Bruno MK, Hallett M, Gwinn-Hardy K, Sorensen B, Considine E, Tucker S, et al. Clinical evaluation of idiopathic paroxysmal kinesigenic dyskinesia: new diagnostic criteria. Ne urology 2004, 63: 2280–2287.
CAS
Google Scholar
Li HF, Chen WJ, Ni W, Wang KY, Liu GL, Wang N, et al. PRRT2 mutation correlated with phenotype of paroxysmal kinesigenic dyskinesia and drug response. Neurology 2013, 80: 1534–1535.
PubMed
Article
Google Scholar
Chen WJ, Lin Y, Xiong ZQ, Wei W, Ni W, Tan GH, et al. Exome sequencing identifies truncating mutations in PRRT2 that cause paroxysmal kinesigenic dyskinesia. Nat Genet 2011, 43: 1252–1255.
CAS
PubMed
Article
Google Scholar
Wang JL, Cao L, Li XH, Hu ZM, Li JD, Zhang JG, et al. Identification of PRRT2 as the causative gene of paroxysmal kinesigenic dyskinesias. Brain 2011, 134: 3493–3501.
PubMed
Article
Google Scholar
Li J, Zhu X, Wang X, Sun W, Feng B, Du T, et al. Targeted genomic sequencing identifies PRRT2 mutations as a cause of paroxysmal kinesigenic choreoathetosis. J Med Genet 2012, 49: 76–78.
CAS
PubMed Central
PubMed
Article
Google Scholar
Lee HY, Huang Y, Bruneau N, Roll P, Roberson ED, Hermann M, et al. Mutations in the gene PRRT2 cause paroxysmal kinesigenic dyskinesia with infantile convulsions. Cell Rep 2012, 1: 2–12.
CAS
PubMed Central
PubMed
Article
Google Scholar
Heron SE, Dibbens LM. Role of PRRT2 in common paroxysmal neurological disorders: a gene with remarkable pleiotropy. J Med Genet 2013, 50: 133–139.
CAS
PubMed
Article
Google Scholar
Li HF, Ni W, Xiong ZQ, Xu JF, Wu ZY. PRRT2 c.649dupC mutation derived from de novo in paroxysmal kinesigenic dyskinesia. CNS Neurosci Ther 2013, 19: 61–65.
Google Scholar
Lee YC, Lee MJ, Yu HY, Roll P, Roberson ED, Hermann M, et al. PRRT2 mutations in paroxysmal kinesigenic dyskinesia with infantile convulsions in a Taiwanese cohort. PLoS One 2012, 7: e38543.
CAS
PubMed Central
PubMed
Article
Google Scholar
Lossin C, George AL Jr. Myotonia congenita. Adv Genet 2008, 63: 25–55.
CAS
PubMed
Article
Google Scholar
Heatwole CR, Moxley RT 3rd. The nondystrophic myotonias. Neurotherapeutics 2007, 4: 238–251.
CAS
PubMed
Article
Google Scholar
Matthews E, Fialho D, Tan SV, Venance SL, Cannon SC, Sternberg D, et al. The non-dystrophic myotonias: molecular pathogenesis, diagnosis and treatment. Brain 2010, 133: 9–22.
CAS
PubMed Central
PubMed
Article
Google Scholar
Meyer-Kleine C, Steinmeyer K, Ricker K, Jentsch TJ, Koch MC. Spectrum of mutations in the major human skeletal muscle chloride channel gene (CLCN1) leading to myotonia. Am J Hum Genet 1995, 57: 1325–1334.
CAS
PubMed Central
PubMed
Google Scholar
Beck CL, Fahlke C, George AL Jr. Molecular basis for decreased muscle chloride conductance in the myotonic goat. Proc Natl Acad Sci U S A 1996, 93: 11248–11252.
CAS
PubMed Central
PubMed
Article
Google Scholar
Sun C, Tranebjaerg L, Torbergsen T, Holmgren G, Van Ghelue M. Spectrum of CLCN1 mutations in patients with myotonia congenita in Northern Scandinavia. Eur J Hum Genet 2001, 9: 903–909.
CAS
PubMed
Article
Google Scholar
Sheela SR. Myotonia congenita: response to carbamazepine. Indian Pediatr 2000, 37: 1122–1125.
CAS
PubMed
Google Scholar
Conravey A, Santana-Gould L. Myotonia congenita and myotonic dystrophy: surveillance and management. Curr Treat Options Neurol 2010, 12: 16–28.
PubMed
Article
Google Scholar
Fialho D, Kullmann DM, Hanna MG, Schorge S. Nongenomic effects of sex hormones on CLC-1 may contribute to gender differences in myotonia congenita. Neuromuscul Disord 2008, 18: 869–872.
PubMed
Article
Google Scholar
Ulzi G, Lecchi M, Sansone V, Redaelli E, Corti E, Saccomanno D, et al. Myotonia congenita: Novel mutations in CLCN1 gene and functional characterizations in Italian patients. J Neurol Sci 2012, 318: 65–71.
CAS
PubMed
Article
Google Scholar
Jou SB, Chang LI, Pan H, Chen PR, Hsiao KM. Novel CLCN1 mutations in Taiwanese patients with myotonia congenita. J Neurol 2004, 251: 666–670.
CAS
PubMed
Article
Google Scholar
Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R. X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature 2002, 415:287–294.
CAS
PubMed
Article
Google Scholar
Estevez R, Pusch M, Ferrer-Costa C, Orozco M, Jentsch TJ. Functional and structural conservation of CBS domains from CLC chloride channels. J Physiol 2004, 557: 363–378.
CAS
PubMed Central
PubMed
Article
Google Scholar
Suominen T, Schoser B, Raheem O, Auvinen S, Walter M, Krahe R, et al. High frequency of co-segregating CLCN1 mutations among myotonic dystrophy type 2 patients from Finland and Germany. J Neurol 2008, 255:1731–1736
CAS
PubMed Central
PubMed
Article
Google Scholar
Sun C, Van Ghelue M, Tranebjaerg L, Thyssen F, Nilssen O, Torbergsen T. Myotonia congenita and myotonic dystrophy in the same family: coexistence of a CLCN1 mutation and expansion in the CNBP (ZNF9) gene. Clin Genet 2011, 80:574–580.
CAS
PubMed
Article
Google Scholar
Cardani R, Giagnacovo M, Botta A, Rinaldi F, Morgante A, Udd B, et al. Co-segregation of DM2 with a recessive CLCN1 mutation in juvenile onset of myotonic dystrophy type 2. J Neurol 2012, 259:2090–2099.
CAS
PubMed
Article
Google Scholar
Margari L, Presicci A, Ventura P, Margari F, Perniola T. Channelopathy: hypothesis of a common pathophysiologic mechanism in different forms of paroxysmal dyskinesia. Pediatr Neurol 2005, 32: 229–235
PubMed
Article
Google Scholar
Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H. et al. A human protein-protein interaction network: a resource for annotating the proteome. Cell 2005, 122: 957–968.
CAS
PubMed
Article
Google Scholar
Jarvis SE, Zamponi GW. Masters or slaves? Vesicle release machinery and the regulation of presynaptic calcium channels. Cell Calcium 2005, 37: 483–488.
CAS
PubMed
Article
Google Scholar