Neuroscience Bulletin

, Volume 30, Issue 4, pp 542–556 | Cite as

Activity-dependent signaling mechanisms regulating adult hippocampal neural stem cells and their progeny

Review

Abstract

Adult neural stem cells (NSCs) reside in a restricted microenvironment, where their development is controlled by subtle and presently underexplored cues. This raises a significant question: what instructions must be provided by this supporting niche to regulate NSC development and functions? Signaling from the niche is proposed to control many aspects of NSC behavior, including balancing the quiescence and proliferation of NSCs, determining the cell division mode (symmetric versus asymmetric), and preventing premature depletion of stem cells to maintain neurogenesis throughout life. Interactions between neurogenic niches and NSCs also govern the homeostatic regulation of adult neurogenesis under diverse physiological, environmental, and pathological conditions. An important implication from revisiting many previously-identifi ed regulatory factors is that most of them (e.g., the antidepressant fluoxetine and exercise) affect gross neurogenesis by acting downstream of NSCs at the level of intermediate progenitors and neuroblasts, while leaving the NSC pool unaffected. Therefore, it is critically important to address how various niche components, signaling pathways, and environmental stimuli differentially regulate distinct stages of adult neurogenesis.

Keywords

neural stem cell neuronal development neuronal plasticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Lledo PM, Alonso M, Grubb MS. Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci 2006, 7: 179–193.PubMedGoogle Scholar
  2. [2]
    Song J, Christian KM, Ming GL, Song H. Modification of hippocampal circuitry by adult neurogenesis. Dev Neurobiol 2012, 72: 1032–1043.PubMedCentralPubMedGoogle Scholar
  3. [3]
    Zhao C, Deng W, Gage FH. Mechanisms and functional implications of adult neurogenesis. Cell 2008, 132: 645–660.PubMedGoogle Scholar
  4. [4]
    Bonaguidi MA, Wheeler MA, Shapiro JS, Stadel RP, Sun GJ, Ming GL, et al. In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell 2011, 145: 1142–1155.PubMedCentralPubMedGoogle Scholar
  5. [5]
    Gage FH. Mammalian neural stem cells. Science 2000, 287: 1433–1438.PubMedGoogle Scholar
  6. [6]
    Seri B, Garcia-Verdugo JM, McEwen BS, Alvarez-Buylla A. Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 2001, 21: 7153–7160.PubMedGoogle Scholar
  7. [7]
    Suh H, Consiglio A, Ray J, Sawai T, D’Amour KA, Gage FH. In vivo fate analysis reveals the multipotent and selfrenewal capacities of Sox2+ neural stem cells in the adult hippocampus. Cell Stem Cell 2007, 1: 515–528.PubMedCentralPubMedGoogle Scholar
  8. [8]
    Ohira K, Furuta T, Hioki H, Nakamura KC, Kuramoto E, Tanaka Y, et al. Ischemia-induced neurogenesis of neocortical layer 1 progenitor cells. Nat Neurosci 2010, 13: 173–179.PubMedGoogle Scholar
  9. [9]
    Aimone JB, Deng W, Gage FH. Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation. Neuron 2011, 70: 589–596.PubMedCentralPubMedGoogle Scholar
  10. [10]
    Sahay A, Wilson DA, Hen R. Pattern separation: a common function for new neurons in hippocampus and olfactory bulb. Neuron 2011, 70: 582–588.PubMedCentralPubMedGoogle Scholar
  11. [11]
    Schmidt-Hieber C, Jonas P, Bischofberger J. Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature 2004, 429: 184–187.PubMedGoogle Scholar
  12. [12]
    Ge S, Yang CH, Hsu KS, Ming GL, Song H. A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron 2007, 54: 559–566.PubMedCentralPubMedGoogle Scholar
  13. [13]
    Marin-Burgin A, Mongiat LA, Pardi MB, Schinder AF. Unique processing during a period of high excitation/inhibition balance in adult-born neurons. Science 2012.Google Scholar
  14. [14]
    Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 2003, 301: 805–809.PubMedGoogle Scholar
  15. [15]
    Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA. Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature 2011, 476: 458–461.PubMedCentralPubMedGoogle Scholar
  16. [16]
    Ming GL, Song H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 2011, 70: 687–702.PubMedCentralPubMedGoogle Scholar
  17. [17]
    Christian K, Song H, Ming GL. Adult neurogenesis as a cellular model to study schizophrenia. Cell Cycle 2010, 9: 636–637.PubMedGoogle Scholar
  18. [18]
    Guo W, Allan AM, Zong R, Zhang L, Johnson EB, Schaller EG, et al. Ablation of Fmrp in adult neural stem cells disrupts hippocampus-dependent learning. Nat Med 2011, 17: 559–565.PubMedCentralPubMedGoogle Scholar
  19. [19]
    Li G, Fang L, Fernandez G, Pleasure SJ. The ventral hippocampus is the embryonic origin for adult neural stem cells in the dentate gyrus. Neuron 2013, 78: 658–672.PubMedCentralPubMedGoogle Scholar
  20. [20]
    Ma DK, Bonaguidi MA, Ming GL, Song H. Adult neural stem cells in the mammalian central nervous system. Cell Res 2009, 19: 672–682.PubMedCentralPubMedGoogle Scholar
  21. [21]
    Gabay L, Lowell S, Rubin LL, Anderson DJ. Deregulation of dorsoventral patterning by FGF confers trilineage differentiation capacity on CNS stem cells in vitro. Neuron 2003, 40: 485–499.PubMedGoogle Scholar
  22. [22]
    Palmer TD, Markakis EA, Willhoite AR, Safar F, Gage FH. Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. J Neurosci 1999, 19: 8487–8497.PubMedGoogle Scholar
  23. [23]
    Kondo T, Raff M. Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 2000, 289: 1754–1757.PubMedGoogle Scholar
  24. [24]
    Dhaliwal J, Lagace DC. Visualization and genetic manipulation of adult neurogenesis using transgenic mice. Eur J Neurosci 2011, 33: 1025–1036.PubMedGoogle Scholar
  25. [25]
    Lugert S, Basak O, Knuckles P, Haussler U, Fabel K, Gotz M, et al. Quiescent and active hippocampal neural stem cells with distinct morphologies respond selectively to physiological and pathological stimuli and aging. Cell Stem Cell 2010, 6: 445–456.PubMedGoogle Scholar
  26. [26]
    Kippin TE, Martens DJ, van der Kooy D. p21 loss compromises the relative quiescence of forebrain stem cell proliferation leading to exhaustion of their proliferation capacity. Genes Dev 2005, 19: 756–767.PubMedCentralPubMedGoogle Scholar
  27. [27]
    Ruzankina Y, Pinzon-Guzman C, Asare A, Ong T, Pontano L, Cotsarelis G, et al. Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss. Cell Stem Cell 2007, 1: 113–126.PubMedCentralPubMedGoogle Scholar
  28. [28]
    Dranovsky A, Picchini AM, Moadel T, Sisti AC, Yamada A, Kimura S, et al. Experience dictates stem cell fate in the adult hippocampus. Neuron 2011, 70: 908–923.PubMedCentralPubMedGoogle Scholar
  29. [29]
    Seri B, Garcia-Verdugo JM, Collado-Morente L, McEwen BS, Alvarez-Buylla A. Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. J Comp Neurol 2004, 478: 359–378.PubMedGoogle Scholar
  30. [30]
    Fukuda S, Kato F, Tozuka Y, Yamaguchi M, Miyamoto Y, Hisatsune T. Two distinct subpopulations of nestin-positive cells in adult mouse dentate gyrus. J Neurosci 2003, 23: 9357–9366.PubMedGoogle Scholar
  31. [31]
    Steiner B, Klempin F, Wang L, Kott M, Kettenmann H, Kempermann G. Type-2 cells as link between glial and neuronal lineage in adult hippocampal neurogenesis. Glia 2006, 54: 805–814.PubMedGoogle Scholar
  32. [32]
    Kronenberg G, Reuter K, Steiner B, Brandt MD, Jessberger S, Yamaguchi M, et al. Subpopulations of proliferating cells of the adult hippocampus respond differently to physiologic neurogenic stimuli. J Comp Neurol 2003, 467: 455–463.PubMedGoogle Scholar
  33. [33]
    Encinas JM, Vaahtokari A, Enikolopov G. Fluoxetine targets early progenitor cells in the adult brain. Proc Natl Acad Sci U S A 2006, 103: 8233–8238.PubMedCentralPubMedGoogle Scholar
  34. [34]
    Brandt MD, Jessberger S, Steiner B, Kronenberg G, Reuter K, Bick-Sander A, et al. Transient calretinin expression defines early postmitotic step of neuronal differentiation in adult hippocampal neurogenesis of mice. Mol Cell Neurosci 2003, 24: 603–613.PubMedGoogle Scholar
  35. [35]
    Jessberger S, Romer B, Babu H, Kempermann G. Seizures induce proliferation and dispersion of doublecortin-positive hippocampal progenitor cells. Exp Neurol 2005, 196: 342–351.PubMedGoogle Scholar
  36. [36]
    Sierra A, Encinas JM, Deudero JJ, Chancey JH, Enikolopov G, Overstreet-Wadiche LS, et al. Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 2010, 7: 483–495.PubMedCentralPubMedGoogle Scholar
  37. [37]
    Snyder JS, Choe JS, Clifford MA, Jeurling SI, Hurley P, Brown A, et al. Adult-born hippocampal neurons are more numerous, faster maturing, and more involved in behavior in rats than in mice. J Neurosci 2009, 29: 14484–14495.PubMedCentralPubMedGoogle Scholar
  38. [38]
    Mandyam CD, Harburg GC, Eisch AJ. Determination of key aspects of precursor cell proliferation, cell cycle length and kinetics in the adult mouse subgranular zone. Neuroscience 2007, 146: 108–122.PubMedCentralPubMedGoogle Scholar
  39. [39]
    Tashiro A, Makino H, Gage FH. Ex perience-specific functional modification of the dentate gyrus through adult neurogenesis: a critical period during an immature stage. J Neurosci 2007, 27: 3252–3259.PubMedGoogle Scholar
  40. [40]
    Tashiro A, Sandler VM, Toni N, Zhao C, Gage FH. NMDAreceptor-mediated, cell-specific integration of new neurons in adult dentate gyrus. Nature 2006, 442: 929–933.PubMedGoogle Scholar
  41. [41]
    van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH. Functional neurogenesis in the adult hippocampus. Nature 2002, 415: 1030–1034.PubMedGoogle Scholar
  42. [42]
    Ambrogini P, Lattanzi D, Ciuffoli S, Agostini D, Bertini L, Stocchi V, et al. Morpho-functional characterization of neuronal cells at different stages of maturation in granule cell layer of adult rat dentate gyrus. Brain Res 2004, 1017: 21–31.PubMedGoogle Scholar
  43. [43]
    Zhao C, Teng EM, Summers RG, Jr., Ming GL, Gage FH. Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci 2006, 26: 3–11.PubMedGoogle Scholar
  44. [44]
    Ge S, Goh EL, Sailor KA, Kitabatake Y, Ming GL, Song H. GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature 2006, 439: 589–593.PubMedCentralPubMedGoogle Scholar
  45. [45]
    Overstreet-Wadiche LS, Bromberg DA, Bensen AL, Westbrook GL. Seizures accelerate functional integration of adult-generated granule cells. J Neurosci 2006, 26: 4095–4103.PubMedGoogle Scholar
  46. [46]
    Overstreet LS, Hentges ST, Bumaschny VF, de Souza FS, Smart JL, Santangelo AM, et al. A transgenic marker for newly born granule cells in dentate gyrus. J Neurosci 2004, 24: 3251–3259.PubMedGoogle Scholar
  47. [47]
    Markwardt S, Overstreet-Wadiche L. GABAergic signalling to adult-generated neurons. J Physiol 2008, 586: 3745–3749.PubMedCentralPubMedGoogle Scholar
  48. [48]
    Markwardt SJ, Wadiche JI, Overstreet-Wadiche LS. Inputspecific GABAergic signaling to newborn neurons in adult dentate gyrus. J Neurosci 2009, 29: 15063–15072.PubMedCentralPubMedGoogle Scholar
  49. [49]
    Song J, Sun J, Moss J, Wen Z, Sun GJ, Hsu D, et al. Parvalbumin interneurons mediate neuronal circuitryneurogenesis coupling in the adult hippocampus. Nat Neurosci 2013, 16: 1728–1730.PubMedCentralPubMedGoogle Scholar
  50. [50]
    Duveau V, Laustela S, Barth L, Gianolini F, Vogt KE, Keist R, et al. Spatiotemporal specificity of GABAA receptormediated regulation of adult hippocampal neurogenesis. Eur J Neurosci 2011, 34: 362–373.PubMedCentralPubMedGoogle Scholar
  51. [51]
    Haydar TF, Wang F, Schwartz ML, Rakic P. Differential modulation of proliferation in the neocortical ventricular and subventricular zones. J Neurosci 2000, 20: 5764–5774.PubMedCentralPubMedGoogle Scholar
  52. [52]
    Liu X, Wang Q, Haydar TF, Bordey A. Nonsynaptic GABA signaling in postnatal subventricular zone controls proliferation of GFAP-expressing progenitors. Nat Neurosci 2005, 8: 1179–1187.PubMedCentralPubMedGoogle Scholar
  53. [53]
    Song J, Zhong C, Bonaguidi MA, Sun GJ, Hsu D, Gu Y, et al. Neuronal circuitry mechanism regulating adult quiescent neural stem-cell fate decision. Nature 2012, 489: 150–154.PubMedCentralPubMedGoogle Scholar
  54. [54]
    Jagasia R, Steib K, Englberger E, Herold S, Faus-Kessler T, Saxe M, et al. GABA-cAMP response element-binding protein signaling regulates maturation and survival of newly generated neurons in the adult hippocampus. J Neurosci 2009, 29: 7966–7977.PubMedCentralPubMedGoogle Scholar
  55. [55]
    Giachino C, Barz M, Tchorz JS, Tome M, Gassmann M, Bischofberger J, et al. GABA suppresses neurogenesis in the adult hippocampus through GABAB receptors. Development 2014, 141: 83–90.PubMedGoogle Scholar
  56. [56]
    Markwardt SJ, Dieni CV, Wadiche JI, Overstreet-Wadiche L. Ivy/neurogliaform interneurons coordinate activity in the neurogenic niche. Nat Neurosci 2011, 14: 1407–1409.PubMedCentralPubMedGoogle Scholar
  57. [57]
    Wang LP, Kempermann G, Kettenmann H. A subpopulati on of precursor cells in the mouse dentate gyrus receives synaptic GABAergic input. Mol Cell Neurosci 2005, 29: 181–189.PubMedGoogle Scholar
  58. [58]
    Bhattacharyya BJ, Banisadr G, Jung H, Ren D, Cronshaw DG, Zou Y, et al. The chemokine stromal cell-derived factor-1 regulates GABAergic inputs to neural progenitors in the postnatal dentate gyrus. J Neurosci 2008, 28: 6720–6730.PubMedCentralPubMedGoogle Scholar
  59. [59]
    Nacher J, Rosell DR, Alonso-Llosa G, McEwen BS. NMDA receptor antagonist treatment induces a long-lasting increase in the number of proliferating cells, PSA-NCAMimmunoreactive granule neurons and radial glia in the adult rat dentate gyrus. Eur J Neurosci 2001, 13: 512–520.PubMedGoogle Scholar
  60. [60]
    Cameron HA, McEwen BS, Gould E. Regulation of adult neurogenesis by excitatory input and NMDA receptor activation in the dentate gyrus. J Neurosci 1995, 15: 4687–4692.PubMedGoogle Scholar
  61. [61]
    Chun SK, Sun W, Park JJ, Jung MW. Enhanced proliferati on of progenitor cells following long-term potentiation induction in the rat dentate gyrus. Neurobiol Learn Mem 2006, 86: 322–329.PubMedGoogle Scholar
  62. [62]
    Bruel-Jungerman E, Davis S, Rampon C, Laroche S. Longterm potentiation enhances neurogenesis in the adult dentate gyrus. J Neurosci 2006, 26: 5888–5893.PubMedGoogle Scholar
  63. [63]
    Huttmann K, Sadgrove M, Wallraff A, Hinterkeuser S, Kirchhoff F, Steinhauser C, et al. Seizures preferentially stimulate proliferation of radial glia-like astrocytes in the adult dentate gyrus: functional and immunocytochemical analysis. Eur J Neurosci 2003, 18: 2769–2778.PubMedGoogle Scholar
  64. [64]
    Renzel R, Sadek AR, Chang CH, Gray WP, Seifert G, Steinhauser C. Polarized distribution of AMPA, but not GABAA, receptors in radial glia-like cells of the adult dentate gyrus. Glia 2013, 61: 1146–1154.PubMedGoogle Scholar
  65. [65]
    Cooper-Kuhn CM, Winkler J, Kuhn HG. Decreased neurogenesis after cholinergic forebrain lesion in the adult rat. J Neurosci Res 2004, 77: 155–165.PubMedGoogle Scholar
  66. [66]
    Van der Borght K, Mulder J, Keijser JN, Eggen BJ, Luiten PG, Van der Zee EA. Input from the medial septum regulates adult hippocampal neurogenesis. Brain Res Bull 2005, 67: 117–125.PubMedGoogle Scholar
  67. [67]
    Itou Y, Nochi R, Kuribayashi H, Saito Y, Hisatsune T. Cholin ergic activation of hippocampal neural stem cells in aged dentate gyrus. Hippocampus 2011, 21: 446–459.PubMedGoogle Scholar
  68. [68]
    Kaneko N, Okano H, Sawamoto K. Role of the cholinergic system in regulating survival of newborn neurons in the adult mouse dentate gyrus and olfactory bulb. Genes Cells 2006, 11: 1145–1159.PubMedGoogle Scholar
  69. [69]
    Campbell NR, Fernandes CC, Halff AW, Berg DK. Endogenous signaling through alpha7-containing nicotinic receptors promotes maturation and integration of adult-born neurons in the hippocampus. J Neurosci 2010, 30: 8734–8744.PubMedCentralPubMedGoogle Scholar
  70. [70]
    Bjarkam CR, Sorensen JC, Geneser FA. Distribution and morpholog y of serotonin-immunoreactive axons in the hippocampal region of the New Zealand white rabbit. I. Area dentata and hippocampus. Hippocampus 2003, 13: 21–37.PubMedGoogle Scholar
  71. [71]
    Vertes RP, Fortin WJ, Crane AM. Projections of the median raphe nucleus in the rat. J Comp Neurol 1999, 407: 555–582.PubMedGoogle Scholar
  72. [72]
    Moore RY, Halaris AE. Hippocampal innervation by serotonin neuron s of the midbrain raphe in the rat. J Comp Neurol 1975, 164: 171–183.PubMedGoogle Scholar
  73. [73]
    Barnes NM, Sharp T. A review of central 5-HT receptors and their f unction. Neuropharmacology 1999, 38: 1083–1152.PubMedGoogle Scholar
  74. [74]
    Clemett DA, Punhani T, Duxon MS, Blackburn TP, Fone KC. Immunohisto chemical localisation of the 5-HT2C receptor protein in the rat CNS. Neuropharmacology 2000, 39: 123–132.PubMedGoogle Scholar
  75. [75]
    Djavadian RL, Wielkopolska E, Bialoskorska K, Turlejski K. Localizat ion of the 5-HT1A receptors in the brain of opossum Monodelphis domestica. Neuroreport 1999, 10: 3195–3200.PubMedGoogle Scholar
  76. [76]
    el Mestikawy S, Taussig D, Gozlan H, Emerit MB, Ponchant M, Hamon M. Chromatographic analyses of the serotonin 5-HT1A receptor solubilized from the rat hippocampus. J Neurochem 1989, 53: 1555–1566.PubMedGoogle Scholar
  77. [77]
    Kinsey AM, Wainwright A, Heavens R, Sirinathsinghji DJ, Oliver KR. Dis tribution of 5-ht(5A), 5-ht(5B), 5-ht(6) and 5-HT(7) receptor mRNAs in the rat brain. Brain Res Mol Brain Res 2001, 88: 194–198.PubMedGoogle Scholar
  78. [78]
    Vilaro MT, Cortes R, Gerald C, Branchek TA, Palacios JM, Mengod G. Localization of 5-HT4 receptor mRNA in rat brain by in situ hybridization histochemistry. Brain Res Mol Brain Res 1996, 43: 356–360.PubMedGoogle Scholar
  79. [79]
    Tecott LH, Maricq AV, Julius D. Nervous system distribution of the serot onin 5-HT3 receptor mRNA. Proc Natl Acad Sci U S A 1993, 90: 1430–1434.PubMedCentralPubMedGoogle Scholar
  80. [80]
    Jha S, Rajendran R, Davda J, Vaidya VA. Selective serotonin depletion doe s not regulate hippocampal neurogenesis in the adult rat brain: differential effects of p-chlorophenylalanine and 5,7-dihydroxytryptamine. Brain Res 2006, 1075: 48–59.PubMedGoogle Scholar
  81. [81]
    Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 2000, 20: 9104–9110.PubMedGoogle Scholar
  82. [82]
    Radley JJ, Jacobs BL. 5-HT1A receptor antagonist administration decreases c ell proliferation in the dentate gyrus. Brain Res 2002, 955: 264–267.PubMedGoogle Scholar
  83. [83]
    Hoglinger GU, Rizk P, Muriel MP, Duyckaerts C, Oertel WH, Caille I, et al. Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci 2004, 7: 726–735.PubMedGoogle Scholar
  84. [84]
    Park JH, Enikolopov G. Transient elevation of adult hippocampal neurogenesis after dopamine depletion. Exp Neurol 2010, 222: 267–276.PubMedCentralPubMedGoogle Scholar
  85. [85]
    Suzuki K, Okada K, Wakuda T, Shinmura C, Kameno Y, Iwata K, et al. Destruction of dopaminergic neurons in the midbrain by 6-hydroxydopamine decreases hippocampal cell proliferation in rats: reversal by fluoxetine. PLoS One 2010, 5: e9260.PubMedCentralPubMedGoogle Scholar
  86. [86]
    Mu Y, Zhao C, Gage FH. Dopaminergic modulation of cortical inputs during maturation of adult-born dentate granule cells. J Neurosci 2011, 31: 4113–4123.PubMedCentralPubMedGoogle Scholar
  87. [87]
    Ehm O, Goritz C, Covic M, Schaffner I, Schwarz TJ, Karaca E, et al. RBPJkappa-dependent signaling is essential for long-term maintenance of neural stem cells in the adult hippocampus. J Neurosci 2010, 30: 13794–13807.PubMedGoogle Scholar
  88. [88]
    Mira H, Andreu Z, Suh H, Lie DC, Jessberger S, Consiglio A, et al. Signaling through BMPR-IA regulates quiescence and long-term activity of neural stem cells in the adult hippocampus. Cell Stem Cell 2010, 7: 78–89.PubMedGoogle Scholar
  89. [89]
    Jang MH, Bonaguidi MA, Kitabatake Y, Sun J, Song J, Kang E, et al. Secreted frizz led-related protein 3 regulates activitydependent adult hippocampal neurogenesis. Cell Stem Cell 2013, 12: 215–223.PubMedCentralPubMedGoogle Scholar
  90. [90]
    Favaro R, Valotta M, Ferri AL, Latorre E, Mariani J, Giachino C, et al. Hippocampa l development and neural stem cell maintenance require Sox2-dependent regulation of Shh. Nat Neurosci 2009, 12: 1248–1256.PubMedGoogle Scholar
  91. [91]
    Qu Q, Sun G, Li W, Yang S, Ye P, Zhao C, et al. Orphan nuclear receptor TLX activates Wnt/beta-catenin signalling to stimulate neural stem cell proliferation and self-renewal. Nat Cell Biol 2010, 12: 31–40; sup 31–39.PubMedCentralPubMedGoogle Scholar
  92. [92]
    Nam HS, Benezra R. High levels of Id1 expression define B1 type adult neural stem cells. Cell Stem Cell 2009, 5: 515–526.PubMedCentralPubMedGoogle Scholar
  93. [93]
    Lavado A, Lagutin OV, Chow LM, Baker SJ, Oliver G. Prox1 is required for granule cell maturation and intermediate progenitor maintenance during brain neurogenesis. PLoS Biol 2010, 8.Google Scholar
  94. [94]
    Gao Z, Ure K, Ables JL, Lagace DC, Nave KA, Goebbels S, et al. Neurod1 is essential for the survival and maturation of adult-born neurons. Nat Neurosci 2009, 12: 1090–1092.PubMedCentralPubMedGoogle Scholar
  95. [95]
    Scobie KN, Hall BJ, Wilke SA, Klemenhagen KC, Fujii-Kuriyama Y, Ghosh A, et al. Kruppel-like factor 9 is necessary for late-phase neuronal maturation in the developing dentate gyrus and during adult hippocampal neurogenesis. J Neurosci 2009, 29: 9875–9887.PubMedCentralPubMedGoogle Scholar
  96. [96]
    Sun J, Sun J, Ming GL, Song H. Epigenetic regulation of neurogenesis in the adult mammalian brain. Eur J Neurosci 2011, 33: 1087–1093.PubMedCentralPubMedGoogle Scholar
  97. [97]
    Liu C, Teng ZQ, Santistevan NJ, Szulwach KE, Guo W, Jin P, et al. Epigenetic regulation of miR-184 by MBD1 governs neural stem cell proliferation and differentiation. Cell Stem Cell 2010, 6: 433–444.PubMedCentralPubMedGoogle Scholar
  98. [98]
    Ma DK, Jang MH, Guo JU, Kitabatake Y, Chang ML, Pow-Anpongkul N, et al. Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 2009, 323: 1074–1077.PubMedCentralPubMedGoogle Scholar
  99. [99]
    Furutachi S, Matsumoto A, Nakayama KI, Gotoh Y. p57 controls adult neural stem cell quiesce nce and modulates the pace of lifelong neurogenesis. EMBO J 2013, 32: 970–981.PubMedCentralPubMedGoogle Scholar
  100. [100]
    Beukelaers P, Vandenbosch R, Caron N, Nguyen L, Moonen G, Malgrange B. Cycling or not cycling: cell cycle regulatory molecules and adult neurogenesis. Cell Mol Life Sci 2012, 69: 1493–1503.PubMedGoogle Scholar
  101. [101]
    Encinas JM, Michurina TV, Peunova N, Park JH, Tordo J, Peterson DA, et al. Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus. Cell Stem Cell 2011, 8: 566–579.PubMedCentralPubMedGoogle Scholar
  102. [102]
    Drapeau E, Montaron MF, Aguerre S, Abrous DN. Learninginduced survival of new neurons depend s on the cognitive status of aged rats. J Neurosci 2007, 27: 6037–6044.PubMedGoogle Scholar
  103. [103]
    Mouret A, Gheusi G, Gabellec MM, de Chaumont F, Olivo-Marin JC, Lledo PM. Learning and survival of newly generated neurons: when time matters. J Neurosci 2008, 28: 11511–11516.PubMedGoogle Scholar
  104. [104]
    Kron MM, Zhang H, Parent JM. The developmental stage of dentate granule cells dictates their co ntribution to seizureinduced plasticity. J Neurosci 2010, 30: 2051–2059.PubMedGoogle Scholar
  105. [105]
    Li G, Bien-Ly N, Andrews-Zwilling Y, Xu Q, Bernardo A, Ring K, et al. GABAergic interneuron dysfunction impairs hippocampal neurogenesis in adult apolipoprotein E4 knockin mice. Cell Stem Cell 2009, 5: 634–645.PubMedCentralPubMedGoogle Scholar
  106. [106]
    Sun B, Halabisky B, Zhou Y, Palop JJ, Yu G, Mucke L, et al. Imbalance between GABAergic and Gluta matergic Transmission Impairs Adult Neurogenesis in an Animal Model of Alzheimer’s Disease. Cell Stem Cell 2009, 5: 624–633.PubMedCentralPubMedGoogle Scholar
  107. [107]
    Luo Y, Shan G, Guo W, Smrt RD, Johnson EB, Li X, et al. Fragile x mental retardation protein regulates proliferation and differentiation of adult neural stem/progenitor cells. PLoS Genet 2010, 6: e1000898.PubMedCentralPubMedGoogle Scholar
  108. [108]
    Smrt RD, Eaves-Egenes J, Barkho BZ, Santistevan NJ, Zhao C, Aimone JB, et al. Mecp2 deficiency leads to delayed maturation and altered gene expression in hippocampal neurons. Neurobiol Dis 2007, 27: 77–89.PubMedCentralPubMedGoogle Scholar
  109. [109]
    Ming GL, Song H. DISC1 partners with GSK3beta in neurogenesis. Cell 2009, 136: 990–992.PubMedGoogle Scholar
  110. [110]
    Duan X, Chang JH, Ge S, Faulkner RL, Kim JY, Kitabatake Y, et al. Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell 2007, 130: 1146–1158.PubMedCentralPubMedGoogle Scholar
  111. [111]
    Kim JY, Duan X, Liu CY, Jang MH, Guo JU, Pow-anpongkul N, et al. DISC1 regulates new neuron development in the adult brain via modulation of AKT-mTOR signaling through KIAA1212. Neuron 2009, 63: 761–773.PubMedCentralPubMedGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Graduate Program of Neurobiology CurriculumUniversity of North CarolinaChapel HillUSA
  2. 2.Department of PharmacologyUniversity of North CarolinaChapel HillUSA
  3. 3.Neuroscience Center/Neurobiology CurriculumUniversity of North CarolinaChapel HillUSA
  4. 4.School of MedicineUniversity of North CarolinaChapel HillUSA

Personalised recommendations