Neuroscience Bulletin

, Volume 30, Issue 4, pp 557–568 | Cite as

Regulatory mechanisms underlying the differential growth of dendrites and axons

Review

Abstract

A typical neuron is comprised of an information input compartment, or the dendrites, and an output compartment, known as the axon. These two compartments are the structural basis for functional neural circuits. However, little is known about how dendritic and axonal growth are differentially regulated. Recent studies have uncovered two distinct types of regulatory mechanisms that differentiate dendritic and axonal growth: dedicated mechanisms and bimodal mechanisms. Dedicated mechanisms regulate either dendritespecific or axon-specific growth; in contrast, bimodal mechanisms direct dendritic and axonal development in opposite manners. Here, we review the dedicated and bimodal regulators identified by recent Drosophila and mammalian studies. The knowledge of these underlying molecular mechanisms not only expands our understanding about how neural circuits are wired, but also provides insights that will aid in the rational design of therapies for neurological diseases.

Keywords

axonal growth dendritic arborizations developmental neurobiology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Caceres A, Ye B, Dotti CG. Neuronal polarity: demarcation, growth and commitment. Curr Opin Cell Biol 2012, 24: 547–553.PubMedCentralPubMedCrossRefGoogle Scholar
  2. [2]
    Craig AM, Banker G. Neuronal polarity. Annu Rev Neurosci 1994, 17: 267–310.PubMedCrossRefGoogle Scholar
  3. [3]
    Dotti CG, Sullivan CA, Banker GA. The establishment of polarity by hippocampal neurons in culture. J Neurosci 1988, 8: 1454–1468.PubMedGoogle Scholar
  4. [4]
    Pollarolo G, Schulz JG, Munck S, Dotti CG. Cytokinesis remnants define first neuronal asymmetry in vivo. Nat Neurosci 2011, 14: 1525–1533.PubMedCrossRefGoogle Scholar
  5. [5]
    Parrish JZ, Emoto K, Kim MD, Jan YN. Mechanisms that regulate establishment, maintenance, and remodeling of dendritic fields. Annu Rev Neurosci 2007, 30: 399–423.PubMedCrossRefGoogle Scholar
  6. [6]
    Wiggin GR, Fawcett JP, Pawson T. Polarity proteins in axon specification and synaptogenesis. Dev cell 2005, 8: 803–816.PubMedCrossRefGoogle Scholar
  7. [7]
    Cajal R. Histology of the Nervous System of Man and Vertebrates. Oxford University Press, USA, 1995.Google Scholar
  8. [8]
    Jan YN, Jan LY. Branching out: mechanisms of dendritic arborization. Nat Rev Neurosci 2010, 11: 316–328.PubMedCentralPubMedCrossRefGoogle Scholar
  9. [9]
    Goldberg JL. Intrinsic neuronal regulation of axon and dendrite growth. Curr Opin Neurobiol 2004, 14: 551–557.PubMedCrossRefGoogle Scholar
  10. [10]
    de la Torre-Ubieta L, Bonni A. Transcriptional regulation of neuronal polarity and morphogenesis in the mammalian brain. Neuron 2011, 72: 22–40.PubMedCentralPubMedCrossRefGoogle Scholar
  11. [11]
    Moore DL, Goldberg JL. Multiple transcription factor families regulate axon growth and regeneration. Dev Neurobiol 2011, 71: 1186–1211.PubMedCentralPubMedCrossRefGoogle Scholar
  12. [12]
    Wang X, Ye B. Transcriptional regulators that differentially control dendrite and axon development. Front Biol 2012, 7: 292–296.CrossRefGoogle Scholar
  13. [13]
    Puram SV, Bonni A. Cell-intrinsic drivers of dendrite morphogenesis. Development 2013, 140: 4657–4671.PubMedCrossRefGoogle Scholar
  14. [14]
    Golic KG, Lindquist S. The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 1989, 59: 499–509.PubMedCrossRefGoogle Scholar
  15. [15]
    Xu T, Rubin GM. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 1993, 117: 1223–1237.PubMedGoogle Scholar
  16. [16]
    Lee T, Luo L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 1999, 22: 451–461.PubMedCrossRefGoogle Scholar
  17. [17]
    Hummel T, Krukkert K, Roos J, Davis G, Klambt C. Drosophila Futsch/22C10 is a MAP1B-like protein required for dendritic and axonal development. Neuron 2000, 26: 357–370.PubMedCrossRefGoogle Scholar
  18. [18]
    Kim AH, Puram SV, Bilimoria PM, Ikeuchi Y, Keough S, Wong M, et al. A centrosomal Cdc20-APC pathway controls dendrite morphogenesis in postmitotic neurons. Cell 2009, 136: 322–336.PubMedCentralPubMedCrossRefGoogle Scholar
  19. [19]
    Tapia M, Wandosell F, Garrido JJ. Impaired function of HDAC6 slows down axonal growth and interferes with axon initial segment development. PLoS One 2010, 5: e12908.PubMedCentralPubMedCrossRefGoogle Scholar
  20. [20]
    Sampath TK, Maliakal JC, Hauschka PV, Jones WK, Sasak H, Tucker RF, et al. Recombinant human osteogenic protein-1 (hOP-1) induces new bone formation in vivo with a specific activity comparable with natural bovine osteogenic protein and stimulates osteoblast proliferation and differentiation in vitro. J Biol Chem 1992, 267: 20352–20362.PubMedGoogle Scholar
  21. [21]
    Lein P, Johnson M, Guo X, Rueger D, Higgins D. Osteogenic protein-1 induces dendritic growth in rat sympathetic neurons. Neuron 1995, 15: 597–605.PubMedCrossRefGoogle Scholar
  22. [22]
    Le Roux P, Behar S, Higgins D, Charette M. OP-1 enhances dendritic growth from cerebral cortical neurons in vitro. Exp Neurol 1999, 160: 151–163.PubMedCrossRefGoogle Scholar
  23. [23]
    Withers GS, Higgins D, Charette M, Banker G. Bone morphogenetic protein-7 enhances dendritic growth and receptivity to innervation in cultured hippocampal neurons. Eur J Neurosci 2000, 12: 106–116.PubMedCrossRefGoogle Scholar
  24. [24]
    Massague J, Chen YG. Controlling TGF-beta signaling. Genes Dev 2000, 14: 627–644.PubMedGoogle Scholar
  25. [25]
    Garred MM, Wang MM, Guo X, Harrington CA, Lein PJ. Transcriptional responses of cultured rat sympathetic neurons during BMP-7-induced dendritic growth. PLoS One 2011, 6: e21754.PubMedCentralPubMedCrossRefGoogle Scholar
  26. [26]
    Guo X, Rueger D, Higgins D. Osteogenic protein-1 and related bone morphogenetic proteins regulate dendritic growth and the expression of microtubule-associated protein-2 in rat sympathetic neurons. Neurosci Lett 1998, 245: 131–134.PubMedCrossRefGoogle Scholar
  27. [27]
    Lee SK, Pfaff SL. Synchronization of neurogenesis and motor neuron specification by direct coupling of bHLH and homeodomain transcription factors. Neuron 2003, 38: 731–745.PubMedCrossRefGoogle Scholar
  28. [28]
    Miyata T, Maeda T, Lee JE. NeuroD is required for differentiation of the granule cells in the cerebellum and hippocampus. Genes Dev 1999, 13: 1647–1652.PubMedCentralPubMedCrossRefGoogle Scholar
  29. [29]
    Lee JE. Basic helix-loop-helix genes in neural development. Curr Opin Neurobiol 1997, 7: 13–20.PubMedCrossRefGoogle Scholar
  30. [30]
    Gaudillière B, Konishi Y, de la Iglesia N, Yao Gl, Bonni A. A CaMKII-NeuroD signaling pathway specifies dendritic morphogenesis. Neuron 2004, 41: 229–241.PubMedCrossRefGoogle Scholar
  31. [31]
    Gao Z, Ure K, Ables JL, Lagace DC, Nave KA, Goebbels S, et al. Neurod1 is essential for the survival and maturation of adult-born neurons. Nat Neurosci 2009, 12: 1090–1092.PubMedCentralPubMedCrossRefGoogle Scholar
  32. [32]
    Wong RO, Ghosh A. Activity-dependent regulation of dendritic growth and patterning. Nat Rev Neurosci 2002, 3: 803–812.PubMedCrossRefGoogle Scholar
  33. [33]
    Van Aelst L, Cline HT. Rho GTPases and activity-dependent dendrite development. Curr Opin Neurobiol 2004, 14: 297–304.PubMedCrossRefGoogle Scholar
  34. [34]
    Yuan Q, Xiang Y, Yan Z, Han C, Jan LY, Jan YN. Lightinduced structural and functional plasticity in Drosophila larval visual system. Science 2011, 333: 1458–1462.PubMedCentralPubMedCrossRefGoogle Scholar
  35. [35]
    Fink CC, Meyer T. Molecula r mechanisms of CaMKII activation in neuronal plasticity. Curr Opin Neurobiol 2002, 12: 293–299.PubMedCrossRefGoogle Scholar
  36. [36]
    Aizawa H, Hu SC, Bobb K, Balakrishnan K, Ince G, Gurevich I, et al. Dendrite development regulated by CREST, a calciumregulated transcriptional activator. Science 2004, 303: 197–202.PubMedCrossRefGoogle Scholar
  37. [37]
    Hartwig CL, Worrell J, Levine RB, Ramaswami M, Sanyal S. Normal dendrite growth in Drosophila motor neurons requires the AP-1 transcription factor. Dev Neurobiol 2008, 68: 1225–1242.PubMedCentralPubMedCrossRefGoogle Scholar
  38. [38]
    Ye B, Zhang Y, Song W, Younger SH, Jan LY, Jan YN. Growing dendrites and axons differ in their reliance on the secretory pathway. Cell 2007, 130: 717–729.PubMedCentralPubMedCrossRefGoogle Scholar
  39. [39]
    Grueber WB, Ye B, Yang CH, Younger S, Borden K, Jan LY, et al. Projections of Drosophila multidendritic neurons in the central nervous system: links with peripheral dendrite morphology. Development 2007, 134: 55–64.PubMedCrossRefGoogle Scholar
  40. [40]
    Hwang RY, Zhong L, Xu Y, Johnson T, Zhang F, Deisseroth K, et al. Nociceptive neurons protect Drosophila larvae from parasitoid wasps. Curr Biol 2007, 17: 2105–2116.PubMedCentralPubMedCrossRefGoogle Scholar
  41. [41]
    Kim SE, Coste B, Chadha A, Cook B, Patapoutian A. The role of Drosophila Piezo in mechanical nociception. Nature 2012, 483: 209–212.PubMedCentralPubMedCrossRefGoogle Scholar
  42. [42]
    Xiang Y, Yuan Q, Vogt N, Looger LL, Jan LY, Jan YN. Lightavoidance-mediating photoreceptors tile the Drosophila larval body wall. Nature 2010, 468: 921–926.PubMedCentralPubMedCrossRefGoogle Scholar
  43. [43]
    Grueber WB, Ye B, Moore AW, Jan LY, Jan YN. Dendrites of distinct classes of Drosophila sensory neurons show different capacities for homotypic repulsion. Curr Biol 2003, 13: 618–626.PubMedCrossRefGoogle Scholar
  44. [44]
    Ori-McKenney KM, Jan LY, Jan YN. Golgi outposts shape dendrite morphology by functioning as sites of acentrosomal microtubule nucleation in neurons. Neuron 2012, 76: 921–930.PubMedCentralPubMedCrossRefGoogle Scholar
  45. [45]
    Stone MC, Nguyen MM, Tao J, Allender DL, Rolls MM. Global up-regulation of microtubule dynamics and polarity reversal during regeneration of an axon from a dendrite. Mol Biol Cell 2010, 21: 767–777.PubMedCentralPubMedCrossRefGoogle Scholar
  46. [46]
    Zheng Y, Wildonger J, Ye B, Zhang Y, Kita A, Younger SH, et al. Dynein is required for polarized dendritic transport and uniform microtubule orientation in axons. Nat Cell Biol 2008, 10: 1172–1180.PubMedCentralPubMedCrossRefGoogle Scholar
  47. [47]
    Ye B, Kim JH, Yang L, McLachlan I, Younger S, Jan LY, et al. Differential regulation of dendritic and axonal development by the novel Krüppel-like factor Dar1. J Neurosci 2011, 31: 3309–3319.PubMedCentralPubMedCrossRefGoogle Scholar
  48. [48]
    Lee MC, Miller EA, Goldberg J, Orci L, Schekman R. Bidirectional protein transport between the ER and Golgi. Annu Rev Cell Dev Biol. 2004, 20: 87–123.PubMedCrossRefGoogle Scholar
  49. [49]
    Luo K. Ski and SnoN: negative regulators of TGF-beta signaling. Curr Opin Genet Dev. 2004, 14: 65–70.PubMedCrossRefGoogle Scholar
  50. [50]
    Stegmuller J, Konishi Y, Huynh MA, Yuan Z, Dibacco S, Bonni A. Cell-intrinsic regulation of axonal morphogenesis by the Cdh1-APC target SnoN. Neuron 2006, 50: 389–400.PubMedCrossRefGoogle Scholar
  51. [51]
    Konishi Y, Stegmuller J, Matsuda T, Bonni S, Bonni A. Cdh1-APC controls axonal growth and patterning in the mammalian brain. Science 2004, 303: 1026–1030.PubMedCrossRefGoogle Scholar
  52. [52]
    Ikeuchi Y, Stegmüller J, Netherton S, Huynh MA, Masu M, Frank D, et al. A SnoN-Ccd1 pathway promotes axonal morphogenesis in the mammalian brain. J Neurosci 2009, 29: 4312–4321.PubMedCentralPubMedCrossRefGoogle Scholar
  53. [53]
    Wang X, Zheng L, Zeng Z, Zhou G, Chien J, Qian C, et al. DIXDC1 isoform, l-DIXDC1, is a novel filamentous actinbinding protein. Biochem Biophys Res Commun 2006, 347: 22–30.PubMedCrossRefGoogle Scholar
  54. [54]
    Kirilly D, Wong JJ, Lim EK, Wang Y, Zhang H, Wang C, et al. Intrinsic epigenetic factors cooperate with the steroid hormone ecdysone to govern dendrite pruning in Drosophila. Neuron 2011, 72: 86–100.PubMedCrossRefGoogle Scholar
  55. [55]
    Hall A. Rho GTPases and the actin cytoskeleton. Science 1998, 279: 509–514.PubMedCrossRefGoogle Scholar
  56. [56]
    Luo L, Liao YJ, Jan LY, Jan YN. Distinct morpho genetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes Dev 1994, 8: 1787–1802.PubMedCrossRefGoogle Scholar
  57. [57]
    Luo L, Hensch TK, Ackerman L, Barbel S, Jan LY, Jan YN. Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines. Nature 1996, 379: 837–840.PubMedCrossRefGoogle Scholar
  58. [58]
    Wang X, Kim JH, Bazzi M, Robinson S, Collins CA, Ye B. Bimodal control of dendritic and axonal growth by the dual leucine zipper kinase pathway. PLoS Biol 2013, 11: e1001572.PubMedCentralPubMedCrossRefGoogle Scholar
  59. [59]
    Shelly M, Cancedda L, Lim BK, Popescu AT, Cheng P L, Gao H, et al. Semaphorin3A regulates neuronal polarization by suppressing axon formation and promoting dendrite growth. Neuron 2011, 71: 433–446.PubMedCentralPubMedCrossRefGoogle Scholar
  60. [60]
    Polleux F, Morrow T, Ghosh A. Semaphorin 3A is a c hemoattractant for cortical apical dendrites. Nature 2000, 404: 567–573.PubMedCrossRefGoogle Scholar
  61. [61]
    Shelly M, Lim BK, Cancedda L, Heilshorn SC, Gao H, Poo MM. Local and long-range reciprocal regulation of cAMP and cGMP in axon/dendrite formation. Science 2010, 327: 547–552.PubMedCrossRefGoogle Scholar
  62. [62]
    Barnes AP, Lilley BN, Pan YA, Plummer LJ, Powell AW, Raines AN, et al. LKB1 and SAD kinases define a pathway required for the polarization of cortical neurons. Cell 2007, 129: 549–563.PubMedCrossRefGoogle Scholar
  63. [63]
    Galjart N. CLIPs and CLASPs and cellular dynamics. Nat Rev Mol Cell Biol. 2005, 6: 487–498.PubMedCrossRefGoogle Scholar
  64. [64]
    Conde C, Caceres A. Microtubule assembly, organization and dynamics in axons and dendrites. Nat Rev Neurosci. 2009, 10: 319–332.PubMedCrossRefGoogle Scholar
  65. [65]
    Hur EM, Saijilafu, Lee BD, Kim SJ, Xu WL, Zhou FQ. GSK3 controls axon growth via CLASP-mediated regulation of growth cone microtubules. Genes Dev 2011, 25: 1968–1981.PubMedCentralPubMedCrossRefGoogle Scholar
  66. [66]
    Wittmann T, Waterman-Storer CM. Spatial regulation of CL ASP affinity for microtubules by Rac1 and GSK3beta in migrating epithelial cells. J Cell Biol 2005, 169: 929–939.PubMedCentralPubMedCrossRefGoogle Scholar
  67. [67]
    Lee CH, Della NG, Chew CE, Zack DJ. Rin, aneuronspecific and calmodulin-binding small G-protein, and Rit define a novel subfamily of ras proteins. J Neurosci 1996, 16: 6784–6794.PubMedGoogle Scholar
  68. [68]
    Lein PJ, Guo X, Shi GX, Moholt-Siebert M, Bruun D, Andres DA. The novel GTPase Rit differentially regulates axonal and dendritic growth. J Neurosci 2007, 27: 4725–4736.PubMedCentralPubMedCrossRefGoogle Scholar
  69. [69]
    Collins CA, Wairkar YP, Johnson SL, DiAntonio A. Highwire restrains synaptic growth by attenuating a MAP kinase signal. Neuron 2006, 51: 57–69.PubMedCrossRefGoogle Scholar
  70. [70]
    Hammarlund M, Nix P, Hauth L, Jorgensen EM, Bastiani M. Axon regeneration requires a conserved MAP kinase pathway. Science 2009, 323: 802–806.PubMedCentralPubMedCrossRefGoogle Scholar
  71. [71]
    Nakata K, Abrams B, Grill B, Goncharov A, Huang X, Chisholm A D, et al. Regulation of a DLK-1 and p38 MAP kinase pathway by the ubiquitin ligase RPM-1 is required for presynaptic development. Cell 2005, 120: 407–420.PubMedCrossRefGoogle Scholar
  72. [72]
    Lewcock JW, Genoud N, Lettieri K, Pfaff SL. The ubiquitin liga se Phr1 regulates axon outgrowth through modulation of microtubule dynamics. Neuron 2007, 56: 604–620.PubMedCrossRefGoogle Scholar
  73. [73]
    Tedeschi A, Bradke F. The DLK signalling pathway—a doubleedge d sword in neural development and regeneration. EMBO Rep 2013, 14: 605–614.PubMedCentralPubMedCrossRefGoogle Scholar
  74. [74]
    Watkins TA, Wang B, Huntwork-Rodriguez S, Yang J, Jiang Z, Eastham-Anderson J, et al. DLK initiates a transcriptional program that couples apoptotic and regenerative responses to axonal injury. Proc Natl Acad Sci U S A 2013, 110: 4039–4044.PubMedCentralPubMedCrossRefGoogle Scholar
  75. [75]
    Xiong X, Wang X, Ewanek R, Bhat P, Diantonio A, Collins CA. Prote in turnover of the Wallenda/DLK kinase regulates a retrograde response to axonal injury. J Cell Biol 2010, 191: 211–223.PubMedCentralPubMedCrossRefGoogle Scholar
  76. [76]
    Yan D, Wu Z, Chisholm AD, Jin Y. The DLK-1 kinase promotes mRNA stability and local translation in C. elegans synapses and axon regeneration. Cell 2009, 138: 1005–1018.PubMedCentralPubMedCrossRefGoogle Scholar
  77. [77]
    Xiong X, Collins CA. A conditioning lesion protects axons from degeneration via the Wallenda/DLK MAP kinase signaling cascade. J Neurosci 2012, 32: 610–615.PubMedCentralPubMedCrossRefGoogle Scholar
  78. [78]
    Klinedinst S, Wang X, Xiong X, Haenfler JM, Collins CA. Independent pathways downstream of the Wnd/DLK MAPKKK regulate synaptic structure, axonal transport, and injury signaling. J Neurosci 2013, 33: 12764–12778.PubMedCentralPubMedCrossRefGoogle Scholar
  79. [79]
    Zhen M, Huang X, Bamber B, Jin Y. Regulation of presynaptic terminal organization by C. elegans RPM-1, a putative guanine nucleotide exchanger with a RING-H2 finger domain. Neuron 2000, 26: 331–343.PubMedCrossRefGoogle Scholar
  80. [80]
    Schaefer AM, Hadwiger GD, Nonet ML. rpm-1, a conserved neuronal gene t hat regulates targeting and synaptogenesis in C. elegans. Neuron 2000, 26: 345–356.PubMedCrossRefGoogle Scholar
  81. [81]
    Wan HI, DiAntonio A, Fetter RD, Bergstrom K, Strauss R, Goodman CS. Hig hwire regulates synaptic growth in Drosophila. Neuron 2000, 26: 313–329.PubMedCrossRefGoogle Scholar
  82. [82]
    Wu C, Wairkar YP, Collins CA, DiAntonio A. Highwire function at the Drosophila neuromuscular junction: spatial, structural, and temporal requirements. J Neurosci 2005, 25: 9557–9566.PubMedCrossRefGoogle Scholar
  83. [83]
    Shin Jung E, Cho Y, Beirowski B, Milbrandt J, Cavalli V, DiAntonio A. Dua lleucine zipper kinase is required for retrograde injury signaling and axonal regeneration. Neuron 2012, 74: 1015–1022.PubMedCentralPubMedCrossRefGoogle Scholar
  84. [84]
    Kim JH, Wang X, Coolon R, Ye B. Dscam expression levels determine presynap tic arbor sizes in Drosophila sensory neurons. Neuron 2013, 78: 827–838.PubMedCentralPubMedCrossRefGoogle Scholar
  85. [85]
    Chen L, Stone MC, Tao J, Rolls MM. Axon injury and stress trigger a microtu bule-based neuroprotective pathway. Proc Natl Acad Sci U S A 2012, 109: 11842–11847.PubMedCentralPubMedCrossRefGoogle Scholar
  86. [86]
    Tseng GF, Hu ME. Axotomy induces retraction of the dendritic arbor of adult rat rubrospinal neurons. Acta Anat (Basel) 1996, 155: 184–193.CrossRefGoogle Scholar
  87. [87]
    Yawo H. Changes in the dendritic geometry of mouse superior cervical ganglion cells following postganglionic axotomy. J Neurosci 1987, 7: 3703–3711.PubMedGoogle Scholar
  88. [88]
    Cavazos JE, Golarai G, Sutula TP. Mossy fiber synaptic reorganization induced by kindling: time course of development, progression, and permanence. J Neurosci 1991, 11: 2795–2803.PubMedGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Life Sciences Institute and Department of Cell and Developmental BiologyUniversity of MichiganAnn ArborUSA

Personalised recommendations