Skip to main content

Paroxysmal kinesigenic dyskinesia and myotonia congenita in the same family: coexistence of a PRRT2 mutation and two CLCN1 mutations

Abstract

Paroxysmal kinesigenic dyskinesia (PKD) and myotonia congenita (MC) are independent disorders that share some clinical features. We aimed to investigate the sequences of PRRT2 and CLCN1 in a proband diagnosed with PKD and suspected MC. Clinical evaluation and auxiliary examinations were performed. Direct sequencing of the entire coding regions of the PRRT2 and CLCN1 genes was conducted. Haplotype analysis confirmed the relationships among the family members. The proband suffered choreoathetosis attacks triggered by sudden movements, and lower-limb weakness and stiffness that worsened in cold weather. Carbamazepine monotherapy completely controlled his choreoathetosis and significantly relieved his limb weakness and stiffness. His father, when young, had similar limb stiffness, while his mother and brother were asymptomatic. Genetic analysis revealed that the proband and his father harbored a PRRT2 c.649dupC mutation, and CLCN1 c.1723C>T and c.2492A>G mutations. His brother carried only the two CLCN1 mutations. None of these mutations were identified in his mother and 150 unrelated controls. This is the first report showing the coexistence of PRRT2 and CLCN1 mutations. Our results also indicate that both the PRRT2 and CLCN1 genes need to be screened if we fail to identify PRRT2 mutations in PKD patients or CLCN1 mutations in MC patients.

This is a preview of subscription content, access via your institution.

References

  1. Bruno MK, Hallett M, Gwinn-Hardy K, Sorensen B, Considine E, Tucker S, et al. Clinical evaluation of idiopathic paroxysmal kinesigenic dyskinesia: new diagnostic criteria. Ne urology 2004, 63: 2280–2287.

    CAS  Google Scholar 

  2. Li HF, Chen WJ, Ni W, Wang KY, Liu GL, Wang N, et al. PRRT2 mutation correlated with phenotype of paroxysmal kinesigenic dyskinesia and drug response. Neurology 2013, 80: 1534–1535.

    PubMed  Article  Google Scholar 

  3. Chen WJ, Lin Y, Xiong ZQ, Wei W, Ni W, Tan GH, et al. Exome sequencing identifies truncating mutations in PRRT2 that cause paroxysmal kinesigenic dyskinesia. Nat Genet 2011, 43: 1252–1255.

    CAS  PubMed  Article  Google Scholar 

  4. Wang JL, Cao L, Li XH, Hu ZM, Li JD, Zhang JG, et al. Identification of PRRT2 as the causative gene of paroxysmal kinesigenic dyskinesias. Brain 2011, 134: 3493–3501.

    PubMed  Article  Google Scholar 

  5. Li J, Zhu X, Wang X, Sun W, Feng B, Du T, et al. Targeted genomic sequencing identifies PRRT2 mutations as a cause of paroxysmal kinesigenic choreoathetosis. J Med Genet 2012, 49: 76–78.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  6. Lee HY, Huang Y, Bruneau N, Roll P, Roberson ED, Hermann M, et al. Mutations in the gene PRRT2 cause paroxysmal kinesigenic dyskinesia with infantile convulsions. Cell Rep 2012, 1: 2–12.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  7. Heron SE, Dibbens LM. Role of PRRT2 in common paroxysmal neurological disorders: a gene with remarkable pleiotropy. J Med Genet 2013, 50: 133–139.

    CAS  PubMed  Article  Google Scholar 

  8. Li HF, Ni W, Xiong ZQ, Xu JF, Wu ZY. PRRT2 c.649dupC mutation derived from de novo in paroxysmal kinesigenic dyskinesia. CNS Neurosci Ther 2013, 19: 61–65.

    Google Scholar 

  9. Lee YC, Lee MJ, Yu HY, Roll P, Roberson ED, Hermann M, et al. PRRT2 mutations in paroxysmal kinesigenic dyskinesia with infantile convulsions in a Taiwanese cohort. PLoS One 2012, 7: e38543.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  10. Lossin C, George AL Jr. Myotonia congenita. Adv Genet 2008, 63: 25–55.

    CAS  PubMed  Article  Google Scholar 

  11. Heatwole CR, Moxley RT 3rd. The nondystrophic myotonias. Neurotherapeutics 2007, 4: 238–251.

    CAS  PubMed  Article  Google Scholar 

  12. Matthews E, Fialho D, Tan SV, Venance SL, Cannon SC, Sternberg D, et al. The non-dystrophic myotonias: molecular pathogenesis, diagnosis and treatment. Brain 2010, 133: 9–22.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  13. Meyer-Kleine C, Steinmeyer K, Ricker K, Jentsch TJ, Koch MC. Spectrum of mutations in the major human skeletal muscle chloride channel gene (CLCN1) leading to myotonia. Am J Hum Genet 1995, 57: 1325–1334.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Beck CL, Fahlke C, George AL Jr. Molecular basis for decreased muscle chloride conductance in the myotonic goat. Proc Natl Acad Sci U S A 1996, 93: 11248–11252.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  15. Sun C, Tranebjaerg L, Torbergsen T, Holmgren G, Van Ghelue M. Spectrum of CLCN1 mutations in patients with myotonia congenita in Northern Scandinavia. Eur J Hum Genet 2001, 9: 903–909.

    CAS  PubMed  Article  Google Scholar 

  16. Sheela SR. Myotonia congenita: response to carbamazepine. Indian Pediatr 2000, 37: 1122–1125.

    CAS  PubMed  Google Scholar 

  17. Conravey A, Santana-Gould L. Myotonia congenita and myotonic dystrophy: surveillance and management. Curr Treat Options Neurol 2010, 12: 16–28.

    PubMed  Article  Google Scholar 

  18. Fialho D, Kullmann DM, Hanna MG, Schorge S. Nongenomic effects of sex hormones on CLC-1 may contribute to gender differences in myotonia congenita. Neuromuscul Disord 2008, 18: 869–872.

    PubMed  Article  Google Scholar 

  19. Ulzi G, Lecchi M, Sansone V, Redaelli E, Corti E, Saccomanno D, et al. Myotonia congenita: Novel mutations in CLCN1 gene and functional characterizations in Italian patients. J Neurol Sci 2012, 318: 65–71.

    CAS  PubMed  Article  Google Scholar 

  20. Jou SB, Chang LI, Pan H, Chen PR, Hsiao KM. Novel CLCN1 mutations in Taiwanese patients with myotonia congenita. J Neurol 2004, 251: 666–670.

    CAS  PubMed  Article  Google Scholar 

  21. Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R. X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature 2002, 415:287–294.

    CAS  PubMed  Article  Google Scholar 

  22. Estevez R, Pusch M, Ferrer-Costa C, Orozco M, Jentsch TJ. Functional and structural conservation of CBS domains from CLC chloride channels. J Physiol 2004, 557: 363–378.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  23. Suominen T, Schoser B, Raheem O, Auvinen S, Walter M, Krahe R, et al. High frequency of co-segregating CLCN1 mutations among myotonic dystrophy type 2 patients from Finland and Germany. J Neurol 2008, 255:1731–1736

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  24. Sun C, Van Ghelue M, Tranebjaerg L, Thyssen F, Nilssen O, Torbergsen T. Myotonia congenita and myotonic dystrophy in the same family: coexistence of a CLCN1 mutation and expansion in the CNBP (ZNF9) gene. Clin Genet 2011, 80:574–580.

    CAS  PubMed  Article  Google Scholar 

  25. Cardani R, Giagnacovo M, Botta A, Rinaldi F, Morgante A, Udd B, et al. Co-segregation of DM2 with a recessive CLCN1 mutation in juvenile onset of myotonic dystrophy type 2. J Neurol 2012, 259:2090–2099.

    CAS  PubMed  Article  Google Scholar 

  26. Margari L, Presicci A, Ventura P, Margari F, Perniola T. Channelopathy: hypothesis of a common pathophysiologic mechanism in different forms of paroxysmal dyskinesia. Pediatr Neurol 2005, 32: 229–235

    PubMed  Article  Google Scholar 

  27. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H. et al. A human protein-protein interaction network: a resource for annotating the proteome. Cell 2005, 122: 957–968.

    CAS  PubMed  Article  Google Scholar 

  28. Jarvis SE, Zamponi GW. Masters or slaves? Vesicle release machinery and the regulation of presynaptic calcium channels. Cell Calcium 2005, 37: 483–488.

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Ying Wu.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, HF., Chen, WJ., Ni, W. et al. Paroxysmal kinesigenic dyskinesia and myotonia congenita in the same family: coexistence of a PRRT2 mutation and two CLCN1 mutations. Neurosci. Bull. 30, 1010–1016 (2014). https://doi.org/10.1007/s12264-014-1467-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-014-1467-7

Keywords

  • paroxysmal kinesigenic dyskinesia
  • myotonia congenita
  • PRRT2
  • CLCN1