Skip to main content

Advertisement

Log in

Direct lineage conversion of astrocytes to induced neural stem cells or neurons

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Since the generation of induced pluripotent stem cells in 2006, cellular reprogramming has attracted increasing attention as a revolutionary strategy for cell replacement therapy. Recent advances have revealed that somatic cells can be directly converted into other mature cell types, which eliminates the risk of neoplasia and the generation of undesired cell types. Astrocytes become reactive and undergo proliferation, which hampers axon regeneration following injury, stroke, and neurodegenerative diseases. An emerging technique to directly reprogram astrocytes into induced neural stem cells (iNSCs) and induced neurons (iNs) by neural fate determinants brings potential hope to cell replacement therapy for the above neurological problems. Here, we discuss the development of direct reprogramming of various cell types into iNs and iNSCs, then detail astrocyte-derived iNSCs and iNs in vivo and in vitro. Finally, we highlight the unsolved challenges and opportunities for improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kahle MP, Bix GJ. Neuronal restoration following ischemic stroke: influences, barriers, and therapeutic potential. Neurorehabil Neural Repair 2013, 27: 469–478.

    Article  PubMed  Google Scholar 

  2. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126: 663–676.

    Article  CAS  PubMed  Google Scholar 

  3. Ben-David U, Benvenisty N. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer 2011, 11: 268–277.

    Article  CAS  PubMed  Google Scholar 

  4. Efe JA, Hilcove S, Kim J, Zhou H, Ouyang K, Wang G, et al. Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nat Cell Biol 2011, 13: 215–222.

    Article  CAS  PubMed  Google Scholar 

  5. Huang P, He Z, Ji S, Sun H, Xiang D, Liu C, et al. Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature 2011, 475: 386–389.

    Article  CAS  PubMed  Google Scholar 

  6. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 2010, 463: 1035–1041.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Myer D J, Gurkoff GG, Lee SM, Hovda DA, Sofroniew MV. Essential protective roles of reactive astrocytes in traumatic brain injury. Brain 2006, 129 (Pt 10): 2761–2772.

    Article  Google Scholar 

  8. Yiu G, He Z. Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 2006, 7: 617–627.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Amamoto R, Arlotta P. Development-inspired reprogramming of the mammalian central nervous system. Science 2014, 343: 1239882.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 2010, 463: 1035–1041.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Shan ZY, Liu F, Lei L, Li QM, Jin LH, Wu YS, et al. Generation of dorsal spinal cord GABAergic neurons from mouse embryonic stem cells. Cell Reprogram 2011, 13: 85–91.

    Article  CAS  PubMed  Google Scholar 

  12. Thoma EC, Wischmeyer E, Offen N, Maurus K, Siren AL, Schartl M, et al. Ectopic expression of neurogenin 2 alone is sufficient to induce differentiation of embryonic stem cells into mature neurons. PLoS One 2012, 7: e38651.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Wu CY, Whye D, Mason RW, Wang W. Efficient differentiation of mouse embryonic stem cells into motor neurons. J Vis Exp 2012, (64): e3813.

    Google Scholar 

  14. Rouaux C, Arlotta P. Direct lineage reprogramming of postmitotic callosal neurons into corticofugal neurons in vivo. Nat Cell Biol 2013, 15: 214–221.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Liu X, Li F, Stubblefield EA, Blanchard B, Richards TL, Larson GA, et al. Direct reprogramming of human fibroblasts into dopaminergic neuron-like cells. Cell Res 2012, 22: 321–332.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Pfisterer U, Kirkeby A, Torper O, Wood J, Nelander J, Dufour A, et al. Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci U S A 2011, 108: 10343–10348.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Caiazzo M, Dell’Anno MT, Dvoretskova E, Lazarevic D, Taverna S, Leo D, et al. Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 2011, 476: 224–227.

    Article  CAS  PubMed  Google Scholar 

  18. Lee ST, Chu K, Jung KH, Song YM, Jeon D, Kim SU, et al. Direct generation of neurosphere-like cells from human dermal fibroblasts. PLoS One 2011, 6: e21801.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Lujan E, Chanda S, Ahlenius H, Sudhof TC, Wernig M. Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells. Proc Natl Acad Sci U S A 2012, 109: 2527–2532.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Thier M, Worsdorfer P, Lakes YB, Gorris R, Herms S, Opitz T, et al. Direct conversion of fibroblasts into stably expandable neural stem cells. Cell Stem Cell 2012, 10: 473–479.

    Article  CAS  PubMed  Google Scholar 

  21. Han DW, Tapia N, Hermann A, Hemmer K, Hoing S, Arauzo-Bravo MJ, et al. Direct reprogramming of fibroblasts into neural stem cells by defined factors. Cell Stem Cell 2012, 10: 465–472.

    Article  CAS  PubMed  Google Scholar 

  22. Ring KL, Tong LM, Balestra ME, Javier R, Andrews-Zwilling Y, Li G, et al. Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell 2012, 11: 100–109.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA. In vivo reprogramming of adult pancreatic exocrine cells to betacells. Nature 2008, 455: 627–632.

    Article  CAS  PubMed  Google Scholar 

  24. Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 2012, 485: 593–598.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. De la Rossa A, Bellone C, Golding B, Vitali I, Moss J, Toni N, et al. In vivo reprogramming of circuit connectivity in postmitotic neocortical neurons. Nat Neurosci 2013, 16: 193–200.

    Article  PubMed  Google Scholar 

  26. Su Z, Niu W, Liu ML, Zou Y, Zhang CL. In vivo conversion of astrocytes to neurons in the injured adult spinal cord. Nat Commun 2014, 53338.

  27. Niu W, Zang T, Zou Y, Fang S, Smith DK, Bachoo R, et al. In vivo reprogramming of astrocytes to neuroblasts in the adult brain. Nat Cell Biol 2013, 15:1164–1175.

    Article  CAS  PubMed  Google Scholar 

  28. Guo Z, Zhang L, Wu Z, Chen Y, Wang F, Chen G. In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model. Cell Stem Cell 2014, 14: 188–202.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Berninger B. Making neu rons from mature glia: a far-fetched dream? Neuropharmacology 2010, 58: 894–902.

    Article  CAS  PubMed  Google Scholar 

  30. Malatesta P, Appolloni I, Calzolari F. Radial glia and neural stem cells. Cell Tissue Res 2008, 331: 165–178.

    Article  PubMed  Google Scholar 

  31. Buffo A, Rite I, Tripathi P, Lepier A, Colak D, Horn AP, et al. Origin and progeny of reactive gliosis: A source of multipotent cells in the injured brain. Proc Natl Acad Sci U S A 2008, 105: 3581–3586.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Liu Z, Li Y, Cui Y, Roberts C, Lu M, Wilhelmsson U, et al. Beneficial effects of gfap/vimentin reactive astrocytes for axonal remodeling and motor behavioral recovery in mice after stroke. Glia 2014, 62: 2022–2033.

    Article  PubMed  Google Scholar 

  33. Pitter KL, Tamagno I, Feng X, Ghosal K, Amankulor N, Holland EC, et al. The SHH/Gli pathway is reactivated in reactive glia and drives proliferation in response to neurodegeneration-induced lesions. Glia 2014, 62: 1595–1607.

    Article  PubMed  Google Scholar 

  34. Ganat YM, Silbereis J, Cave C, Ngu H, Anderson GM, Ohkubo Y, et al. Early postnatal astroglial cells produce multilineage precursors and neural stem cells in vivo. J Neurosci 2006, 26: 8609–8621.

    Article  CAS  PubMed  Google Scholar 

  35. Lang B, Liu HL, Liu R, Feng G D, Jiao XY, Ju G. Astrocytes in injured adult rat spinal cord may acquire the potential of neural stem cells. Neuroscience 2004, 128: 775–783.

    Article  CAS  PubMed  Google Scholar 

  36. Robel S, Berninger B, Gotz M. The stem cell potential of glia: lessons from reactive gliosis. Nat Rev Neurosci 2011, 12: 88–104.

    Article  CAS  PubMed  Google Scholar 

  37. Shimada IS, LeComte MD, Granger JC, Quinlan NJ, Spees JL. Self-renewal and differentiation of reactive astrocytederived neural stem/progenitor cells isolated from the cortical peri-infarct area after stroke. J Neurosci 2012, 32: 7926–7940.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Sirko S, Behrendt G, Johansson P A, Tripathi P, Costa M, Bek S, et al. Reactive glia in the injured brain acquire stem cell properties in response to sonic hedgehog. [corrected]. Cell Stem Cell 2013, 12: 426–439.

    Article  CAS  PubMed  Google Scholar 

  39. Heins N, Malatesta P, Cecconi F, Nakafuku M, Tucker KL, Hack MA, et al. Glial cells generate neurons: the role of the transcription factor Pax6. Nat Neurosci 2002, 5: 308–315.

    Article  CAS  PubMed  Google Scholar 

  40. Berninger B, Costa MR, Koch U, Schroeder T, Sutor B, Grothe B, et al. Functional properties of neurons derived from in vitro reprogrammed postnatal astroglia. J Neurosci 2007, 27: 8654–8664.

    Article  CAS  PubMed  Google Scholar 

  41. Heinrich C, Blum R, Gascon S, Masserdotti G, Tripathi P, Sanchez R, et al. Directing astroglia from the cerebral cortex into subtype specific functional neurons. PLoS Biol 2010, 8: e1000373.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Corti S, Nizzardo M, Simone C, Falcone M, Donadoni C, Salani S, et al. Direct reprogramming of human astrocytes into neural stem cells and neurons. Exp Cell Res 2012, 318: 1528–1541.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Torper O, Pfisterer U, Wolf DA, Pereira M, Lau S, Jakobsson J, et al. Generation of induced neurons via direct conversion in vivo. Proc Natl Acad Sci U S A 2013, 110:7038–7043.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Zhao C, Teng EM, Summers RJ, Ming GL, Gage FH. Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci 2006, 26: 3–11.

    Article  CAS  PubMed  Google Scholar 

  45. Lu J, Bradley RA, Zhang SC. Turning reactive glia into functional neurons in the brain. Cell Stem Cell 2014, 14: 133–134.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Lee ST, Chu K, Jung KH, Kim SJ, Kim DH, Kang KM, et al. Anti-inflammatory mechanism of intravascular neural stem cell transplantation in haemorrhagic stroke. Brain 2008, 131 (Pt 3): 616–629.

    Article  Google Scholar 

  47. Einstein O, Grigoriadis N, Mizrachi-Kol R, Reinhartz E, Polyzoidou E, Lavon I, et al. Transplanted neural precursor cells reduce brain inflammation to attenuate chronic experimental autoimmune encephalomyelitis. Exp Neurol 2006, 198: 275–284.

    Article  CAS  PubMed  Google Scholar 

  48. Aharonowiz M, Einstein O, Fainstein N, Lassmann H, Reubinoff B, Ben-Hur T. Neuroprotective effect of transplanted human embryonic stem cell-derived neural precursors in an animal model of multiple sclerosis. PLoS One 2008, 3: e3145.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Kokaia Z, Martino G, Schwartz M, Lindvall O. Cross-talk between neural stem cells and immune cells: the key to better brain repair? Nat Neurosci 2012, 15: 1078–1087.

    Article  CAS  PubMed  Google Scholar 

  50. De Feo D, Merlini A, Laterza C, Martino G. Neural stem cell transplantation in central nervous system disorders: from cell replacement to neuroprotection. Curr Opin Neurol 2012, 25: 322–333.

    Article  PubMed  Google Scholar 

  51. Andres RH, Horie N, Slikker W, Keren-Gill H, Zhan K, Sun G, et al. Human neural stem cells enhance structural plasticity and axonal transport in the ischaemic brain. Brain 2011, 134(Pt 6): 1777–1789.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Xia GN, Zou Y, Wang YC, Xia QJ, Lu BT, Wang TH, et al. Neural stem cells grafts decrease neural apoptosis associated with caspase-7 downregulation and BDNF upregulation in rats following spinal cord hemisection. Cell Mol Neurobiol 2013, 33: 1013–1022.

    Article  CAS  PubMed  Google Scholar 

  53. Tang Y, Wang J, Lin X, Wang L, Shao B, Jin K, et al. Neural stem cell protects aged rat brain from ischemia-reperfusion injury through neurogenesis and angiogenesis. J Cereb Blood Flow Metab 2014, 34: 1138–1147.

    Article  CAS  PubMed  Google Scholar 

  54. Aguila JC, Hedlund E, Sanchez-Pernaute R. Cell ular programming and reprogramming: sculpting cell fate for the production of dopamine neurons for cell therapy. Stem Cells Int 2012, 2012412040.

  55. Hu K. All roads lead to induced pluripotent stem cells — The technologies of iPSC generation. Stem Cells Dev 2014, 23: 1285–1300.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Lentz TB, Gray SJ, Samulski RJ. Viral vectors f or gene delivery to the central nervous system. Neurobiol Dis 2012, 48: 179–188.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Addis RC, Hsu FC, Wright RL, Dichter MA, Coulter DA, Gearhart JD. Efficient conversion of astrocytes to functional midbrain dopaminergic neurons using a single polycistronic vector. PLoS One 2011, 6 (12): e28719.

    Article  Google Scholar 

  58. Varga E, Nemes C, Davis RP, Ujhelly O, Klincumhom N, Polgar Z, et al. Generation of transgene-free mouse induced pluripotent stem cells using an excisable lentiviral system. Exp Cell Res 2014, 322: 335–344.

    Article  CAS  PubMed  Google Scholar 

  59. Zhang QE, Liu SP, Liu YF, Zhang HY, Yuan WP, Chen GB, et al. Efficient reprogramming of human cord blood CD34(+) cells for formation of induced pluripotent stem cells with nonintegrating plasmid system. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2013, 21: 728–734.

    CAS  PubMed  Google Scholar 

  60. Wang L, Wang L, Huang W, Su H, Xue Y, Su Z, et al. Generation of integration-free neural progenitor cells from cells in human urine. Nat Methods 2013, 10: 84–89.

    Article  CAS  PubMed  Google Scholar 

  61. Woltjen K, Hamalainen R, Kibschull M, Mileikovsky M, Nagy A. Transgene-free production of pluripotent stem cells using piggyBac transposons. Methods Mol Biol 2011, 767: 87–103.

    CAS  PubMed  Google Scholar 

  62. Thier M, Munst B, Edenhofer F. Exploring refined conditions for reprogramming cells by recombinant Oct4 protein. Int J Dev Biol 2010, 54(11–12): 1713–1721.

    Article  CAS  PubMed  Google Scholar 

  63. Thier M, Munst B, Mielke S, Edenhofer F. Cellular reprogramming employing recombinant sox2 protein. Stem Cells Int 2012, 2012549846.

    Google Scholar 

  64. Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li Y, et al. MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 2011, 476: 228–231.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Ambasudhan R, Talantova M, Coleman R, Yuan X, Zhu S, Lipton SA, et al. Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem Cell 2011, 9: 113–118.

    Article  CAS  PubMed  Google Scholar 

  66. Shaer A, Azarpira N, Karimi MH. Differentiation of human induced pluripotent stem cells into insulin-like cell clusters with miR-186 and miR-375 by using chemical transfection. Appl Biochem Biotechnol 2014, 174: 242–258.

    Article  CAS  PubMed  Google Scholar 

  67. Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, et a l. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 2010, 7: 618–630.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Matlik K, Abo-Ramadan U, Harvey BK, Arumae U, Airavaara M. AAV-mediated targeting of gene expression to the periinfarct region in rat cortical stroke model. J Neurosci Methods 2014, 236: 107–113.

    Article  CAS  PubMed  Google Scholar 

  69. Smith BK, Collins SW, Conlon TJ, Mah CS, Lawson LA, Martin AD, et al. Phase I/II trial of adeno-associated virusmediated alpha-glucosidase gene therapy to the diaphragm for chronic respiratory failure in Pompe disease: initial safety and ventilatory outcomes. Hum Gene Ther 2013, 24: 630–640.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Weinberg MS, Samulski RJ, McCown TJ. Adeno-associated virus (AAV) gene therapy for neurological disease. Neuropharmacology 2013, 69: 82–88.

    Article  CAS  PubMed  Google Scholar 

  71. Cheng L, Hu W, Qiu B, Zhao J, Yu Y, Guan W, et al. Generatio n of neural progenitor cells by chemical cocktails and hypoxia. Cell Res 2014, 24: 665–679.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Amini S, Fathi F, Mobalegi J, Sofimajidpour H, Ghadimi T. The expressions of stem cell markers: Oct4, Nanog, Sox2, nucleostemin, Bmi, Zfx, Tcl1, Tbx3, Dppa4, and Esrrb in bladder, colon, and prostate cancer, and certain cancer cell lines. Anat Cell Biol 2014, 47: 1–11.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Lu Y, Futtner C, Rock JR, Xu X, Whitworth W, Hogan BL, et al. Evidence that SOX2 overexpression is oncogenic in the lung. PLoS One 2010, 5: e11022.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Gonzalez-Marquez R, Llorente JL, Rodrigo JP, Garcia Pedrero JM, Alvarez-Marcos C, Suarez C, et al. SOX2 expression in hypopharyngeal, laryngeal, and sinonasal squamous cell carcinoma. Hum Pathol 2014, 45: 851–857.

    Article  CAS  PubMed  Google Scholar 

  75. Gardlik R. Inducing pluripotency using in vivo gene therapy. Me d Hypotheses 2012, 79: 197–201.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Tan, S. Direct lineage conversion of astrocytes to induced neural stem cells or neurons. Neurosci. Bull. 31, 357–367 (2015). https://doi.org/10.1007/s12264-014-1517-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-014-1517-1

Keywords

Navigation