Skip to main content

Advertisement

Log in

Inhibition of Autophagy by Estradiol Promotes Locomotor Recovery after Spinal Cord Injury in Rats

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

17β-estradiol (E2) has been shown to have neuroprotective effects in different central nervous system diseases. The mechanisms underlying estrogen neuroprotection in spinal cord injury (SCI) remain unclear. Previous studies have shown that autophagy plays a crucial role in the course of nerve injury. In this study, we showed that E2 treatment improved the restoration of locomotor function and decreased the loss of motor neurons in SCI rats. Real-time PCR and western blot analysis revealed that the protective function of E2 was related to the suppression of LC3II and beclin-1 expression. Immunohistochemical study further confirmed that the immunoreactivity of LC3 in the motor neurons was down-regulated when treated with E2. In vitro studies demonstrated similar results that E2 pretreatment decreased the autophagic activity induced by rapamycin (autophagy sensitizer) and increased viability in a PC12 cell model. These results indicated that the neuroprotective effects of E2 in SCI are partly related to the suppression of excessive autophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Silva NA, Sousa N, Reis RL, Salgado AJ. From basics to clinical: A comprehensive review on spinal cord injury. Prog Neurobiol 2014, 114: 25–57.

    Article  PubMed  Google Scholar 

  2. Suzuki S, Brown CM, Wise PM. Neuroprotective effects of estrogens following ischemic stroke. Front Neuroendocrinol 2009, 30: 201–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hoffman GE, Merchenthaler I, Zup SL. Neuroprotection by ovarian hormones in animal models of neurological disease. Endocrine 2006, 29: 217–231.

    Article  CAS  PubMed  Google Scholar 

  4. Arevalo MA, Azcoitia I, Garcia-Segura LM. The neuroprotective actions of oestradiol and oestrogen receptors. Nat Rev Neurosci 2015, 16: 17–29.

    Article  CAS  PubMed  Google Scholar 

  5. Khaksari M, Abbasloo E, Dehghan F, Soltani Z, Asadikaram G. The brain cytokine levels are modulated by estrogen following traumatic brain injury: Which estrogen receptor serves as modulator? Int Immunopharmacol 2015, 28: 279–287.

    Article  CAS  PubMed  Google Scholar 

  6. Webb AA, Chan CB, Brown A, Saleh TM. Estrogen reduces the severity of autonomic dysfunction in spinal cord-injured male mice. Behav Brain Res 2006, 171: 338–49.

    Article  CAS  PubMed  Google Scholar 

  7. Ritz MF, Hausmann ON. Effect of 17β-estradiol on functional outcome, release of cytokines, astrocyte reactivity and inflammatory spreading after spinal cord injury in male rats. Brain Res 2008, 1203: 177–188.

    Article  CAS  PubMed  Google Scholar 

  8. Guptarak J, Wiktorowicz JE, Sadygov RG, Zivadinovic D, Paulucci-Holthauzen AA, Vergara L. The cancer drug tamoxifen: A potential therapeutic treatment for spinal cord injury. J Neurotrauma 2014, 31: 268–283.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mehta SH, Dhandapani KM, De Sevilla LM, Webb RC, Mahesh VB, Brann DW. Tamoxifen, a selective estrogen receptor modulator, reduces ischemic damage caused by middle cerebral artery occlusion in the ovariectomized female rat. Neuroendocrinology 2003, 77: 44–50.

    Article  CAS  PubMed  Google Scholar 

  10. Nikoletopoulou V, Papandreou ME, Tavernarakis N. Autophagy in the physiology and pathology of the central nervous system. Cell Death Differ 2015, 22: 398–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang ZY, Lin JH, Muharram A, Liu WG. Beclin-1-mediated autophagy protects spinal cord neurons against mechanical injury-induced apoptosis. Apoptosis 2014, 19: 933–945.

    Article  CAS  PubMed  Google Scholar 

  12. Kanno H, Ozawa H, Sekiguchi A, Yamaya S, Itoi E. Induction of autophagy and autophagic cell death in damaged neural tissue after acute spinal cord injury in mice. Spine (Phila Pa 1976) 2011, 36: E1427–E1434.

    Article  Google Scholar 

  13. Zeng M, Chen B, Qing Y, Xie W, Dang W, Zhao M, et al. Estrogen receptor β signaling induces autophagy and downregulates Glut9 expression. Nucleosides Nucleotides Nucleic Acids 2014, 33: 455–465.

    Article  CAS  PubMed  Google Scholar 

  14. Mosquera L, Colón JM, Santiago JM, Torrado AI, Meléndez M, Segarra AC, et al. Tamoxifen and estradiol improved locomotor function and increased spared tissue in rats after spinal cord injury: Their antioxidant effect and role of estrogen receptor alpha. Brain Res 2014, 1561: 11–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ma YL, Qin P, Li Y, Shen L, Wang SQ, Dong HL, et al. The effects of different doses of estradiol (E2) on cerebral ischemia in an in vitro model of oxygen and glucose deprivation and reperfusion and in a rat model of middle carotid artery occlusion. BMC Neurosci 2013, 14: 118.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yang Y, Zheng X, Li B, et al. Increased activity of osteocyte autophagy in ovariectomized rats and its correlation with oxidative stress status and bone loss. Biochem Biophys Res Commun 2014, 451: 86–92.

    Article  CAS  PubMed  Google Scholar 

  17. Beattie MS, Farooqui AA, Bresnahan JC. Review of current evidence for apoptosis after spinal cord injury. J Neurotrauma 2000, 17: 915–925.

    Article  CAS  PubMed  Google Scholar 

  18. Yong C, Arnold PM, Zoubine MN, Citron BA, Watanabe I, Berman NE, et al. Apoptosis in cellular compartments of rat spinal cord after severe contusion injury. J Neurotrauma 1998, 15: 459–472.

    Article  CAS  PubMed  Google Scholar 

  19. Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 2005, 171: 603–614.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY, et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell 2009, 137: 1062–1075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Penas C, Guzman MS, Verdu E, Fores J, Navarro X, Casas C. Spinal cord injury induces endoplasmic reticulum stress with different cell-type dependent response. J Neurochem 2007, 102: 1242–1255.

    Article  CAS  PubMed  Google Scholar 

  22. Cevikbas F, Steinhoff M, Ikoma A. Role of spinal neurotransmitter receptors in itch: New insights into therapies and drug development. CNS Neurosci Ther 2011, 17: 742–749.

    Article  PubMed  Google Scholar 

  23. Moon YJ, Lee JY, Oh MS, Pak YK, Park KS, Oh TH, et al. Inhibition of inflammation and oxidative stress by Angelica dahuricae radix extract decreases apoptotic cell death and improves functional recovery after spinal cord injury. J Neurosci Res 2012, 90: 243–256.

    Article  CAS  PubMed  Google Scholar 

  24. Chen CW, Chen TY, Tsai KL, Lin CL, Yokoyama KK, Lee WS, et al. Inhibition of autophagy as a therapeutic strategy of iron-induced brain injury after hemorrhage. Autophagy 2012, 8: 1510–1520.

    Article  CAS  PubMed  Google Scholar 

  25. Azcoitia I, Arevalo MA, De Nicola AF, Garcia-Segura LM. Neuroprotective actions of estradiol revisited. Trends Endocrinol Metab 2011, 22: 467–473.

    Article  CAS  PubMed  Google Scholar 

  26. Hao HH, Wang L, Guo ZJ, Bai L, Zhang RP, Shuang WB, et al. Valproic acid reduces autophagy and promotes functional recovery after spinal cord injury in rats. Neurosci Bull 2013, 29: 484–492.

    Article  CAS  PubMed  Google Scholar 

  27. Tang P, Hou H, Zhang L, Lan X, Mao Z, Liu D, et al. Autophagy reduces neuronal damage and promotes locomotor recovery via inhibition of apoptosis after spinal cord injury in rats. Mol Neurobiol. 2014, 49: 276–287.

    Article  CAS  PubMed  Google Scholar 

  28. Kanno H, Ozawa H, Sekiguchi A, Itoi E. Spinal cord injury induces upregulation of Beclin 1 and promotes autophagic cell death. Neurobiol Dis 2009, 33: 143–148.

    Article  CAS  PubMed  Google Scholar 

  29. Button RW, Luo S, Rubinsztein DC. Autophagic activity in neuronal cell death. Neurosci Bull 2015, 31: 382–394.

    Article  PubMed  Google Scholar 

  30. Sribnick EA, Matzelle DD, Ray SK, Banik NL. Estrogen treatment of spinal cord injury attenuates calpain activation and apoptosis. J Neurosci Res 2006, 84: 1064–1075.

    Article  CAS  PubMed  Google Scholar 

  31. Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell 2010, 140: 313–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS, et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 2008, 4: 151–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brown KN, Chen S, Han Z, Lu CH, Tan X, Zhang XJ, et al. Clonal production and organization of inhibitory interneurons in the neocortex. Science 2011, 334: 480–486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang YH, Chen K, Li B, Chen JW, Zheng XF, Wang YR, et al. Estradiol inhibits osteoblast apoptosis via promotion of autophagy through the ER-ERK-mTOR pathway. Apoptosis 2013, 18: 1363–1375.

    Article  CAS  PubMed  Google Scholar 

  35. Vanderhorst VG, Gustafsson JA, Ulfhake B. Estrogen receptor-alpha and -beta immunoreactive neurons in the brainstem and spinal cord of male and female mice: Relationships to monoaminergic, cholinergic, and spinal projection systems. J Comp Neurol 2005, 488: 152–179.

    Article  PubMed  Google Scholar 

  36. Hu R1, Sun H, Zhang Q, Chen J, Wu N, Meng H et al. G-protein coupled estrogen receptor 1 mediated estrogenic neuroprotection against spinal cord injury. Crit Care Med 2012, 40: 3230–3237.

  37. Vivacqua A, Bonofiglio D, Albanito L, Madeo A, Rago V, Carpino A, et al. 17beta-estradiol, genistein, and 4-hydroxytamoxifen induce the proliferation of thyroid cancer cells through the g protein-coupled receptor GPR30. Mol Pharmacol 2006, 70: 1414–1423.

    Article  CAS  PubMed  Google Scholar 

  38. Chen J, Hu R, Ge H, Duanmu W, Li Y, Xue X, et al. G-protein-coupled receptor 30-mediated antiapoptotic effect of estrogen on spinal motor neurons following injury and its underlying mechanisms. Mol Med Rep 2015, 12: 1733–1740.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Zhejiang Province, China (LY14H060009), National Natural Science Foundation of China (80215097), Science-technology Program of Wenzhou Municipal Sci-Tech Bureau, China (Y20150226) and the key Discipline Construction Project of Colleges and Universities in Zhejiang Province, China (2012-207).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Lin Teng.

Additional information

Chao-Wei Lin and Bi Chen have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 61 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, CW., Chen, B., Huang, KL. et al. Inhibition of Autophagy by Estradiol Promotes Locomotor Recovery after Spinal Cord Injury in Rats. Neurosci. Bull. 32, 137–144 (2016). https://doi.org/10.1007/s12264-016-0017-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-016-0017-x

Keywords

Navigation