Skip to main content
Log in

Activation of extrasynaptic GABAA receptors inhibits cyclothiazide-induced epileptiform activity in hippocampal CA1 neurons

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Extrasynaptic GABAA receptors (GABAARs)-mediated tonic inhibition is reported to involve in the pathogenesis of epilepsy. In this study, we used cyclothiazide (CTZ)-induced in vitro brain slice seizure model to explore the effect of selective activation of extrasynaptic GABAARs by 4,5,6,7-tetrahydroisoxazolo[5,4-c] pyridine-3-ol (THIP) on the CTZ-induced epileptiform activity in hippocampal neurons. Perfusion with CTZ dose-dependently induced multiple epileptiform peaks of evoked population spikes (PSs) in CA1 pyramidal neurons, and treatment with THIP (5 μmol/L) significantly reduced the multiple PS peaks induced by CTZ stimulation. Western blot showed that the δ-subunit of the GABAAR, an extrasynaptic specific GABAAR subunit, was also significantly down-regulated in the cell membrane 2 h after CTZ treatment. Our results suggest that the CTZ-induced epileptiform activity in hippocampal CA1 neurons is suppressed by the activation of extrasynaptic GABAARs, and further support the hypothesis that tonic inhibition mediated by extrasynaptic GABAARs plays a prominent role in seizure generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lytton WW. Computer modelling of epilepsy. Nat Rev Neurosci 2008, 9: 626–637.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Celikyurt IK, Mutlu O, Ulak G, Akar FY, Erden F. Gabapentin, A GABA analogue, enhances cognitive performance in mice. Neurosci Lett 2011, 492: 124–128.

    Article  PubMed  CAS  Google Scholar 

  3. Frye CA. Effects and mechanisms of progestogens and androgens in ictal activity. Epilepsia 2010, 51Suppl 3: 135–140.

    Article  PubMed  CAS  Google Scholar 

  4. Kusunose N, Koyanagi S, Hamamura K, Matsunaga N, Yoshida M, Uchida T, et al. Molecular basis for the dosing time-dependency of anti-allodynic effects of gabapentin in a mouse model of neuropathic pain. Mol Pain 2010, 6: 83.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Belelli D, Harrison NL, Maguire J, Macdonald RL, Walker MC, Cope DW. Extrasynaptic GABAA receptors: form, pharmacology, and function. J Neurosci 2009, 29: 12757–12763.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Zarnowska ED, Keist R, Rudolph U, Pearce RA. GABAA receptor alpha5 subunits contribute to GABAA, slow synaptic inhibition in mouse hippocampus. J Neurophysiol 2009, 101: 1179–1191.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Wei W, Zhang N, Peng Z, Houser CR, Mody I. Perisynaptic localization of delta subunit-containing GABA(A) receptors and their activation by GABA spillover in the mouse dentate gyrus. J Neurosci 2003, 23: 10650–10661.

    PubMed  CAS  Google Scholar 

  8. Stell B M, Brickley SG, Tang CY, Farrant M, Mody I. Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by delta subunit-containing GABAA receptors. Proc Natl Acad Sci U S A 2003, 100: 14439–14444.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Wohlfarth KM, Bianchi MT, Macdonald RL. Enhanced neurosteroid potentiation of ternary GABA(A) receptors containing the delta subunit. J Neurosci 2002, 22: 1541–1549.

    PubMed  CAS  Google Scholar 

  10. Palma E, Roseti C, Maiolino F, Fucile S, Martinello K, Mazzuferi M, et al. GABA(A)-current rundown of temporal lobe epilepsy is associated with repetitive activation of GABA(A) “phasic” receptors. Proc Natl Acad Sci USA 2007, 104: 20944–20948.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Zhang N, Wei W, Mody I, Houser CR. Altered localization of GABA(A) receptor subunits on dentate granule cell dendrites influences tonic and phasic inhibition in a mouse model of epilepsy. J Neurosci 2007, 27: 7520–7531.

    Article  PubMed  CAS  Google Scholar 

  12. Errington AC, Cope DW, Crunelli V. Augmentation of tonic GABA(A) inhibition in absence epilepsy: therapeutic value of inverse agonists at extrasynaptic GABA(A) receptors. Adv Pharmacol Sci 2011, 2011: 790590.

    PubMed  PubMed Central  Google Scholar 

  13. Sun Y, Wu Z, Kong S, Jiang D, Pitre A, Wang Y, et al. Regulation of epileptiform activity by two distinct subtypes of extrasynaptic GABAA receptors. Mol Brain 2013, 6: 21.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Peng Z, Huang CS, Stell BM, Mody I, Houser CR. Altered expression of the delta subunit of the GABAA receptor in a mouse model of temporal lobe epilepsy. J Neurosci 2004, 24: 8629–8639.

    Article  PubMed  CAS  Google Scholar 

  15. Dibbens LM, Feng HJ, Richards MC, Harkin LA, Hodgson BL, Scott D, et al. GABRD encoding a protein for extra- or peri-synaptic GABAA receptors is a susceptibility locus for generalized epilepsies. Hum Mol Genet 2004, 13: 1315–1319.

    Article  PubMed  CAS  Google Scholar 

  16. Qi J, Wang Y, Jiang M, Warren P, Chen G. Cyclothiazide induces robust epileptiform activity in rat hippocampal neurons both in vitro and in vivo. J Physiol 2006, 571: 605–618.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Wang Y, Qi JS, Kong S, Sun Y, Fan J, Jiang M, et al. BDNFTrkB signaling pathway mediates the induction of epileptiform activity induced by a convulsant drug cyclothiazide. Neuropharmacology 2009, 57: 49–59.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Karr L, Rutecki PA. Activity-dependent induction and maintenance of epileptiform activity produced by group I metabotropic glutamate receptors in the rat hippocampal slice. Epilepsy Res 2008, 81: 14–23.

    Article  PubMed  CAS  Google Scholar 

  19. Karnup S, Stelzer A. Seizure-like activity in the disinhibited CA1 minislice of adult guinea-pigs. J Physiol 2001, 532: 713–730.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Stittsworth JD, Jr., Lanthorn TH. Resistance to epileptic, but not anoxic, depolarization in the gerbil hippocampal slice preparation. Neurosci Lett 1994, 168: 8–10.

    Article  PubMed  Google Scholar 

  21. Durand DM, Warman EN. Desynchronization of epileptiform activity by extracellular current pulses in rat hippocampal slices. J Physiol 1994, 480( Pt 3): 527–537.

    PubMed  CAS  PubMed Central  Google Scholar 

  22. Furshpan EJ. Seizu re-like activity in cell culture. Epilepsy Res 1991, 10: 24–32.

    Article  PubMed  CAS  Google Scholar 

  23. Benardo LS. GABAergic cell grafts control seizure activity. Epilepsy Curr 2004, 4: 162–163.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Maeda T, Hashizume K, Sako K, Tanaka T. The effect of hippocampal dentate granule cell lesions upon the limbic seizure model of rats. No To Shinkei 1998, 50: 643–649.

    PubMed  CAS  Google Scholar 

  25. Qian B, Sun Y, Wu Z, Wan L, Chen L, Kong S, et al. Epileptiform response of CA1 neurones to convulsant stimulation by cyclothiazide, kainic acid and pentylenetetrazol in anaesthetized rats. Seizure 2011, 20: 312–319.

    Article  PubMed  Google Scholar 

  26. Kong S, Qian B, Liu J, Fan M, Chen G, Wang Y. Cyclothiazide induces seizure behavior in freely moving rats. Brain Res 2010, 1355: 207–213.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Deng L, Chen G. Cycloth iazide potently inhibits gamma-aminobutyric acid type A receptors in addition to enhancing glutamate responses. Proc Natl Acad Sci U S A 2003, 100: 13025–13029.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Fitzpatrick JS, Shahi K, Baudry M. Effect of seizure activity and calpain inhibitor I on LTP in juvenile hippocampal slices. Int J Dev Neurosci 1992, 10: 313–319.

    Article  PubMed  CAS  Google Scholar 

  29. Wieraszko A, Seyfried TN. Increased amount of extracellular ATP in stimulated hippocampal slices of seizure prone mice. Neurosci Lett 1989, 106: 287–293.

    Article  PubMed  CAS  Google Scholar 

  30. Kovacs R, Rabanus A, Otahal J, Patzak A, Kardos J, Albus K, et al. Endogenous nitric oxide is a key promoting factor for initiation of seizure-like events in hippocampal and entorhinal cortex slices. J Neurosci 2009, 29: 8565–8577.

    Article  PubMed  CAS  Google Scholar 

  31. Liu JS, Li JB, Gong XW, Gong HQ, Zhang PM, Liang PJ, et al. Spatiotemporal dynamics of high-K+-induced epileptiform discharges in hippocampal slice and the effects of valproate. Neurosci Bull 2013, 29: 28–36.

    Article  PubMed  Google Scholar 

  32. Fujii T, Yoshizaki K. Temper ature dependence on the recovery of electrical activities in brain slice during incubation. Nihon Seirigaku Zasshi 1976, 38: 43–45.

    PubMed  CAS  Google Scholar 

  33. Davidson C, Chauhan NK, Knight S, Gibson CL, Young AM. Modelling ischaemia in vitro: effects of temperature and glucose concentration on dopamine release evoked by oxygen and glucose depletion in a mouse brain slice. J Neurosci Methods 2011, 202: 165–172.

    Article  PubMed  CAS  Google Scholar 

  34. Margineanu DG, Klitgaard H. Di fferential effects of cation-chloride co-transport-blocking diuretics in a rat hippocampal slice model of epilepsy. Epilepsy Res 2006, 69: 93–99.

    Article  PubMed  CAS  Google Scholar 

  35. Margineanu DG, Klitgaard H. Can gap-junction blockade preferentially inhibit neuronal hypersynchrony vs. excitability? Neuropharmacology 2001, 41: 377–383.

    Article  PubMed  CAS  Google Scholar 

  36. Brunig I, Penschuck S, Berninger B, Benson J, Fritschy JM. BDNF reduces miniature inhibitory postsynaptic currents by rapid downregulation of GABA(A) receptor surface expression. Eur J Neurosci 2001, 13: 1320–1328.

    Article  PubMed  CAS  Google Scholar 

  37. Treiman DM. GABAergic mechanisms in epilepsy. Epilepsia 2001, 42Suppl 3: 8–12.

    Article  PubMed  Google Scholar 

  38. Sperk G, Furtinger S, Schwarzer C, Pirker S. GABA and its receptors in epilepsy. Adv Exp Med Biol 2004, 548: 92–103.

    Article  PubMed  CAS  Google Scholar 

  39. Mann EO, Mody I. The multifaceted role of inhibition in epilepsy: seizure-genesis through excessive GABAergic inhibition in autosomal dominant nocturnal frontal lobe epilepsy. Curr Opin Neurol 2008, 21: 155–160.

    Article  PubMed  CAS  Google Scholar 

  40. Coulter DA, Carlson GC. Functional regulation of the dentate gyrus by GABA-mediated inhibition. Prog Brain Res 2007, 163: 235–243.

    Article  PubMed  CAS  Google Scholar 

  41. Atack JR, Bayley PJ, Seabrook GR, Wafford KA, McKernan RM, Dawson GR. L-655,708 enhances cognition in rats but is not proconvulsant at a dose selective for alpha5-containing GABAA receptors. Neuropharmacology 2006, 51: 1023–1029.

    Article  PubMed  CAS  Google Scholar 

  42. Sierra-Paredes G, Sierra-Marcuno G. Ex trasynaptic GABA and glutamate receptors in epilepsy. CNS Neurol Disord Drug Targets 2007, 6: 288–300.

    Article  PubMed  CAS  Google Scholar 

  43. Richerson GB. Looking for GABA in all the wrong places: the relevance of extrasynaptic GABA(A) receptors to epilepsy. Epilepsy Curr 2004, 4: 239–242.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Caraiscos VB, Elliott EM, You-Ten KE, Cheng VY, Belelli D, Newell JG, et al. Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by alpha5 subunit-containing gamma-aminobutyric acid type A receptors. Proc Natl Acad Sci U S A 2004, 101: 3662–3667.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Mann EO, Mody I. Control of hippocampal g amma oscillation frequency by tonic inhibition and excitation of interneurons. Nat Neurosci 2010, 13: 205–212.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Liu X, Liu J, Liu J, Liu XL, Jin LY, Fan W, et al. BDNF-TrkB signaling pathway is involved in pentylenetetrazole-evoked progression of epileptiform activity in hippocampal neurons in anesthetized rats. Neurosci Bull 2013, 29: 565–575.

    Article  PubMed  CAS  Google Scholar 

  47. Houser CR, Esclapez M. Downregulation of the alpha5 subunit of the GABA(A) receptor in the pilocarpine model of temporal lobe epilepsy. Hippocampus 2003, 13: 633–645.

    Article  PubMed  CAS  Google Scholar 

  48. Feng HJ, Kang JQ, Song L, Dibbens L, Mulley J, Macdonald RL. Delta subunit susceptibility variants E177A and R220H associated with complex epilepsy alter channel gating and surface expression of alpha4beta2delta GABAA receptors. J Neurosci 2006, 26: 1499–1506.

    Article  PubMed  CAS  Google Scholar 

  49. Maguire JL, Stell BM, Rafizadeh M, Mody I. Ovarian cycle-linked changes in GABA(A) receptors mediating tonic inhibition alter seizure susceptibility and anxiety. Nat Neurosci 2005, 8: 797–804.

    Article  PubMed  CAS  Google Scholar 

  50. Spigelman I, Li Z, Banerjee PK, Mihalek RM, Homanics GE, Olsen RW. Behavior and physiology of mice lacking the GABAA-receptor delta subunit. Epilepsia 2002, 43Suppl 5: 3–8.

    Article  PubMed  CAS  Google Scholar 

  51. Glykys J, Mody I. Activation of GABAA receptors: views from outside the synaptic cleft. Neuron 2007, 56: 763–770.

    Article  PubMed  CAS  Google Scholar 

  52. Pavlov I, Savtchenko LP, Kullmann DM, Semyanov A, Walker MC. Outwardly rectifying tonically active GABAA receptors in pyramidal cells modulate neuronal offset, not gain. J Neurosci 2009, 29: 15341–15350.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Longzhen Cheng or Yun Wang.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, L., Liu, X., Wu, Z. et al. Activation of extrasynaptic GABAA receptors inhibits cyclothiazide-induced epileptiform activity in hippocampal CA1 neurons. Neurosci. Bull. 30, 866–876 (2014). https://doi.org/10.1007/s12264-014-1466-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-014-1466-8

Keywords

Navigation