Skip to main content

Advertisement

Log in

Neurostatistical imaging for diagnosing dementia: translational approach from laboratory neuroscience to clinical routine

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Statistical analysis in neuroimaging (referred to as “neurostatistical imaging”) is important in clinical neurology. Here, neurostatistical imaging and its superiority for diagnosing dementia are reviewed. In neurodegenerative dementia, the proportional distribution of brain perfusion, metabolism, or atrophy is important for understanding the symptoms and status of patients and for identifying regions of pathological damage. Although absolute quantitative changes are important in vascular disease, they are less important than relative values in neurodegenerative dementia. Even under resting conditions in healthy individuals, the distribution of brain perfusion and metabolism is asymmetrical and differs among areas. To detect small changes, statistical analysis such as the Z-score — the number of standard deviations by which a patient’s voxel value differs from the normal mean value — comparing normal controls is useful and also facilitates clinical assessment. Our recent finding of a longitudinal one-year reduction of glucose metabolism around the olfactory tract in Alzheimer’s disease using the recently-developed DARTEL normalization procedure is also presented. Furthermore, a newly-developed procedure to assess brain atrophy with CT-based voxel-based morphometry is illustrated. The promising possibilities of CT in neurostatistical imaging are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Minoshima S, Frey KA, Koeppe RA, Foster NL, Kuhl DE. A diagnostic approach in Alzheimer’s disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med 1995, 36: 1238–1248.

    PubMed  CAS  Google Scholar 

  2. Kobayashi S, Tateno M, Utsumi K, Takahashi A, Morii H, Saito T. Two-layer appearance on brain perfusion SPECT in idiopathic normal pressure hydrocephalus: a qualitative analysis by using easy Z-score imaging system, eZIS. Dement Geriatr Cogn Disord 2009, 28: 330–337.

    Article  PubMed  Google Scholar 

  3. Minoshima S, Foster NL, Kuhl DE. Posterior cingulate cortex in Alzheimer’s disease. Lancet 1994, 344: 895.

    Article  PubMed  CAS  Google Scholar 

  4. Ohnishi T, Matsuda H, Tabira T, Asada T, Uno M. Changes in brain morphology in Alzheimer disease and normal aging: is Alzheimer disease an exaggerated aging process? AJNR Am J Neuroradiol 2001, 22: 1680–1685.

    PubMed  CAS  Google Scholar 

  5. Klunk WE, Engler H, Nordberg A, Wang YM, Blomqvist G, Holt DP, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 2004, 55: 306–319.

    Article  PubMed  CAS  Google Scholar 

  6. Maruyama M, Shimada H, Suhara T, Shinotoh H, Ji B, Maeda J, et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron 2013, 79: 1094–1108.

    Article  PubMed  CAS  Google Scholar 

  7. Ashburner J, Friston KJ. Voxel-based morphometry — The methods. Neuroimage 2000, 11: 805–821.

    Article  PubMed  CAS  Google Scholar 

  8. Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol 1997, 42: 85–94.

    Article  PubMed  CAS  Google Scholar 

  9. Kogure D, Matsuda H, Ohnishi T, Asada T, Uno M, Kunihiro T, et al. Longitudinal evaluation of early Alzheimer’s disease using brain perfusion SPECT. J Nucl Med 2000, 41: 1155–1162.

    PubMed  CAS  Google Scholar 

  10. Hirata Y, Matsuda H, Nemoto K, Ohnishi T, Hirao K, Yamashita F, et al. Voxel-based morphometry to discriminate early Alzheimer’s disease from controls. Neurosci Lett 2005, 382: 269–274.

    Article  PubMed  CAS  Google Scholar 

  11. Imabayashi E, Matsuda H, Asada T, Ohnishi T, Sakamoto S, Nakano S, et al. Superiority of 3-dimensional stereotactic surface projection analysis over visual inspection in discrimination of patients with very early Alzheimer’s disease from controls using brain perfusion SPECT. J Nucl Med 2004, 45: 1450–1457.

    PubMed  Google Scholar 

  12. Kawachi T, Ishii K, Sakamoto S, Sasaki M, Mori T, Yamashita F, et al. Comparison of the diagnostic performance of FDG-PET and VBM-MRI in very mild Alzheimer’s disease. Eur J Nucl Med Mol Imaging 2006, 33: 801–809.

    Article  PubMed  Google Scholar 

  13. Matsuda H, Mizumura S, Nagao T, Ota T, Iizuka T, Nemoto K, et al. Automated discrimination between very early Alzheimer disease and controls using an easy Z-score imaging system for multicenter brain perfusion single-photon emission tomography. Am J Neuroradiol 2007, 28: 731–736.

    PubMed  CAS  Google Scholar 

  14. Mito Y, Yoshida K, Yabe I, Makino K, Hirotani M, Tashiro K, et al. Brain 3D-SSP SPECT analysis in dementia with Lewy bodies, Parkinson’s disease with and without dementia, and Alzheimer’s disease. Clin Neurol Neurosurg 2005, 107: 396–403.

    Article  PubMed  Google Scholar 

  15. Lim SM, Katsifis A, Villemagne VL, Best R, Jones G, Saling M, et al. The 18F-FDG PET cingulate island sign and comparison to 123I-β-CIT SPECT for diagnosis of dementia with Lewy bodies. J Nucl Med 2009, 50: 1638–1645.

    Article  PubMed  CAS  Google Scholar 

  16. Nakatsuka T, Imabayashi E, Matsuda H, Sakakibara R, Inaoka T, Terada H. Discrimination of dementia with Lewy bodies from Alzheimer’s disease using voxel-based morphometry of white matter by statistical parametric mapping 8 plus diffeomorphic anatomic registration through exponentiated Lie algebra. Neuroradiology 2013, 55: 559–566.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sakurai K, Imabayashi E, Tokumaru AM, Hasebe S, Murayama S, Morimoto S, et al. The feasibility of white matter volume reduction analysis using SPM8 plus DARTEL for the diagnosis of patients with clinically diagnosed corticobasal syndrome and Richardson’s syndrome. Neuroimage Clin 2014. DOI: 10.1016/j.nicl.2014.02.009

    Google Scholar 

  18. Villain N, Fouquet M, Baron JC, Mezenge F, Landeau B, de La Sayette V, et al. Sequential relationships between grey matter and white matter atrophy and brain metabolic abnormalities in early Alzheimer’s disease. Brain 2010, 133: 3301–3314.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fouquet M, De sgranges B, Landeau B, Duchesnay E, Mezenge F, de la Sayette V, et al. Longitudinal brain metabolic changes from amnestic mild cognitive impairment to Alzheimer’s disease. Brain 2009, 132: 2058–2067.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Imabayashi E, Matsuda H, Yoshimaru K, Kuji I, Seto A, Shimano Y, et al. Pilot data on telmisartan short-term effects on glucose metabolism in the olfactory tract in Alzheimer’s disease. Brain Behav 2011, 1: 63–69.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Imabayashi E, Matsuda H, Tabira T, Arima K, Araki N, Ishii K, et al. Comparison between brain CT and MRI for voxel-based morphometry of Alzheimer’s disease. Brain Behav 2013, 3: 487–493.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etsuko Imabayashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imabayashi, E., Inoue, T. Neurostatistical imaging for diagnosing dementia: translational approach from laboratory neuroscience to clinical routine. Neurosci. Bull. 30, 755–764 (2014). https://doi.org/10.1007/s12264-014-1464-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-014-1464-x

Keywords

Navigation