Skip to main content

Advertisement

Log in

Genetic studies of schizophrenia: an update

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Schizophrenia (SCZ) is a complex and heterogeneous mental disorder that affects about 1% of global population. In recent years, considerable progress has been made in genetic studies of SCZ. A number of common variants with small effects and rare variants with relatively larger effects have been identified. These variants include risk loci identified by genome-wide association studies, rare copy-number variants identified by comparative genomic analyses, and de novo mutations identified by high-throughput DNA sequencing. Collectively, they contribute to the heterogeneity of the disease. In this review, we update recent discoveries in the field of SCZ genetics, and outline the perspectives of future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leucht S, Burkard T, Henderson J, Maj M, Sartorius N. Physical illness and schizophrenia: a review of the literature. Acta Psychiatr Scand 2007, 116: 317–333.

    CAS  PubMed  Google Scholar 

  2. Crow TJ. The two-syndrome concept: origins and current status. Schizophr Bull 1985, 11: 471–486.

    CAS  PubMed  Google Scholar 

  3. Andreasen NC. A unitary model of schizophrenia: Bleuler’s “fragmented phrene” as schizencephaly. Arch Gen Psychiatry 1999, 56: 781–787.

    CAS  PubMed  Google Scholar 

  4. Sass LA, Parnas J. Schizophrenia, consciousness, and the self. Schizophr Bull 2003, 29: 427–444.

    PubMed  Google Scholar 

  5. Hafner H, Maurer K, Loffler W, Riecher-Rossler A. The influence of age and sex on the onset and early course of schizophrenia. Br J Psychiatry 1993, 162: 80–86.

    CAS  PubMed  Google Scholar 

  6. Millier A, Schmidt U, Angermeyer MC, Chauhan D, Murthy V, Toumi M, et al. Humanistic burden in schizophrenia: a literature review. J Psychiatr Res 2014, 54: 85–93.

    CAS  PubMed  Google Scholar 

  7. Lichtenstein P, Yip BH, Bjork C, Pawitan Y, Cannon TD, Sullivan PF, et al. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet 2009, 373: 234–239.

    CAS  PubMed  Google Scholar 

  8. Wray NR, Gottesman II. Using summary data from the danish national registers to estimate heritabilities for schizophrenia, bipolar disorder, and major depressive disorder. Front Genet 2012, 3: 118.

    PubMed Central  PubMed  Google Scholar 

  9. Sullivan PF, Kendler KS, Neale MC. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 2003, 60: 1187–1192.

    PubMed  Google Scholar 

  10. Voisey J, Swagell CD, Hughes IP, Lawford BR, Young RM, Morris CP. Analysis of HapMap tag-SNPs in dysbindin (DTNBP1) reveals evidence of consistent association with schizophrenia. Eur Psychiatry 2010, 25: 314–319.

    CAS  PubMed  Google Scholar 

  11. Shi J, Gershon ES, Liu C. Genetic associations with schizophrenia: meta-analyses of 12 candidate genes. Schizophr Res 2008, 104: 96–107.

    PubMed Central  PubMed  Google Scholar 

  12. Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, Sullivan PF, et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009, 460: 748–752.

    CAS  PubMed  Google Scholar 

  13. Debnath M, Cannon DM, Venkatasubramanian G. Variation in the major histocompatibility complex [MHC] gene family in schizophrenia: associations and functional implications. Prog Neuropsychopharmacol Biol Psychiatry 2013, 42: 49–62.

    CAS  PubMed  Google Scholar 

  14. Corvin A, Morris DW. Genome-wide association studies: findings at the major histocompatibility complex locus in psychosis. Biol Psychiatry 2014, 75: 276–283.

    CAS  PubMed  Google Scholar 

  15. Shi J, Levinson DF, Duan J, Sanders AR, Zheng Y, Pe’er I, et al. Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 2009, 460: 753–757.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D, et al. Common variants conferring risk of schizophrenia. Nature 2009, 460: 744–747.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Steinberg S, de JS, Andreassen OA, Werge T, Borglum AD, Mors O, et al. Common variants at VRK2 and TCF4 conferring risk of schizophrenia. Hum Mol Genet 2011, 20: 4076–4081.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Shi Y, Li Z, Xu Q, Wang T, Li T, Shen J, et al. Common variants on 8p12 and 1q24.2 confer risk of schizophrenia. Nat Genet 2011, 43: 1224–1227.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Ripke S, Sanders AR, Kendler KS, Levinson DF, Sklar P, Holmans PA, et al. Genome-wide association study identifies five new schizophrenia loci. Nat Genet 2011, 43: 969–976.

    CAS  Google Scholar 

  20. Ikeda M, Aleksic B, Kinoshita Y, Okochi T, Kawashima K, Kushima I, et al. Genome-wide association study of schizophrenia in a Japanese population. Biol Psychiatry 2011, 69: 472–478.

    PubMed  Google Scholar 

  21. Yue WH, Wang HF, Sun LD, Tang FL, Liu ZH, Zhang HX, et al. Genome-wide association study identifies a susceptibility locus for schizophrenia in Han Chinese at 11p11.2. Nat Genet 2011, 43: 1228–1231.

    CAS  PubMed  Google Scholar 

  22. Rietschel M, Mattheisen M, Degenhardt F, Kahn RS, Linszen DH, Os J, et al. Association between genetic variation in a region on chromosome 11 and schizophrenia in large samples from Europe. Mol Psychiatry 2012, 17: 906–917.

    CAS  PubMed  Google Scholar 

  23. Irish Schizophrenia Genomics Consortium. Genome-wide association study implicates HLA-C*01:02 as a risk factor at the major histocompatibility complex locus in schizophrenia. Biol Psychiatry 2012, 72: 620–628.

    Google Scholar 

  24. Hamshere ML, Walters JT, Smith R, Richards AL, Green E, Grozeva D, et al. Genome-wide significant associations in schizophrenia to ITIH3/4, CACNA1C and SDCCAG8, and extensive replication of associations reported by the Schizophrenia PGC. Mol Psychiatry 2013, 18: 708–712.

    CAS  PubMed  Google Scholar 

  25. Ripke S, O’Dushlaine C, Chambert K, Moran JL, Kahler AK, Akterin S, et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet 2013, 45: 1150–1159.

    CAS  PubMed  Google Scholar 

  26. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014, 511: 421–427.

    PubMed Central  Google Scholar 

  27. Lee SH, DeCandia TR, Ripke S, Yang J, Sullivan PF, Goddard ME, et al. Estimating the proportion of variation in susceptibility to schizophrenia captured by common SNPs. Nat Genet 2012, 44: 247–250.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU, et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet 2010, 42: 937–948.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Lango AH, Estrada K, Lettre G, Berndt SI, Weedon MN, Rivadeneira F, et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 2010, 467: 832–838.

    Google Scholar 

  30. Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S, et al. Discovery and refinement of loci associated with lipid levels. Nat Genet 2013, 45: 1274–1283.

    CAS  PubMed  Google Scholar 

  31. Chen X, Lee G, Maher BS, Fanous AH, Chen J, Zhao Z, et al. GWA study data mining and independent replication identify cardiomyopathy-associated 5 (CMYA5) as a risk gene for schizophrenia. Mol Psychiatry 2011, 16: 1117–1129.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Ayalew M, Le-Niculescu H, Levey DF, Jain N, Changala B, Patel SD, et al. Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction. Mol Psychiatry 2012, 17: 887–905.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Luo XJ, Li M, Huang L, Steinberg S, Mattheisen M, Liang G, et al. Convergent lines of evidence support CAMKK2 as a schizophrenia susceptibility gene. Mol Psychiatry 2014, 19: 774–783.

    CAS  PubMed  Google Scholar 

  34. Malhotra D, Sebat J. CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell 2012, 148: 1223–1241.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Rujescu D, Ingason A, Cichon S, Pietilainen OP, Barnes MR, Toulopoulou T, et al. Disruption of the neurexin 1 gene is associated with schizophrenia. Hum Mol Genet 2009, 18: 988–996.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Need AC, Ge D, Weale ME, Maia J, Feng S, Heinzen EL, et al. A genome-wide investigation of SNPs and CNVs in schizophrenia. PLoS Genet 2009, 5: e1000373.

    PubMed Central  PubMed  Google Scholar 

  37. Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM, et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 2008, 320: 539–543.

    CAS  PubMed  Google Scholar 

  38. Levinson DF, Duan J, Oh S, Wang K, Sanders AR, Shi J, et al. Copy number variants in schizophrenia: confirmation of five previous findings and new evidence for 3q29 microdeletions and VIPR2 duplications. Am J Psychiatry 2011, 168: 302–316.

    PubMed  Google Scholar 

  39. Szatkiewicz JP, O’Dushlaine C, Chen G, Chambert K, Moran JL, Neale BM, et al. Copy number variation in schizophrenia in Sweden. Mol Psychiatry 2014, 19: 762–773.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Magri C, Sacchetti E, Traversa M, Valsecchi P, Gardella R, Bonvicini C, et al. New copy number variations in schizophrenia. PLoS One 2010, 5: e13422.

    PubMed Central  PubMed  Google Scholar 

  41. Ikeda M, Aleksic B, Kirov G, Kinoshita Y, Yamanouchi Y, Kitajima T, et al. Copy number variation in schizophrenia in the Japanese population. Biol Psychiatry 2010, 67: 283–286.

    PubMed  Google Scholar 

  42. Kirov G, Rujescu D, Ingason A, Collier DA, O’Donovan MC, Owen MJ. Neurexin 1 (NRXN1) deletions in schizophrenia. Schizophr Bull 2009, 35: 851–854.

    PubMed Central  PubMed  Google Scholar 

  43. Yuan J, Jin C, Sha W, Zhou Z, Zhang F, Wang M, et al. A competitive PCR assay confirms the association of a copy number variation in the VIPR2 gene with schizophrenia in Han Chinese. Schizophr Res 2014, 156: 66–70.

    PubMed  Google Scholar 

  44. Vacic V, McCarthy S, Malhotra D, Murray F, Chou HH, Peoples A, et al. Duplications of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia. Nature 2011, 471: 499–503.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Mefford HC, Sharp AJ, Baker C, Itsara A, Jiang Z, Buysse K, et al. Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes. N Engl J Med 2008, 359: 1685–1699.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. International Schizophrenia Consortium. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 2008, 455: 237–241.

    Google Scholar 

  47. Stefansson H, Rujescu D, Cichon S, Pietilainen OP, Ingason A, Steinberg S, et al. Large recurrent microdeletions associated with schizophrenia. Nature 2008, 455: 232–236.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Mulle JG, Dodd AF, McGrath JA, Wolyniec PS, Mitchell AA, Shetty AC, et al. Microdeletions of 3q29 confer high risk for schizophrenia. Am J Hum Genet 2010, 87: 229–236.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Kirov G, Pocklington AJ, Holmans P, Ivanov D, Ikeda M, Ruderfer D, et al. De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol Psychiatry 2012, 17: 142–153.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Ingason A, Rujescu D, Cichon S, Sigurdsson E, Sigmundsson T, Pietilainen OP, et al. Copy number variations of chromosome 16p13.1 region associated with schizophrenia. Mol Psychiatry 2011, 16: 17–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Kirov G, Grozeva D, Norton N, Ivanov D, Mantripragada KK, Holmans P, et al. Support for the involvement of large copy number variants in the pathogenesis of schizophrenia. Hum Mol Genet 2009, 18: 1497–1503.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Bassett AS, Marshall CR, Lionel AC, Chow EW, Scherer SW. Copy number variations and risk for schizophrenia in 22q11.2 deletion syndrome. Hum Mol Genet 2008, 17: 4045–4053.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Monks S, Niarchou M, Davies AR, Walters JT, Williams N, Owen MJ, et al. Further evidence for high rates of schizophrenia in 22q11.2 deletion syndrome. Schizophr Res 2014, 153: 231–236.

    PubMed  Google Scholar 

  54. Grozeva D, Conrad DF, Barnes CP, Hurles M, Owen MJ, O’Donovan MC, et al. Independent estimation of the frequency of rare CNVs in the UK population confirms their role in schizophrenia. Schizophr Res 2012, 135: 1–7.

    PubMed Central  PubMed  Google Scholar 

  55. Glessner JT, Reilly MP, Kim CE, Takahashi N, Albano A, Hou C, et al. Strong synaptic transmission impact by copy number variations in schizophrenia. Proc Natl Acad Sci U S A 2010, 107: 10584–10589.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Rees E, Kirov G, Sanders A, Walters JT, Chambert KD, Shi J, et al. Evidence that duplications of 22q11.2 protect against schizophrenia. Mol Psychiatry 2014, 19: 37–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Sullivan PF, Daly MJ, O’Donovan M. Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat Rev Genet 2012, 13: 537–551.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Girirajan S, Rosenfeld JA, Cooper GM, Antonacci F, Siswara P, Itsara A, et al. A recurrent 16p12.1 microdeletion supports a two-hit model for severe developmental delay. Nat Genet 2010, 42: 203–209.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Malhotra D, McCarthy S, Michaelson JJ, Vacic V, Burdick KE, Yoon S, et al. High frequencies of de novo CNVs in bipolar disorder and schizophrenia. Neuron 2011, 72: 951–963.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Karayiorgou M, Morris MA, Morrow B, Shprintzen RJ, Goldberg R, Borrow J, et al. Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11. Proc Natl Acad Sci U S A 1995, 92: 7612–7616.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Squarcione C, Torti MC, Di FF, Biondi M. 22q11 deletion syndrome: a review of the neuropsychiatric features and their neurobiological basis. Neuropsychiatr Dis Treat 2013, 9: 1873–1884.

    PubMed Central  PubMed  Google Scholar 

  62. Williams NM. Molecular mechanisms in 22q11 deletion syndrome. Schizophr Bull 2011, 37: 882–889.

    PubMed Central  PubMed  Google Scholar 

  63. Bodmer W, Bonilla C. Common and rare variants in multifactorial susceptibility to common diseases. Nat Genet 2008, 40: 695–701.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Raychaudhuri S, Korn JM, McCarroll SA, Altshuler D, Sklar P, Purcell S, et al. Accurately assessing the risk of schizophrenia conferred by rare copy-number variation affecting genes with brain function. PLoS Genet 2010, 6: e1001097.

    PubMed Central  PubMed  Google Scholar 

  65. Grayton HM, Fernandes C, Rujescu D, Collier DA. Copy number variations in neurodevelopmental disorders. Prog Neurobiol 2012, 99: 81–91.

    CAS  PubMed  Google Scholar 

  66. Bassett AS, Bury A, Hodgkinson KA, Honer WG. Reproductive fitness in familial schizophrenia. Schizophr Res 1996, 21: 151–160.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Laursen TM, Munk-Olsen T. Reproductive patterns in psychotic patients. Schizophr Res 2010, 121: 234–240.

    CAS  PubMed  Google Scholar 

  68. Malaspina D, Harlap S, Fennig S, Heiman D, Nahon D, Feldman D, et al. Advancing paternal age and the risk of schizophrenia. Arch Gen Psychiatry 2001, 58: 361–367.

    CAS  PubMed  Google Scholar 

  69. Byrne M, Agerbo E, Ewald H, Eaton WW, Mortensen PB. Parental age and risk of schizophrenia: a case-control study. Arch Gen Psychiatry 2003, 60: 673–678.

    PubMed  Google Scholar 

  70. Dalman C, Allebeck P. Paternal age and schizophrenia: further support for an association. Am J Psychiatry 2002, 159: 1591–1592.

    PubMed  Google Scholar 

  71. Malaspina D. Paternal factors and schizophrenia risk: de novo mutations and imprinting. Schizophr Bull 2001, 27: 379–393.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Xu B, Roos JL, Levy S, van Rensburg EJ, Gogos JA, Karayiorgou M. Strong association of de novo copy number mutations with sporadic schizophrenia. Nat Genet 2008, 40: 880–885.

    CAS  PubMed  Google Scholar 

  73. Xu B, Roos JL, Dexheimer P, Boone B, Plummer B, Levy S, et al. Exome sequencing supports a de novo mutational paradigm for schizophrenia. Nat Genet 2011, 43: 864–868.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Gauthier J, Champagne N, Lafreniere RG, Xiong L, Spiegelman D, Brustein E, et al. De novo mutations in the gene encoding the synaptic scaffolding protein SHANK3 in patients ascertained for schizophrenia. Proc Natl Acad Sci U S A 2010, 107: 7863–7868.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Tarabeux J, Champagne N, Brustein E, Hamdan FF, Gauthier J, Lapointe M, et al. De novo truncating mutation in Kinesin 17 associated with schizophrenia. Biol Psychiatry 2010, 68: 649–656.

    CAS  PubMed  Google Scholar 

  76. Awadalla P, Gauthier J, Myers RA, Casals F, Hamdan FF, Griffing AR, et al. Direct measure of the de novo mutation rate in autism and schizophrenia cohorts. Am J Hum Genet 2010, 87: 316–324.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S, Gormley P, et al. De novo mutations in schizophrenia implicate synaptic networks. Nature 2014, 506: 179–184.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Girard SL, Gauthier J, Noreau A, Xiong L, Zhou S, Jouan L, et al. Increased exonic de novo mutation rate in individuals with schizophrenia. Nat Genet 2011, 43: 860–863.

    CAS  PubMed  Google Scholar 

  79. Xu B, Ionita-Laza I, Roos JL, Boone B, Woodrick S, Sun Y, et al. De novo gene mutations highlight patterns of genetic and neural complexity in schizophrenia. Nat Genet 2012, 44: 1365–1369.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Purcell SM, Moran JL, Fromer M, Ruderfer D, Solovieff N, Roussos P, et al. A polygenic burden of rare disruptive mutations in schizophrenia. Nature 2014, 506: 185–190.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Mulle JG, Pulver AE, McGrath JA, Wolyniec PS, Dodd AF, Cutler DJ, et al. Reciprocal duplication of the williams-beuren syndrome deletion on chromosome 7q11.23 is associated with schizophrenia. Biol Psychiatry 2014, 75: 371–377.

    CAS  PubMed  Google Scholar 

  82. Huang J, Perlis RH, Lee PH, Rush AJ, Fava M, Sachs GS, et al. Cross-disorder genomewide analysis of schizophrenia, bipolar disorder, and depression. Am J Psychiatry 2010, 167: 1254–1263.

    PubMed  Google Scholar 

  83. Williams HJ, Craddock N, Russo G, Hamshere ML, Moskvina V, Dwyer S, et al. Most genome-wide significant susceptibility loci for schizophrenia and bipolar disorder reported to date cross-traditional diagnostic boundaries. Hum Mol Genet 2011, 20: 387–391.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Lee SH, Ripke S, Neale BM, Faraone SV, Purcell SM, Perlis RH, et al. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet 2013, 45: 984–994.

    CAS  PubMed  Google Scholar 

  85. Williams HJ, Norton N, Dwyer S, Moskvina V, Nikolov I, Carroll L, et al. Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder. Mol Psychiatry 2011, 16: 429–441.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Whalley HC, Papmeyer M, Romaniuk L, Sprooten E, Johnstone EC, Hall J, et al. Impact of a microRNA MIR137 susceptibility variant on brain function in people at high genetic risk of schizophrenia or bipolar disorder. Neuropsychopharmacology 2012, 37: 2720–2729.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Collins AL, Kim Y, Bloom RJ, Kelada SN, Sethupathy P, Sullivan PF. Transcriptional targets of the schizophrenia risk gene MIR137. Transl Psychiatry 2014, 4: e404.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Devanna P, Vernes SC. A direct molecular link between the autism candidate gene RORa and the schizophrenia candidate MIR137. Sci Rep 2014, 4: 3994.

    PubMed Central  PubMed  Google Scholar 

  89. Andreassen OA, Djurovic S, Thompson WK, Schork AJ, Kendler KS, O’Donovan MC, et al. Improved detection of common variants associated with schizophrenia by leveraging pleiotropy with cardiovascular-disease risk factors. Am J Hum Genet 2013, 92: 197–209.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Sellgren C, Frisell T, Lichtenstein P, Landen M, Askling J. The association between schizophrenia and rheumatoid arthritis: a nationwide population-based Swedish study on intraindividual and familial risks. Schizophr Bull 2014, 40: 1552–1559.

    PubMed  Google Scholar 

  91. Zhao Z, Xu J, Chen J, Kim S, Reimers M, Bacanu SA, et al. Transcriptome sequencing and genome-wide association analyses reveal lysosomal function and actin cytoskeleton remodeling in schizophrenia and bipolar disorder. Mol Psychiatry 2014.

    Google Scholar 

  92. Lencz T, Knowles E, Davies G, Guha S, Liewald DC, Starr JM, et al. Molecular genetic evidence for overlap between general cognitive ability and risk for schizophrenia: a report from the Cognitive Genomics consorTium (COGENT). Mol Psychiatry 2014, 19: 168–174.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Mowry BJ, Gratten J. The emerging spectrum of allelic variation in schizophrenia: current evidence and strategies for the identification and functional characterization of common and rare variants. Mol Psychiatry 2013, 18: 38–52.

    CAS  PubMed  Google Scholar 

  94. McClellan JM, Susser E, King MC. Schizophrenia: a common disease caused by multiple rare alleles. Br J Psychiatry 2007, 190: 194–199.

    PubMed  Google Scholar 

  95. Veltman JA, Brunner HG. De novo mutations in human genetic disease. Nat Rev Genet 2012, 13: 565–575.

    CAS  PubMed  Google Scholar 

  96. Ku CS, Polychronakos C, Tan EK, Naidoo N, Pawitan Y, Roukos DH, et al. A new paradigm emerges from the study of de novo mutations in the context of neurodevelopmental disease. Mol Psychiatry 2013, 18: 141–153.

    CAS  PubMed  Google Scholar 

  97. Genome-wide association study identifies five new schizophrenia loci. Nat Genet 2011, 43: 969–976.

  98. Selten JP, van d, V, Rutten BP, Cantor-Graae E. The social defeat hypothesis of schizophrenia: an update. Schizophr Bull 2013, 39: 1180–1186.

    PubMed Central  PubMed  Google Scholar 

  99. Betts KS, Williams GM, Najman JM, Scott J, Alati R. Maternal prenatal infection, early susceptibility to illness and adult psychotic experiences: a birth cohort study. Schizophr Res 2014, 156: 161–167.

    PubMed  Google Scholar 

  100. Khandaker GM, Zimbron J, Lewis G, Jones PB. Prenatal maternal infection, neurodevelopment and adult schizophrenia: a systematic review of population-based studies. Psychol Med 2013, 43: 239–257.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Nielsen PR, Laursen TM, Mortensen PB. Association between parental hospital-treated infection and the risk of schizophrenia in adolescence and early adulthood. Schizophr Bull 2013, 39: 230–237.

    PubMed Central  PubMed  Google Scholar 

  102. Demontis D, Nyegaard M, Buttenschon HN, Hedemand A, Pedersen CB, Grove J, et al. Association of GRIN1 and GRIN2A-D with schizophrenia and genetic interaction with maternal herpes simplex virus-2 infection affecting disease risk. Am J Med Genet B Neuropsychiatr Genet 2011, 156B: 913–922.

    PubMed  Google Scholar 

  103. Borglum AD, Demontis D, Grove J, Pallesen J, Hollegaard MV, Pedersen CB, et al. Genome-wide study of association and interaction with maternal cytomegalovirus infection suggests new schizophrenia loci. Mol Psychiatry 2014, 19: 325–333.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Ober C, Loisel DA, Gilad Y. Sex-specific genetic architecture of human disease. Nat Rev Genet 2008, 9: 911–922.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Shifman S, Johannesson M, Bronstein M, Chen SX, Collier DA, Craddock NJ, et al. Genome-wide association identifies a common variant in the reelin gene that increases the risk of schizophrenia only in women. PLoS Genet 2008, 4: e28.

    PubMed Central  PubMed  Google Scholar 

  106. Liu Y, Chen PL, McGrath J, Wolyniec P, Fallin D, Nestadt G, et al. Replication of an association of a common variant in the Reelin gene (RELN) with schizophrenia in Ashkenazi Jewish women. Psychiatr Genet 2010, 20: 184–186.

    PubMed Central  PubMed  Google Scholar 

  107. Li W, Song X, Zhang H, Yang Y, Jiang C, Xiao B, et al. Association study of RELN polymorphisms with schizophrenia in Han Chinese population. Prog Neuropsychopharmacol Biol Psychiatry 2011, 35: 1505–1511.

    CAS  PubMed  Google Scholar 

  108. Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 2013, 381: 1371–1379.

    PubMed Central  Google Scholar 

  109. Moskvina V, Craddock N, Holmans P, Nikolov I, Pahwa JS, Green E, et al. Gene-wide analyses of genome-wide association data sets: evidence for multiple common risk alleles for schizophrenia and bipolar disorder and for overlap in genetic risk. Mol Psychiatry 2009, 14: 252–260.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Bergen SE, O’Dushlaine CT, Ripke S, Lee PH, Ruderfer DM, Akterin S, et al. Genome-wide association study in a Swedish population yields support for greater CNV and MHC involvement in schizophrenia compared with bipolar disorder. Mol Psychiatry 2012, 17: 880–886.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Rietschel M, Mattheisen M, Degenhardt F, Muhleisen TW, Kirsch P, Esslinger C, et al. Association between genetic variation in a region on chromosome 11 and schizophrenia in large samples from Europe. Mol Psychiatry 2012, 17: 906–917.

    CAS  PubMed  Google Scholar 

  112. Ingason A, Kirov G, Giegling I, Hansen T, Isles AR, Jakobsen KD, et al. Maternally derived microduplications at 15q11-q13: implication of imprinted genes in psychotic illness. Am J Psychiatry 2011, 168: 408–417.

    PubMed Central  PubMed  Google Scholar 

  113. Georgieva L, Rees E, Moran JL, Chambert KD, Milanova V, Craddock N, et al. De novo CNVs in bipolar affective disorder and schizophrenia. Hum Mol Genet 2014, 23: 6677–6683.

    PubMed Central  PubMed  Google Scholar 

  114. McCarthy SE, Makarov V, Kirov G, Addington AM, McClellan J, Yoon S, et al. Microduplications of 16p11.2 are associated with schizophrenia. Nat Genet 2009, 41: 1223–1227.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Guha S, Rees E, Darvasi A, Ivanov D, Ikeda M, Bergen SE, et al. Implication of a rare deletion at distal 16p11.2 in schizophrenia. JAMA Psychiatry 2013, 70: 253–260.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Moreno-De-Luca D, Mulle JG, Kaminsky EB, Sanders SJ, Myers SM, Adam MP, et al. Deletion 17q12 is a recurrent copy number variant that confers high risk of autism and schizophrenia. Am J Hum Genet 2010, 87: 618–630.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingchun Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Cao, F., Liu, L. et al. Genetic studies of schizophrenia: an update. Neurosci. Bull. 31, 87–98 (2015). https://doi.org/10.1007/s12264-014-1494-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-014-1494-4

Keywords

Navigation