Neuroscience Bulletin

, Volume 32, Issue 3, pp 227–238 | Cite as

Aβ-Induced Insulin Resistance and the Effects of Insulin on the Cholesterol Synthesis Pathway and Aβ Secretion in Neural Cells

  • Dema Najem
  • Michelle Bamji-Mirza
  • Ze Yang
  • Wandong Zhang
Original Article


Alzheimer’s disease (AD) is characterized by amyloid-β (Aβ) toxicity, tau pathology, insulin resistance, neuroinflammation, and dysregulation of cholesterol homeostasis, all of which play roles in neurodegeneration. Insulin has polytrophic effects on neurons and may be at the center of these pathophysiological changes. In this study, we investigated possible relationships among insulin signaling and cholesterol biosynthesis, along with the effects of Aβ42 on these pathways in vitro. We found that neuroblastoma 2a (N2a) cells transfected with the human gene encoding amyloid-β protein precursor (AβPP) (N2a-AβPP) produced Aβ and exhibited insulin resistance by reduced p-Akt and a suppressed cholesterol-synthesis pathway following insulin treatment, and by increased phosphorylation of insulin receptor subunit-1 at serine 612 (p-IRS-S612) as compared to parental N2a cells. Treatment of human neuroblastoma SH-SY5Y cells with Aβ42 also increased p-IRS-S612, suggesting that Aβ42 is responsible for insulin resistance. The insulin resistance was alleviated when N2a-AβPP cells were treated with higher insulin concentrations. Insulin increased Aβ release from N2a-AβPP cells, by which it may promote Aβ clearance. Insulin increased cholesterol-synthesis gene expression in SH-SY5Y and N2a cells, including 24-dehydrocholesterol reductase (DHCR24) and 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR) through sterol-regulatory element-binding protein-2 (SREBP2). While Aβ42-treated SH-SY5Y cells exhibited increased HMGCR expression and c-Jun phosphorylation as pro-inflammatory responses, they also showed down-regulation of neuro-protective/anti-inflammatory DHCR24. These results suggest that Aβ42 may cause insulin resistance, activate JNK for c-Jun phosphorylation, and lead to dysregulation of cholesterol homeostasis, and that enhancing insulin signaling may relieve the insulin-resistant phenotype and the dysregulated cholesterol-synthesis pathway to promote Aβ release for clearance from neural cells.


Alzheimer’s disease Insulin resistance Aβ peptides Insulin signaling Cholesterol synthesis pathway Pro-inflammatory response 



This work was supported by CIHR Grants (109606, 106886, and TAD 125698) and an Ontario Graduate Scholarship, an Admission Scholarship, and an Excellence Scholarship from the University of Ottawa. This work was conducted at the National Research Council of Canada. We thank Dr. Hsiao-Huei Chen and Dr. Ross Milne at the University of Ottawa for their critical comments and support of the study, and Dr. Huaxi Xu at the Sanford-Burnham Medical Research Institute for providing the N2a-AβPP cells.


  1. 1.
    Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, et al. Inflammation and Alzheimer’s disease. Neurobiol Aging 2000, 21: 383–421.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 2007, 3: 186–191.CrossRefPubMedGoogle Scholar
  3. 3.
    De Felice FG. Alzheimer’s disease and insulin resistance: translating basic science into clinical applications. J Clin Invest 2013, 123: 531–539.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Xiong H, Callaghan D, Jones A, Walker DG, Lue LF, Beach TG, et al. Cholesterol retention in Alzheimer’s brain is responsible for high beta- and gamma-secretase activities and Abeta production. Neurobiol Dis 2008, 29: 422–437.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 2001, 81: 741–766.PubMedGoogle Scholar
  6. 6.
    Soriano S, Lu DC, Chandra S, Pietrzik CU, Koo EH. The amyloidogenic pathway of amyloid precursor protein (APP) is independent of its cleavage by caspases. J Biol Chem 2001, 276: 29045–29050.CrossRefPubMedGoogle Scholar
  7. 7.
    Gouras GK, Tsai J, Naslund J, Vincent B, Edgar M, Checler F, et al. Intraneuronal Abeta42 accumulation in human brain. Am J Pathol 2000, 156: 15–20.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    LaFerla FM, Green KN, Oddo S. Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci 2007, 8: 499–509.CrossRefPubMedGoogle Scholar
  9. 9.
    Annaert W, De Strooper B. A cell biological perspective on Alzheimer’s disease. Annu Rev Cell Dev Biol 2002, 18: 25–51.CrossRefPubMedGoogle Scholar
  10. 10.
    Sato M, Murakami K, Uno M, Nakagawa Y, Katayama S, Akagi K, et al. Site-specific inhibitory mechanism for amyloid beta42 aggregation by catechol-type flavonoids targeting the Lys residues. J Biol Chem 2013, 288: 23212–23224.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 2007, 8: 101–112.CrossRefPubMedGoogle Scholar
  12. 12.
    Najem D, Bamji-Mirza M, Chang N, Liu QY, Zhang W. Insulin resistance, neuroinflammation, and Alzheimer’s disease. Rev Neurosci 2014, 25: 509–525.CrossRefPubMedGoogle Scholar
  13. 13.
    Schubert M, Gautam D, Surjo D, Ueki K, Baudler S, Schubert D, et al. Role for neuronal insulin resistance in neurodegenerative diseases. Proc Natl Acad Sci USA 2004, 101: 3100–3105.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Bomfim TR, Forny-Germano L, Sathler LB, Brito-Moreira J, Houzel JC, Decker H, et al. An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease- associated Abeta oligomers. J Clin Invest 2012, 122: 1339–1353.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Takeda S, Sato N, Uchio-Yamada K, Sawada K, Kunieda T, Takeuchi D, et al. Diabetes-accelerated memory dysfunction via cerebrovascular inflammation and Abeta deposition in an Alzheimer mouse model with diabetes. Proc Natl Acad Sci USA 2010, 107: 7036–7041.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Salkovic-Petrisic M, Hoyer S. Central insulin resistance as a trigger for sporadic Alzheimer-like pathology: an experimental approach. J Neural Transm Suppl 2007: 217–233.Google Scholar
  17. 17.
    Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease–is this type 3 diabetes? J Alzheimers Dis 2005, 7: 63–80.PubMedGoogle Scholar
  18. 18.
    Craft S. Alzheimer disease: insulin resistance and AD–extending the translational path. Nat Rev Neurol 2012, 8: 360–362.CrossRefPubMedGoogle Scholar
  19. 19.
    Burgering BM, Coffer PJ. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 1995, 376: 599–602.CrossRefPubMedGoogle Scholar
  20. 20.
    Franke TF, Yang SI, Chan TO, Datta K, Kazlauskas A, Morrison DK, et al. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 1995, 81: 727–736.CrossRefPubMedGoogle Scholar
  21. 21.
    Sun XJ, Miralpeix M, Myers MG, Jr., Glasheen EM, Backer JM, Kahn CR, et al. Expression and function of IRS-1 in insulin signal transmission. J Biol Chem 1992, 267: 22662–22672.PubMedGoogle Scholar
  22. 22.
    Myers MG, Jr., Sun XJ, Cheatham B, Jachna BR, Glasheen EM, Backer JM, et al. IRS-1 is a common element in insulin and insulin-like growth factor-I signaling to the phosphatidylinositol 3′-kinase. Endocrinology 1993, 132: 1421–1430.PubMedGoogle Scholar
  23. 23.
    Wang LM, Myers MG, Jr., Sun XJ, Aaronson SA, White M, Pierce JH. IRS-1: essential for insulin- and IL-4-stimulated mitogenesis in hematopoietic cells. Science 1993, 261: 1591–1594.CrossRefPubMedGoogle Scholar
  24. 24.
    Ozes ON, Akca H, Mayo LD, Gustin JA, Maehama T, Dixon JE, et al. A phosphatidylinositol 3-kinase/Akt/mTOR pathway mediates and PTEN antagonizes tumor necrosis factor inhibition of insulin signaling through insulin receptor substrate-1. Proc Natl Acad Sci USA 2001, 98: 4640–4645.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    De Fea K, Roth RA. Protein kinase C modulation of insulin receptor substrate-1 tyrosine phosphorylation requires serine 612. Biochemistry 1997, 36: 12939–12947.CrossRefPubMedGoogle Scholar
  26. 26.
    D’Alessandris C, Lauro R, Presta I, Sesti G. C-reactive protein induces phosphorylation of insulin receptor substrate-1 on Ser307 and Ser 612 in L6 myocytes, thereby impairing the insulin signalling pathway that promotes glucose transport. Diabetologia 2007, 50: 840–849.CrossRefPubMedGoogle Scholar
  27. 27.
    Avramoglu RK, Basciano H, Adeli K. Lipid and lipoprotein dysregulation in insulin resistant states. Clin Chim Acta 2006, 368: 1–19.CrossRefPubMedGoogle Scholar
  28. 28.
    Suzuki R, Lee K, Jing E, Biddinger SB, McDonald JG, Montine TJ, et al. Diabetes and insulin in regulation of brain cholesterol metabolism. Cell Metab 2010, 12: 567–579.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Bonzon-Kulichenko E, Schwudke D, Gallardo N, Molto E, Fernandez-Agullo T, Shevchenko A, et al. Central leptin regulates total ceramide content and sterol regulatory element binding protein-1C proteolytic maturation in rat white adipose tissue. Endocrinology 2009, 150: 169–178.CrossRefPubMedGoogle Scholar
  30. 30.
    Brown MS, Goldstein JL. A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci USA 1999, 96: 11041–11048.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Goldstein JL, Rawson RB, Brown MS. Mutant mammalian cells as tools to delineate the sterol regulatory element-binding protein pathway for feedback regulation of lipid synthesis. Arch Biochem Biophys 2002, 397: 139–148.CrossRefPubMedGoogle Scholar
  32. 32.
    Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 2002, 109: 1125–1131.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Li G, Barrett EJ, Wang H, Chai W, Liu Z. Insulin at physiological concentrations selectively activates insulin but not insulin-like growth factor I (IGF-I) or insulin/IGF-I hybrid receptors in endothelial cells. Endocrinology 2005, 146: 4690–4696.CrossRefPubMedGoogle Scholar
  34. 34.
    Vukic V, Callaghan D, Walker D, Lue LF, Liu QY, Couraud PO, et al. Expression of inflammatory genes induced by beta-amyloid peptides in human brain endothelial cells and in Alzheimer’s brain is mediated by the JNK-AP1 signaling pathway. Neurobiol Dis 2009, 34: 95–106.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    de la Monte SM, Wands JR. Alzheimer’s disease is type 3 diabetes-evidence reviewed. J Diabetes Sci Technol 2008, 2: 1101–1113.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Bamji-Mirza M, Callaghan D, Najem D, Shen S, Hasim MS, Yang Z, et al. Stimulation of insulin signaling and inhibition of JNK-AP1 activation protect cells from amyloid-beta-induced signaling dysregulation and inflammatory response. J Alzheimers Dis 2014, 40: 105–122.PubMedGoogle Scholar
  37. 37.
    Aguirre V, Uchida T, Yenush L, Davis R, White MF. The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem 2000, 275: 9047–9054.CrossRefPubMedGoogle Scholar
  38. 38.
    Kaneto H. The JNK pathway as a therapeutic target for diabetes. Expert Opin Ther Targets 2005, 9: 581–592.CrossRefPubMedGoogle Scholar
  39. 39.
    Pratico D, Trojanowski JQ. Inflammatory hypotheses: novel mechanisms of Alzheimer’s neurodegeneration and new therapeutic targets? Neurobiol Aging 2000, 21: 441–445; discussion 451–443.Google Scholar
  40. 40.
    Xie L, Helmerhorst E, Taddei K, Plewright B, Van Bronswijk W, Martins R. Alzheimer’s beta-amyloid peptides compete for insulin binding to the insulin receptor. J Neurosci 2002, 22: RC221.Google Scholar
  41. 41.
    Brown MS, Goldstein JL. Multivalent feedback regulation of HMG CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth. J Lipid Res 1980, 21: 505–517.PubMedGoogle Scholar
  42. 42.
    Hooff GP, Peters I, Wood WG, Muller WE, Eckert GP. Modulation of cholesterol, farnesylpyrophosphate, and geranylgeranylpyrophosphate in neuroblastoma SH-SY5Y-APP695 cells: impact on amyloid beta-protein production. Mol Neurobiol 2010, 41: 341–350.CrossRefPubMedGoogle Scholar
  43. 43.
    Hooff GP, Wood WG, Muller WE, Eckert GP. Isoprenoids, small GTPases and Alzheimer’s disease. Biochim Biophys Acta 2010, 1801: 896–905.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Cole SL, Vassar R. Isoprenoids and Alzheimer’s disease: a complex relationship. Neurobiol Dis 2006, 22: 209–222.CrossRefPubMedGoogle Scholar
  45. 45.
    Linseman DA, Loucks FA. Diverse roles of Rho family GTPases in neuronal development, survival, and death. Front Biosci 2008, 13: 657–676.CrossRefPubMedGoogle Scholar
  46. 46.
    Gelb MH, Brunsveld L, Hrycyna CA, Michaelis S, Tamanoi F, Van Voorhis WC, et al. Therapeutic intervention based on protein prenylation and associated modifications. Nat Chem Biol 2006, 2: 518–528.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Won J-S, Im Y-B, Khan M, Contreras M, Singh AK, Singh I. Lovastatin inhibits amyloid precursor protein (APP) β-cleavage through reduction of APP distribution in Lubrol WX extractable low density lipid rafts. Journal of Neurochemistry 2008, 105: 1536–1549.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Ostrowski SM, Wilkinson BL, Golde TE, Landreth G. Statins Reduce Amyloid-β Production through Inhibition of Protein Isoprenylation. Journal of Biological Chemistry 2007, 282: 26832–26844.CrossRefPubMedGoogle Scholar
  49. 49.
    Tamboli IY, Barth E, Christian L, Siepmann M, Kumar S, Singh S, et al. Statins Promote the Degradation of Extracellular Amyloid β-Peptide by Microglia via Stimulation of Exosome-associated Insulin-degrading Enzyme (IDE) Secretion. Journal of Biological Chemistry 2010, 285: 37405–37414.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Drzewinska J, Pulaski L, Soszynski M, Bartosz G. [Seladin-1/DHCR24: a key protein of cell homeostasis and cholesterol biosynthesis]. Postepy Hig Med Dosw (Online) 2009, 63: 318–330.Google Scholar
  51. 51.
    Lu X, Kambe F, Cao X, Kozaki Y, Kaji T, Ishii T, et al. 3beta-Hydroxysteroid-delta24 reductase is a hydrogen peroxide scavenger, protecting cells from oxidative stress-induced apoptosis. Endocrinology 2008, 149: 3267–3273.CrossRefPubMedGoogle Scholar
  52. 52.
    Greeve I, Hermans-Borgmeyer I, Brellinger C, Kasper D, Gomez-Isla T, Behl C, et al. The human DIMINUTO/DWARF1 homolog seladin-1 confers resistance to Alzheimer’s disease-associated neurodegeneration and oxidative stress. J Neurosci 2000, 20: 7345–7352.PubMedGoogle Scholar
  53. 53.
    Sarajarvi T, Haapasalo A, Viswanathan J, Makinen P, Laitinen M, Soininen H, et al. Down-regulation of seladin-1 increases BACE1 levels and activity through enhanced GGA3 depletion during apoptosis. J Biol Chem 2009, 284: 34433–34443.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Crameri A, Biondi E, Kuehnle K, Lutjohann D, Thelen KM, Perga S, et al. The role of seladin-1/DHCR24 in cholesterol biosynthesis, APP processing and Abeta generation in vivo. EMBO J 2006, 25: 432–443.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Lamsa R, Helisalmi S, Hiltunen M, Herukka SK, Tapiola T, Pirttila T, et al. The association study between DHCR24 polymorphisms and Alzheimer’s disease. Am J Med Genet B Neuropsychiatr Genet 2007, 144B: 906–910.CrossRefPubMedGoogle Scholar
  56. 56.
    Cecchi C, Rosati F, Pensalfini A, Formigli L, Nosi D, Liguri G, et al. Seladin-1/DHCR24 protects neuroblastoma cells against Abeta toxicity by increasing membrane cholesterol content. J Cell Mol Med 2008, 12: 1990–2002.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Solano DC, Sironi M, Bonfini C, Solerte SB, Govoni S, Racchi M. Insulin regulates soluble amyloid precursor protein release via phosphatidyl inositol 3 kinase-dependent pathway. The FASEB Journal 2000, 14: 1015–1022.PubMedGoogle Scholar
  58. 58.
    Gasparini L, Gouras GK, Wang R, Gross RS, Beal MF, Greengard P, et al. Stimulation of beta-amyloid precursor protein trafficking by insulin reduces intraneuronal beta-amyloid and requires mitogen-activated protein kinase signaling. J Neurosci 2001, 21: 2561–2570.PubMedGoogle Scholar
  59. 59.
    Vekrellis K, Ye Z, Qiu WQ, Walsh D, Hartley D, Chesneau V, et al. Neurons regulate extracellular levels of amyloid beta-protein via proteolysis by insulin-degrading enzyme. J Neurosci 2000, 20: 1657–1665.PubMedGoogle Scholar
  60. 60.
    Pandini G, Pace V, Copani A, Squatrito S, Milardi D, Vigneri R. Insulin has multiple antiamyloidogenic effects on human neuronal cells. Endocrinology 2013, 154: 375–387.CrossRefPubMedGoogle Scholar
  61. 61.
    Farris W, Mansourian S, Chang Y, Lindsley L, Eckman EA, Frosch MP, et al. Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci USA 2003, 100: 4162–4167.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Lee HK, Kumar P, Fu Q, Rosen KM, Querfurth HW. The insulin/Akt signaling pathway is targeted by intracellular beta-amyloid. Mol Biol Cell 2009, 20: 1533–1544.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Dema Najem
    • 1
    • 2
  • Michelle Bamji-Mirza
    • 1
    • 2
  • Ze Yang
    • 3
  • Wandong Zhang
    • 1
    • 2
  1. 1.Faculty of MedicineUniversity of OttawaOttawaCanada
  2. 2.Human Health TherapeuticsNational Research Council of CanadaOttawaCanada
  3. 3.Beijing HospitalInstitute of Geriatrics-Chinese Health MinistryBeijingChina

Personalised recommendations