Advertisement

Neuroscience Bulletin

, Volume 30, Issue 5, pp 765–776 | Cite as

Brain dopaminergic system changes in drug addiction: a review of positron emission tomography findings

  • Haifeng Hou
  • Chunyan Wang
  • Shaowei Jia
  • Shu Hu
  • Mei TianEmail author
Review

Abstract

Dopamine (DA) is considered crucial for the rewarding effects of drugs of abuse, but its role in addiction remains unclear. Positron emission tomography (PET) is the first technology used for in vivo measurement of components of the dopaminergic system in the human brain. In this article, we review the major findings from PET imaging studies on the involvement of DA in drug addiction, including presynaptic DA synthesis, vesicular monoamine transporter 2, the DA transporter, and postsynaptic DA receptors. These results have corroborated the role of DA in addiction and increased the understanding of its underlying mechanisms.

Keywords

dopamine dopaminergic system drug addiction positron emission tomography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Smythies J. Section II. The dopamine system. Int Rev Neurobiol 2005, 64: 123–172.PubMedCrossRefGoogle Scholar
  2. [2]
    Callier S, Snapyan M, Le Crom S, Prou D, Vincent JD, Vernier P. Evolution and cell biology of dopamine receptors in vertebrates. Biol Cell 2003, 95: 489–502.PubMedCrossRefGoogle Scholar
  3. [3]
    Lee D, Huang W, Lim AT. Dopamine induces a biphasic modulation of hypothalamic ANF neurons: a ligand concentration-dependent effect involving D5 and D2 receptor interaction. Mol Psychiatry 2000, 5: 39–48.PubMedCrossRefGoogle Scholar
  4. [4]
    Vallone D, Picetti R, Borrelli E. Structure and function of dopamine receptors. Neurosci Biobehav Rev 2000, 24: 125–132.PubMedCrossRefGoogle Scholar
  5. [5]
    Missale C, Nash SR, Robinson SW, Jaber M, Caron MG. Dopamine receptors: from structure to function. Physiol Rev 1998, 78: 189–225.PubMedGoogle Scholar
  6. [6]
    Garris PA, Ciolkowski EL, Pastore P, Wightman RM. Efflux of dopamine from the synaptic cleft in the nucleus accumbens of the rat brain. J Neurosci 1994, 14: 6084–6093.PubMedGoogle Scholar
  7. [7]
    Wise R A. Roles for nigrostriatal—not just mesocorticolimbic—dopamine in reward and addiction. Trends Neurosci 2009, 32: 517–524.PubMedCrossRefPubMedCentralGoogle Scholar
  8. [8]
    Maddux JF, Desmond DP. Addiction or dependence? Addiction 2000, 95: 661–665.PubMedCrossRefGoogle Scholar
  9. [9]
    Koob GF, Le Moal M. Drug abuse: hedonic homeostatic dysregulation. Science 1997, 278: 52–58.PubMedCrossRefGoogle Scholar
  10. [10]
    Holden C. ‘Behavioral’ addictions: do they exist? Science 2001, 294: 980–982.PubMedCrossRefGoogle Scholar
  11. [11]
    Bancroft J, Vukadinovic Z. Sexual addiction, sexual compulsivity, sexual impulsivity, or what? Toward a theoretical model. J Sex Res 2004, 41: 225–234.PubMedCrossRefGoogle Scholar
  12. [12]
    Block JJ. Issues for DSM-V: internet addiction. Am J Psychiatry 2008, 165: 306–307.PubMedCrossRefGoogle Scholar
  13. [13]
    Pelchat ML. Food addiction in humans. J Nutr 2009, 139: 620–622.PubMedCrossRefGoogle Scholar
  14. [14]
    Grant JE, Potenza MN, Weinstein A, Gorelick D A. Introduction to behavioral addictions. Am J Drug Alcohol Abuse 2010, 36: 233–241.PubMedCrossRefPubMedCentralGoogle Scholar
  15. [15]
    Holden C. Psychiatry. Behavioral addictions debut in proposed DSM-V. Science 2010, 327: 935.PubMedCrossRefGoogle Scholar
  16. [16]
    O’Brien C. Add iction and dependence in DSM-V. Addiction 2011, 106: 866–867.PubMedCrossRefGoogle Scholar
  17. [17]
    Tian M, Chen Q, Zhang Y, Du F, Hou H, Chao F, et al. PET imaging reveals brain functional changes in internet gaming disorder. Eur J Nucl Med Mol Imaging, 2014, 41: 1388–1397PubMedCrossRefGoogle Scholar
  18. [18]
    Mansi L, Cuccurullo V, Ciarmiello A. From Homo sapiens to Homo in nexu (connected man): could functional imaging redefine the brain of a “new human species”? Eur J Nucl Med Mol Imaging 2014, 41: 1385–1387.PubMedCrossRefGoogle Scholar
  19. [19]
    Koob GF, Stinus L, Le Moal M, Bloom FE. Opponent process theory of motivation: neurobiological evidence from studies of opiate dependence. Neurosci Biobehav Rev 1989, 13: 135–140.PubMedCrossRefGoogle Scholar
  20. [20]
    Cami J, Farre M. Drug addiction. N Engl J Med 2003, 349: 975–986.PubMedCrossRefGoogle Scholar
  21. [21]
    Franken I H, Booij J, van den Brink W. The role of dopamine in human addiction: from reward to motivated attention. Eur J Pharmacol 2005, 526: 199–206.PubMedCrossRefGoogle Scholar
  22. [22]
    Goodman A. Neurobiol ogy of addiction. An integrative review. Biochem Pharmacol 2008, 75: 266–322.PubMedCrossRefGoogle Scholar
  23. [23]
    Volkow ND, Wang GJ, Fowler JS, Tomasi D, Telang F. Quantification of Behavior Sackler Colloquium: Addiction: Beyond dopamine reward circuitry. Proc Natl Acad Sci U S A 2011, 108: 15037–15042.PubMedCrossRefPubMedCentralGoogle Scholar
  24. [24]
    Volkow ND, Fowler JS, Wang GJ, Baler R, Telang F. Imaging dopamine’s role in drug abuse and addiction. Neuropharmacology 2009, 56Suppl 1: 3–8.PubMedCrossRefPubMedCentralGoogle Scholar
  25. [25]
    Hou H, Tian M, Zhang H. Positron emission tomography molecular imaging of dopaminergic system in drug addiction. Anat Rec (Hoboken) 2012, 295: 722–733.CrossRefGoogle Scholar
  26. [26]
    Schiffer WK, Lee DE, Brodie JD, Dewey SL. Imaging addiction with PET: is insight in sight? Drug Discov Today 2005, 10: 547–562.PubMedCrossRefGoogle Scholar
  27. [27]
    Christman DR, Hoyte RM, Wolf AP. Organic radiopharmaceuticals labeled with isotopes of short halflife. I. 11C-1-dopamine hydrochloride. J Nucl Med 1970, 11: 474–478.PubMedGoogle Scholar
  28. [28]
    Volkow ND, Fowler JS, Wang GJ. Positron emission tomography and single-photon emission computed tomography in substance abuse research. Semin Nucl Med 2003, 33: 114–128.PubMedCrossRefGoogle Scholar
  29. [29]
    Fischman MW, Foltin RW. Utility of subjective-effects measurements in assessing abuse liability of drugs in humans. Br J Addict 1991, 86: 1563–1570.PubMedCrossRefGoogle Scholar
  30. [30]
    Volkow ND, Ding YS, Fowler JS, Wang GJ, Logan J, Gatley JS, et al. Is methylphenidate like cocaine? Studies on their pharmacokinetics and distribution in the human brain. Arch Gen Psychiatry 1995, 52: 456–463.PubMedCrossRefGoogle Scholar
  31. [31]
    Nanni C, Fanti S, Rubello D. 18F-DOPA PET and PET/CT. J Nucl Med 2007, 48: 1577–1579.PubMedCrossRefGoogle Scholar
  32. [32]
    Turjanski N, Lees AJ, Brooks DJ. Striatal dopaminergic function in restless legs syndrome: 18F-dopa and 11C-raclopride PET studies. Neurology 1999, 52: 932–937.PubMedCrossRefGoogle Scholar
  33. [33]
    Heinz A, Siessmeier T, Wrase J, Buchholz HG, Grunder G, Kumakura Y, et al. Correlation of alcohol craving with striatal dopamine synthesis capacity and D2/3 receptor availability: a combined [18F]DOPA and [18F]DMFP PET study in detoxified alcoholic patients. Am J Psychiatry 2005, 162: 1515–1520.PubMedCrossRefGoogle Scholar
  34. [34]
    Wu JC, Bell K, Najafi A, Widmark C, Keator D, Tang C, et al. Decreasing striatal 6-FDOPA uptake with increasing duration of cocaine withdrawal. Neuropsychopharmacology 1997, 17: 402–409.PubMedCrossRefGoogle Scholar
  35. [35]
    Klongpanichapak S, Govitrapong P, Sharma SK, Ebadi M. Attenuation of cocaine and methamphetamine neurotoxicity by coenzyme Q10. Neurochem Res 2006, 31: 303–311.PubMedCrossRefGoogle Scholar
  36. [36]
    Dackis CA, Gold MS. New concepts in cocaine addiction: the dopamine depletion hypothesis. Neurosci Biobehav Rev 1985, 9: 469–477.PubMedCrossRefGoogle Scholar
  37. [37]
    Markou A, Koob GF. Postcocaine anh edonia. An animal model of cocaine withdrawal. Neuropsychopharmacology 1991, 4: 17–26.PubMedGoogle Scholar
  38. [38]
    Kienast T, Schlagenhauf F, Rapp MA, Wrase J, Daig I, Buchholz HG, et al. Dopamine-modulated aversive emotion processing fails in alcohol-dependent patients. Pharmacopsychiatry 2013, 46: 130–136.PubMedCrossRefGoogle Scholar
  39. [39]
    Tiihonen J, Vilkman H, Rasanen P, Ryynanen OP, Hakko H, Bergman J, et al. Striatal presynaptic dopamine function in type 1 alcoholics measured with positron emission tomography. Mol Psychiatry 1998, 3: 156–161.PubMedCrossRefGoogle Scholar
  40. [40]
    Salokangas RK, Vilkman H, Ilonen T, Taiminen T, Bergman J, Haaparanta M, et al. High levels of dopamine activity in the basal ganglia of cigarette smokers. Am J Psychiatry 2000, 157: 632–634.PubMedCrossRefGoogle Scholar
  41. [41]
    Tai YF, Hoshi R, Brignell CM, Cohen L, Brooks DJ, Curran HV, et al. Persistent nigrostriatal dopaminergic abnormalities in ex-users of MDMA (‘Ecstasy’): an 18F-dopa PET study. Neuropsychopharmacology 2011, 36: 735–743.PubMedCrossRefPubMedCentralGoogle Scholar
  42. [42]
    Martin WR, Wieler M, Stoessl AJ, Schulzer M. Dihydrotetrabenazine positron emission tomography imaging in early, untreated Parkinson’s disease. Ann Neurol 2008, 63: 388–394.PubMedCrossRefGoogle Scholar
  43. [43]
    Boileau I, Houle S, Rusjan PM, Furukawa Y, Wilkins D, Tong J, et al. Influence of a low dose of amphetamine on vesicular monoamine transporter binding: a PET (+)[11C]DTBZ study in humans. Synapse 2010, 64: 417–420.PubMedCrossRefGoogle Scholar
  44. [44]
    Little KY, Zhang L, Desmond T, Frey KA, Dalack GW, Cassin BJ. Striatal dopaminergic abnormalities in human cocaine users. Am J Psychiatry 1999, 156: 238–245.PubMedGoogle Scholar
  45. [45]
    Narendran R, Lopresti BJ, Martinez D, Mason NS, Himes M, May MA, et al. In vivo evidence for low striatal vesicular monoamine transporter 2 (VMAT2) availability in cocaine abusers. Am J Psychiatry 2012, 169: 55–63.PubMedCrossRefPubMedCentralGoogle Scholar
  46. [46]
    Johanson CE, Frey KA, Lundahl LH, Keenan P, Lockhart N, Roll J, et al. Cognitive function and nigrostriatal markers in abstinent methamphetamine abusers. Psychopharmacology (Berl) 2006, 185: 327–338.CrossRefGoogle Scholar
  47. [47]
    Boileau I, Rusjan P, Houle S, Wilkins D, Tong J, Selby P, et al. Increased vesicular monoamine transporter binding during early abstinence in human methamphetamine users: Is VMAT2 a stable dopamine neuron biomarker? J Neurosci 2008, 28: 9850–9856.PubMedCrossRefGoogle Scholar
  48. [48]
    Kilbourn MR, Butch ER, Desmond T, Sherman P, Harris PE, Frey KA. In vivo [11C]dihydrotetrabenazine binding in rat striatum: sensitivity to dopamine concentrations. Nucl Med Biol 2010, 37: 3–8.PubMedCrossRefPubMedCentralGoogle Scholar
  49. [49]
    Eiden LE, Weihe E. VMAT2: a dynamic regulator of brain monoaminergic neuronal function interacting with drugs of abuse. Ann N Y Acad Sci 2011, 1216: 86–98.PubMedCrossRefGoogle Scholar
  50. [50]
    Volkow ND, Chang L, Wang GJ, Fowler JS, Franceschi D, Sedler M, et al. Loss of dopamine transporters in methamphetamine abusers recovers with protracted abstinence. J Neurosci 2001, 21: 9414–9418.PubMedGoogle Scholar
  51. [51]
    Urban NB, Martinez D. Neurobiology of addiction: insight from neurochemical imaging. Psychiatr Clin North Am 2012, 35: 521–541.PubMedCrossRefGoogle Scholar
  52. [52]
    Fowler JS, Volkow ND, Wang GJ, Gatley SJ, Logan J. [(11)]Cocaine: PET studies of cocaine pharmacokinetics, dopamine transporter availability and dopamine transporter occupancy. Nucl Med Biol 2001, 28: 561–572.PubMedCrossRefGoogle Scholar
  53. [53]
    Volkow ND, Wang GJ, Fowler JS, Logan J, Hitzemannn R, Gatley SJ, et al. Cocaine uptake is decreased in the brain of detoxified cocaine abusers. Neuropsychopharmacology 1996, 14: 159–168.PubMedCrossRefGoogle Scholar
  54. [54]
    Hurd YL, Herkenham M. Molecular alterations in the neostriatum of human cocaine addicts. Synapse 1993, 13: 357–369.PubMedCrossRefGoogle Scholar
  55. [55]
    Farde L, Halldin C, Muller L, Suhara T, Karlsson P, Hall H. PET study of [11C]beta-CIT binding to monoamine transporters in the monkey and human brain. Synapse 1994, 16: 93–103.PubMedCrossRefGoogle Scholar
  56. [56]
    Rinne JO, Laihinen A, Nagren K, Ruottinen H, Ruotsalainen U, Rinne UK. PET examination of the monoamine transporter with [11C]beta-CIT and [11C]beta-CFT in early Parkinson’s disease. Synapse 1995, 21: 97–103.PubMedCrossRefGoogle Scholar
  57. [57]
    Mach RH, Nader MA, Ehrenkaufer RL, Gage HD, Childers SR, Hodges LM, et al. Fluorine-18-labeled tropane analogs for PET imaging studies of the dopamine transporter. Synapse 2000, 37: 109–117.PubMedCrossRefGoogle Scholar
  58. [58]
    Czoty PW, Gage HD, Nader SH, Reboussin BA, Bounds M, Nader MA. PET imaging of dopamine D2 receptor and transporter availability during acquisition of cocaine selfadministration in rhesus monkeys. J Addict Med 2007, 1: 33–39.PubMedCrossRefGoogle Scholar
  59. [59]
    Canfield DR, Spealman RD, Kaufman MJ, Madras BK. Auto radiographic localization of cocaine binding sites by [3H] CFT ([3H]WIN 35,428) in the monkey brain. Synapse 1990, 6: 189–195.PubMedCrossRefGoogle Scholar
  60. [60]
    Frost JJ, Rosier AJ, Reich SG, Smith JS, Ehlers MD, Snyder SH, et al. Positron emission tomographic imaging of the dopamine transporter with 11C-WIN 35,428 reveals marked declines in mild Parkinson’s disease. Ann Neurol 1993, 34: 423–431.PubMedCrossRefGoogle Scholar
  61. [61]
    Rinne JO, Laihinen A, Nagren K, Ruottinen H, Ruotsalainen U, Rinne UK. PET examination of the monoamine transporter with [11C]beta-CIT and [11C]beta-CFT in early Parkinson’s disease. Synapse 1995, 21: 97–103.PubMedCrossRefGoogle Scholar
  62. [62]
    Shi J, Zhao LY, Copersino ML, Fang YX, Chen Y, Tian J, et al. PET imaging of dopamine transporter and drug craving during methadone maintenance treatment and after prolonged abstinence in heroin users. Eur J Pharmacol 2008, 579: 160–166.PubMedCrossRefGoogle Scholar
  63. [63]
    Mccann UD, Wong DF, Yokoi F, Villemagne V, Dannals RF, Ricaurte GA. Reduced striatal dopamine transporter density in abstinent methamphetamine and methcathinone users: evidence from positron emission tomography studies with [11C]WIN-35,428. J Neurosci 1998, 18: 8417–8422.PubMedGoogle Scholar
  64. [64]
    Villemagne V, Yuan J, Wong DF, Dannals RF, Hatzidimitriou G, Mathews WB, et al. Brain dopamine neurotoxicity in baboons treated with doses of methamphetamine comparable to those recreationally abused by humans: evidence from [11C]WIN-35,428 positron emission tomography studies and direct in vitro determinations. J Neurosci 1998, 18: 419–427.PubMedGoogle Scholar
  65. [65]
    Sekine Y, Iyo M, Ouchi Y, Matsunaga T, Tsukada H, Okada H, et al. Methamphetamine-related psychiatric symptoms and reduced brain dopamine transporters studied with PET. Am J Psychiatry 2001, 158: 1206–1214.PubMedCrossRefGoogle Scholar
  66. [66]
    Sekine Y, Minabe Y, Ouchi Y, Takei N, Iyo M, Nakamura K, et al. Association of dopamine transporter loss in the orbitofrontal and dorsolateral prefrontal cortices with methamphetamine-related psychiatric symptoms. Am J Psychiatry 2003, 160: 1699–1701.PubMedCrossRefGoogle Scholar
  67. [67]
    Ding YS, Fowler JS, Volkow ND, Logan J, Gatley SJ, Sugano Y. Carbon-11-d-threo-methylphenidate binding to dopamine transporter in baboon brain. J Nucl Med 1995, 36: 2298–2305.PubMedGoogle Scholar
  68. [68]
    Ding YS, Fowler JS, Volkow ND, Dewey SL, Wang GJ, Logan J, et al. Chiral drugs: comparison of the pharmacokinetics of [11C] d-threo and L-threo-methylphenidate in the human and baboon brain. Psychopharmacology (Berl) 1997, 131: 71–78.CrossRefGoogle Scholar
  69. [69]
    Volkow ND, Wang GJ, Fowler JS, Logan J, Hitzemann R, Ding YS, et al. Decreases in dopamine receptors but not in dopamine transporters in alcoholics. Alcohol Clin Exp Res 1996, 20: 1594–1598.PubMedCrossRefGoogle Scholar
  70. [70]
    De Jesus OT, Friedman AM. Radiobrominated spiroperidol for the stu dy of dopamine D2 receptors. Int J Rad Appl Instrum A 1986, 37: 719–726.PubMedCrossRefGoogle Scholar
  71. [71]
    Welch MJ, Raichle ME, Kilbourn MR, Mintun MA. [18F] spiroperidol: a radiopharmaceutical for the in vivo study of the dopamine receptor. Ann Neurol 1984, 15Suppl: S77–S78.PubMedCrossRefGoogle Scholar
  72. [72]
    Arnett CD, Fowler JS, Wolf AP, Shiue CY, Mcpherson DW. [18F]-N-Me thylspiroperidol: the radioligand of choice for PETT studies of the dopamine receptor in human brain. Life Sci 1985, 36: 1359–1366.PubMedCrossRefGoogle Scholar
  73. [73]
    Volkow ND, Fowler JS, Wolf AP, Schlyer D, Shiue CY, Alpert R, et al. Effects of chronic cocaine abuse on postsynaptic dopamine receptors. Am J Psychiatry 1990, 147: 719–724.PubMedGoogle Scholar
  74. [74]
    Volkow ND, Fowler JS, Wang GJ, Hitzemann R, Logan J, Schlyer DJ, et al. Decreased dopamine D2 receptor availability is associated with reduced frontal metabolism in cocaine abusers. Synapse 1993, 14: 169–177.PubMedCrossRefGoogle Scholar
  75. [75]
    Dewey SL, Logan J, Wolf AP, Brodie JD, Angrist B, Fowler JS, et al. Amphetamine induced decreases in (18F)-N-methylspiroperidol binding in the baboon brain using positron emission tomography (PET). Synapse 1991, 7: 324–327.PubMedCrossRefGoogle Scholar
  76. [76]
    Schlaepfer TE, Pearlson GD, Wong DF, Marenco S, Dannals RF. PET study of competition between intravenous cocaine and [11C]raclopride at dopamine receptors in human subjects. Am J Psychiatry 1997, 154: 1209–1213.PubMedGoogle Scholar
  77. [77]
    Hietala J, West C, Syvalahti E, Nagren K, Lehikoinen P, Sonninen P, et al. Striatal D2 dopamine receptor binding characteristics in vivo in patients with alcohol dependence. Psychopharmacology (Berl) 1994, 116: 285–290.CrossRefGoogle Scholar
  78. [78]
    Volkow ND, Wang GJ, Maynard L, Fowler JS, Jayne B, Telang F, et al. Effec ts of alcohol detoxification on dopamine D2 receptors in alcoholics: a preliminary study. Psychiatry Res 2002, 116: 163–172.PubMedCrossRefGoogle Scholar
  79. [79]
    Volkow ND, Chang L, Wang GJ, Fowler JS, Ding YS, Sedler M, et al. Low lev el of brain dopamine D2 receptors in methamphetamine abusers: association with metabolism in the orbitofrontal cortex. Am J Psychiatry 2001, 158: 2015–2021.PubMedCrossRefGoogle Scholar
  80. [80]
    Wang GJ, Volkow ND, Fowler JS, Logan J, Abumrad NN, Hitzemann RJ, et al. Dopamine D2 receptor availability in opiate-dependent subjects before and after naloxoneprecipitated withdrawal. Neuropsychopharmacology 1997, 16: 174–182.PubMedCrossRefGoogle Scholar
  81. [81]
    Mach RH, Nader MA, Ehrenkaufer RL, Line SW, Smith CR, Gage HD, et al. Use of positron emission tomography to study the dynamics of psychostimulant-induced dopamine release. Pharmacol Biochem Behav 1997, 57: 477–486.PubMedCrossRefGoogle Scholar
  82. [82]
    Nader MA, Morgan D, Gage HD, Nader SH, Calhoun TL, Buchheimer N, et al. PET imaging of dopamine D2 receptors during chronic cocaine self-administration in monkeys. Nat Neurosci 2006, 9: 1050–1056.PubMedCrossRefGoogle Scholar
  83. [83]
    Fehr C, Yakushev I, Hohmann N, Buchholz HG, Landvogt C, Deckers H, et al. Associ ation of low striatal dopamine d2 receptor availability with nicotine dependence similar to that seen with other drugs of abuse. Am J Psychiatry 2008, 165: 507–514.PubMedCrossRefGoogle Scholar
  84. [84]
    Halldin C, Foged C, Chou YH, Karlsson P, Swahn CG, Sandell J, et al. Carbon-11-N NC 112: a radioligand for PET examination of striatal and neocortical D1-dopamine receptors. J Nucl Med 1998, 39: 2061–2068.PubMedGoogle Scholar
  85. [85]
    Slifstein M, Kegeles LS, Gonzales R, Frankle WG, Xu X, Laruelle M, et al. [11C]NNC 112 selectivity for dopamine D1 and serotonin 5-HT(2A) receptors: a PET study in healthy human subjects. J Cereb Blood Flow Metab 2007, 27: 1733–1741.PubMedCrossRefGoogle Scholar
  86. [86]
    Martinez D, Slifstein M, Narendran R, Foltin RW, Broft A, Hwang DR, et al. Dopamine D1 receptors in cocaine dependence measured with PET and the choice to self-administer cocaine. Neuropsychopharmacology 2009, 34: 1774–1782.PubMedCrossRefPubMedCentralGoogle Scholar
  87. [87]
    Hirvonen J, Nagren K, Kajander J, Hietala J. Measurement of cortical dopamine d1 receptor binding with 11C[SCH23390]: a test-retest analysis. J Cereb Blood Flow Metab 2001, 21: 1146–1150.PubMedCrossRefGoogle Scholar
  88. [88]
    Dagher A, Bleicher C, Aston JA, Gunn RN, Clarke PB, Cumming P. Reduced dopamine D1 receptor binding in the ventral striatum of cigarette smokers. Synapse 2001, 42: 48–53.PubMedCrossRefGoogle Scholar
  89. [89]
    Yasuno F, Ota M, Ando K, Ando T, Maeda J, Ichimiya T, et al. Role of ventral striatal dopamine D1 receptor in cigarette craving. Biol Psychiatry 2007, 61: 1252–1259.PubMedCrossRefGoogle Scholar
  90. [90]
    Volkow ND, Fowler JS, Wang GJ, Swanson JM. Dopamine in drug abuse and addiction: results from imaging studies and treatment implications. Mol Psychiatry 2004, 9: 557–569.PubMedCrossRefGoogle Scholar
  91. [91]
    Pichler BJ, Kolb A, Nagele T, Schlemmer HP. PET/MRI: paving the way for the next generation of clinical multimodality imaging applications. J Nucl Med 2010, 51: 333–336.PubMedCrossRefGoogle Scholar
  92. [92]
    Pichler BJ, Judenhofer MS, Pfannenberg C. Multimodal imaging approaches: PET/CT and PET/MRI. Handb Exp Pharmacol 2008: 109–132.Google Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Haifeng Hou
    • 1
    • 2
    • 3
    • 4
  • Chunyan Wang
    • 5
  • Shaowei Jia
    • 6
  • Shu Hu
    • 6
  • Mei Tian
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Department of Nuclear Medicinethe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
  2. 2.Zhejiang University Medical PET CenterHangzhouChina
  3. 3.Institute of Nuclear Medicine and Molecular ImagingZhejiang UniversityHangzhouChina
  4. 4.Key Laboratory of Medical Molecular Imaging of Zhejiang ProvinceHangzhouChina
  5. 5.Beijing 307 HospitalBeijingChina
  6. 6.Department of Nuclear MedicinePeking University Shenzhen HospitalShenzhenChina

Personalised recommendations