Skip to main content

Advertisement

Log in

Rho-Associated Kinase Inhibitors Promote Microglial Uptake Via the ERK Signaling Pathway

Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Microglia are immunocompetent cells in the central nervous system that take up tissue debris and pathogens. Rho-associated kinase (ROCK) has been identified as an important regulator of uptake, proliferation, secretion, and differentiation in a number of cell types. Although ROCK plays critical roles in the microglial secretion of inflammatory factors, migration, and morphology, its effects on microglial uptake activity have not been well characterized. In the present study, we found that treatment of BV2 microglia and primary microglia with the ROCK inhibitors Y27632 and fasudil increased uptake activity and was associated with morphological changes. Furthermore, western blots showed that this increase in uptake activity was mediated through the extracellular-signal-regulated kinase (ERK) signaling cascade, indicating the importance of ROCK in regulating microglial uptake activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Lawson LJ, Perry VH, Dri P, Gordon S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 1990, 39: 151–170.

    Article  CAS  PubMed  Google Scholar 

  2. Streit WJ, Conde JR, Fendrick SE, Flanary BE, Mariani CL. Role of microglia in the central nervous system’s immune response. Neurol Res 2005, 27: 685–691.

    PubMed  Google Scholar 

  3. Gitik M, Reichert F, Rotshenker S. Cytoskeleton plays a dual role of activation and inhibition in myelin and zymosan phagocytosis by microglia. FASEB J 2010, 24: 2211–2221.

    Article  CAS  PubMed  Google Scholar 

  4. Tosello-Trampont AC, Nakada-Tsukui K, Ravichandran KS. Engulfment of apoptotic cells is negatively regulated by Rho-mediated signaling. J Biol Chem 2003, 278: 49911–49919.

    Article  CAS  PubMed  Google Scholar 

  5. Swanson JA. Shaping cups into phagosomes and macropinosomes. Nat Rev Mol Cell Biol 2008, 9: 639–649.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Pellegrin S, Mellor H. Actin stress fibres. J Cell Sci 2007, 120: 3491–3499.

    Article  CAS  PubMed  Google Scholar 

  7. Clark K, Langeslag M, Figdor CG, van Leeuwen FN. Myosin II and mechanotransduction: a balancing act. Trends Cell Biol 2007, 17: 178–186.

    Article  CAS  PubMed  Google Scholar 

  8. Ishizaki T, Maekawa M, Fujisawa K, Okawa K, Iwamatsu A, Fujita A, et al. The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase. EMBO J 1996, 15: 1885–1893.

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Matsui T, Amano M, Yamamoto T, Chihara K, Nakafuku M, Ito M, et al. Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. EMBO J 1996, 15: 2208–2216.

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Riento K, Ridley AJ. Rocks: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol 2003, 4: 446–456.

    Article  CAS  PubMed  Google Scholar 

  11. Cox D, Chang P, Zhang Q, Reddy PG, Bokoch GM, Greenberg S. Requirements for both Rac1 and Cdc42 in membrane ruffling and phagocytosis in leukocytes. J Exp Med 1997, 186: 1487–1494.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Caron E, Hall A. Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 1998, 282: 1717–1721.

    Article  CAS  PubMed  Google Scholar 

  13. Tosello-Trampont AC, Brugnera E, Ravichandran KS. Evidence for a conserved role for CRKII and Rac in engulfment of apoptotic cells. J Biol Chem 2001, 276: 13797–13802.

    CAS  PubMed  Google Scholar 

  14. Massol P, Montcourrier P, Guillemot JC, Chavrier P. Fc receptor-mediated phagocytosis requires CDC42 and Rac1. EMBO J 1998, 17: 6219–6229.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Gumienny TL, Brugnera E, Tosello-Trampont AC, Kinchen JM, Haney LB, Nishiwaki K, et al. CED-12/ELMO, a novel member of the CrkII/Dock180/Rac pathway, is required for phagocytosis and cell migration. Cell 2001, 107: 27–41.

    Article  CAS  PubMed  Google Scholar 

  16. Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS, et al. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem 1998, 273: 18623–18632.

    Article  CAS  PubMed  Google Scholar 

  17. Olson MF. Applications for ROCK kinase inhibition. Curr Opin Cell Biol 2008, 20: 242–248.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Miyata K, Shimokawa H, Kandabashi T, Higo T, Morishige K, Eto Y, et al. Rho-kinase is involved in macrophage-mediated formation of coronary vascular lesions in pigs in vivo. Arterioscler Thromb Vasc Biol 2000, 20: 2351–2358.

    Article  CAS  PubMed  Google Scholar 

  19. John GR, Chen L, Rivieccio MA, Melendez-Vasquez CV, Hartley A, Brosnan CF. Interleukin-1beta induces a reactive astroglial phenotype via deactivation of the Rho GTPase-Rock axis. J Neurosci 2004, 24: 2837–2845.

    Article  CAS  PubMed  Google Scholar 

  20. Racchetti G, D’Alessandro R, Meldolesi J. Astrocyte stellation, a process dependent on Rac1 is sustained by the regulated exocytosis of enlargeosomes. Glia 2012, 60: 465–475.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Ding J, Li QY, Wang X, Sun CH, Lu CZ, Xiao BG. Fasudil protects hippocampal neurons against hypoxia-reoxygenation injury by suppressing microglial inflammatory responses in mice. J Neurochem 2010, 114: 1619–1629.

    Article  CAS  PubMed  Google Scholar 

  22. Kato M, Neil TK, Fearnley DB, McLellan AD, Vuckovic S, Hart DN. Expression of multilectin receptors and comparative FITC-dextran uptake by human dendritic cells. Int Immunol 2000, 12: 1511–1519.

    Article  CAS  PubMed  Google Scholar 

  23. Hu X, Zhang W, Wang L, Wan N, Wang B, Li W, et al. The detailed analysis of the changes of murine dendritic cells (DCs) induced by thymic peptide: pidotimod(PTD). Hum Vaccin Immunother 2012, 8: 1250–1258.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Miao J, Ding M, Zhang A, Xiao Z, Qi W, Luo N, et al. Pleiotrophin promotes microglia proliferation and secretion of neurotrophic factors by activating extracellular signal-regulated kinase 1/2 pathway. Neurosci Res 2012, 74: 269–276.

    Article  CAS  PubMed  Google Scholar 

  25. Calvo M, Zhu N, Grist J, Ma Z, Loeb JA, Bennett DL. Following nerve injury neuregulin-1 drives microglial proliferation and neuropathic pain via the MEK/ERK pathway. Glia 2011, 59: 554–568.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Ellert-Miklaszewska A, Dabrowski M, Lipko M, Sliwa M, Maleszewska M, Kaminska B. Molecular definition of the pro-tumorigenic phenotype of glioma-activated microglia. Glia 2013, 61: 1178–1190.

    Article  PubMed  Google Scholar 

  27. Martin R, Cordova C, Nieto ML. Secreted phospholipase A2-IIA-induced a phenotype of activated microglia in BV-2 cells requires epidermal growth factor receptor transactivation and proHB-EGF shedding. J Neuroinflammation 2012, 9: 154.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Hoffmann A, Hofmann F, Just I, Lehnardt S, Hanisch UK, Bruck W, et al. Inhibition of Rho-dependent pathways by Clostridium botulinum C3 protein induces a proinflammatory profile in microglia. Glia 2008, 56: 1162–1175.

    Article  PubMed  Google Scholar 

  29. Yan J, Zhou X, Guo JJ, Mao L, Wang YJ, Sun J, et al. Nogo-66 inhibits adhesion and migration of microglia via GTPase Rho pathway in vitro. J Neurochem 2012, 120: 721–731.

    Article  CAS  PubMed  Google Scholar 

  30. Schwab JM, Conrad S, Elbert T, Trautmann K, Meyermann R, Schluesener HJ. Lesional RhoA + cell numbers are suppressed by anti-inflammatory, cyclooxygenase-inhibiting treatment following subacute spinal cord injury. Glia 2004, 47: 377–386.

    Article  PubMed  Google Scholar 

  31. Takenouchi T, Iwamaru Y, Sugama S, Sato M, Hashimoto M, Kitani H. Lysophospholipids and ATP mutually suppress maturation and release of IL-1 beta in mouse microglial cells using a Rho-dependent pathway. J Immunol 2008, 180: 7827–7839.

    Article  CAS  PubMed  Google Scholar 

  32. Bernhart E, Kollroser M, Rechberger G, Reicher H, Heinemann A, Schratl P, et al. Lysophosphatidic acid receptor activation affects the C13NJ microglia cell line proteome leading to alterations in glycolysis, motility, and cytoskeletal architecture. Proteomics 2010, 10: 141–158.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Silverstein SC, Steinman RM, Cohn ZA. Endocytosis. Annu Rev Biochem 1977, 46: 669-722.

    Article  CAS  PubMed  Google Scholar 

  34. Michl J. Receptor mediated endocytosis. Am J Clin Nutr 1980, 33: 2462–2471.

    CAS  PubMed  Google Scholar 

  35. Anand RJ, Dai S, Gribar SC, Richardson W, Kohler JW, Hoffman RA, et al. A role for connexin43 in macrophage phagocytosis and host survival after bacterial peritoneal infection. J Immunol 2008, 181: 8534–8543.

    Article  CAS  PubMed  Google Scholar 

  36. Orlando KA, Pittman RN. Rho kinase regulates phagocytosis, surface expression of GlcNAc, and Golgi fragmentation of apoptotic PC12 cells. Exp Cell Res 2006, 312: 3298–3311.

    Article  CAS  PubMed  Google Scholar 

  37. Boe DM, Richens TR, Horstmann SA, Burnham EL, Janssen WJ, Henson PM, et al. Acute and chronic alcohol exposure impair the phagocytosis of apoptotic cells and enhance the pulmonary inflammatory response. Alcohol Clin Exp Res 2010, 34: 1723–1732.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Shi J, Wei L. Rho kinase in the regulation of cell death and survival. Arch Immunol Ther Exp (Warsz) 2007, 55: 61–75.

    Article  Google Scholar 

  39. Moon C, Lee YJ, Park HJ, Chong YH, Kang JL. N-acetylcysteine inhibits RhoA and promotes apoptotic cell clearance during intense lung inflammation. Am J Respir Crit Care Med 2010, 181: 374–387.

    Article  CAS  PubMed  Google Scholar 

  40. Zhou Q, Gensch C, Liao JK. Rho-associated coiled-coil-forming kinases (ROCKs): potential targets for the treatment of atherosclerosis and vascular disease. Trends Pharmacol Sci 2011, 32: 167–173.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Khyrul WA, LaLonde DP, Brown MC, Levinson H, Turner CE. The integrin-linked kinase regulates cell morphology and motility in a rho-associated kinase-dependent manner. J Biol Chem 2004, 279: 54131–54139.

    Article  CAS  PubMed  Google Scholar 

  42. Leemhuis J, Boutillier S, Schmidt G, Meyer DK. The protein kinase A inhibitor H89 acts on cell morphology by inhibiting Rho kinase. J Pharmacol Exp Ther 2002, 300: 1000–1007.

    Article  CAS  PubMed  Google Scholar 

  43. Honjo M, Tanihara H, Inatani M, Kido N, Sawamura T, Yue BY, et al. Effects of rho-associated protein kinase inhibitor Y-27632 on intraocular pressure and outflow facility. Invest Ophthalmol Vis Sci 2001, 42: 137–144.

    CAS  PubMed  Google Scholar 

  44. Mammoto A, Huang S, Moore K, Oh P, Ingber DE. Role of RhoA, mDia, and ROCK in cell shape-dependent control of the Skp2-p27kip1 pathway and the G1/S transition. J Biol Chem 2004, 279: 26323–26330.

    Article  CAS  PubMed  Google Scholar 

  45. Rousseau M, Gaugler MH, Rodallec A, Bonnaud S, Paris F, Corre I. RhoA GTPase regulates radiation-induced alterations in endothelial cell adhesion and migration. Biochem Biophys Res Commun 2011, 414: 750–755.

    Article  CAS  PubMed  Google Scholar 

  46. Kitzing TM, Sahadevan AS, Brandt DT, Knieling H, Hannemann S, Fackler OT, et al. Positive feedback between Dia1, LARG, and RhoA regulates cell morphology and invasion. Genes Dev 2007, 21: 1478–1483.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Lino N, Fiore L, Rapacioli M, Teruel L, Flores V, Scicolone G, et al. uPA-uPAR molecular complex is involved in cell signaling during neuronal migration and neuritogenesis. Dev Dyn 2014, 243: 676–689.

    Article  CAS  PubMed  Google Scholar 

  48. Wang SC, Lin XL, Li J, Zhang TT, Wang HY, Shi JW, et al. MicroRNA-122 triggers mesenchymal-epithelial transition and suppresses hepatocellular carcinoma cell motility and invasion by targeting RhoA. PLoS One 2014, 9: e101330.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Hsu YY, Shi GY, Kuo CH, Liu SL, Wu CM, Ma CY, et al. Thrombomodulin is an ezrin-interacting protein that controls epithelial morphology and promotes collective cell migration. FASEB J 2012, 26: 3440–3452.

    Article  CAS  PubMed  Google Scholar 

  50. Vogler M, Vogel S, Krull S, Farhat K, Leisering P, Lutz S, et al. Hypoxia modulates fibroblastic architecture, adhesion and migration: a role for HIF-1alpha in cofilin regulation and cytoplasmic actin distribution. PLoS One 2013, 8: e69128.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Doherty GJ, Ahlund MK, Howes MT, Moren B, Parton RG, McMahon HT, et al. The endocytic protein GRAF1 is directed to cell-matrix adhesion sites and regulates cell spreading. Mol Biol Cell 2011, 22: 4380–4389.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Villanueva J, Yung Y, Walker JL, Assoian RK. ERK activity and G1 phase progression: identifying dispensable versus essential activities and primary versus secondary targets. Mol Biol Cell 2007, 18: 1457–1463.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Kim JS, Kim JG, Jeon CY, Won HY, Moon MY, Seo JY, et al. Downstream components of RhoA required for signal pathway of superoxide formation during phagocytosis of serum opsonized zymosans in macrophages. Exp Mol Med 2005, 37: 575–587.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (81471200 and 81000521), and the National Basic Research Development Program of China (2011CB504403).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, P., Tang, R., Yu, Z. et al. Rho-Associated Kinase Inhibitors Promote Microglial Uptake Via the ERK Signaling Pathway. Neurosci. Bull. 32, 83–91 (2016). https://doi.org/10.1007/s12264-016-0013-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-016-0013-1

Keywords

Navigation