. The TRPM2 ion channel is required for sensitivity to warmth. Nature 2016, 6: 460–463.

    Article  Google Scholar 

  43. Song K, Wang H, Kamm GB, Pohle J, Reis FC, Heppenstall P, et al. The TRPM2 channel is a hypothalamic heat sensor that limits fever and can drive hypothermia. Science 2016, 353: 1393–1398.

    Article  CAS  PubMed  Google Scholar 

  44. Rosenzweig M, Kang K, Garrity PA. Distinct TRP channels are required for warm and cool avoidance in Drosophila melanogaster. Proc Natl Acad Sci U S A 2008, 105: 14668–14673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhong L, Bellemer A, Yan H, Honjo K, Robertson J, Hwang RY, et al. Thermosensory and nonthermosensory isoforms of Drosophila melanogaster TRPA1 reveal heat-sensor domains of a thermoTRP channel. Cell Rep 2012, 1: 43–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Neely GG, Keene AC, Duchek P, Chang EC, Wang QP, Aksoy YA, et al. TrpA1 regulates thermal nociception in Drosophila. PLoS One 2011, 6: e24343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. von PhilipsbornAC, Liu T, Yu JY, Masser C, Bidaye SS, Dickson BJ. Neuronal control of Drosophila courtship song. Neuron 2011, 69: 509–522.

  48. Tracey WD Jr, Wilson RI, Laurent G, Benzer S. painless, a Drosophila gene essential for nociception. Cell 2003, 113: 261–273.

    Article  CAS  PubMed  Google Scholar 

  49. Gong Z, Son W, Chung YD, Kim J, Shin DW, McClung CA, et al. Two interdependent TRPV channel subunits, inactive and Nanchung, mediate hearing in Drosophila. J Neurosci 2004, 24: 9059–9066.

    Article  CAS  PubMed  Google Scholar 

  50. Kwon Y, Shen WL, Shim HS, Montell C. Fine thermotactic discrimination between the optimal and slightly cooler temperatures via a TRPV channel in chordotonal neurons. J Neurosci 2010, 30: 10465–10471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shen WL, Kwon Y, Adegbola AA, Luo J, Chess A, Montell C. Function of rhodopsin in temperature discrimination in Drosophila. Science 2011, 331: 1333–1336.

    Article  CAS  PubMed  Google Scholar 

  52. Sokabe T, Chen HC, Luo J, Montell C. A switch in thermal preference in Drosophila larvae depends on multiple rhodopsins. Cell Rep 2016, 17: 336–344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jeong YT, Oh SM, Shim J, Seo JT, Kwon JY, Moon SJ. Mechanosensory neurons control sweet sensing in Drosophila. Nat Commun 2016, 7: 12872.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to apologize to our colleagues whose work was not cited here. This review was supported by grants from the National Basic Research Program of China (973 Program 2013CB945603), the National Natural Science Foundation of China (31070944, 31271147, 31471063, and 31671074), and the Natural Science Foundation of Zhejiang Province, China (LR13C090001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhefeng Gong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Gong, Z. Feeling Hot and Cold: Thermal Sensation in Drosophila . Neurosci. Bull. 33, 317–322 (2017). https://doi.org/10.1007/s12264-016-0087-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-016-0087-9

Keywords

Navigation