Skip to main content

Advertisement

Log in

CBF/CBV maps in normal volunteers studied with 15O PET: a possible index of cerebral perfusion pressure

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Local cerebral perfusion pressure (CPP) is a primary factor controlling cerebral circulation and previous studies have indicated that the ratio of cerebral blood flow (CBF) to cerebral blood volume (CBV) can be used as an index of the local CPP. In this study, we investigated whether the CBF/CBV ratio differs among different brain structures under physiological conditions, by means of 15O positron emission tomography. Nine healthy volunteers (5 men and 4 women; mean age, 47.0 ± 1.2 years) were studied by H2 15O bolus injection for CBF measurement and by C15O inhalation for CBV measurement. The CBF/CBV ratio maps were created by dividing the CBF images by the CBV images after anatomical normalization. Regions of interest were placed on the CBF/CBV maps and comparing the regions. The mean CBF/CBV ratio was highest in the cerebellum (19.3 ± 5.2/min), followed by the putamen (18.2 ± 3.9), pons (16.4 ± 4.6), thalamus (14.5 ± 3.3), cerebral cortices (13.2 ± 2.4), and centrum semiovale (11.5 ± 2.1). The cerebellum and putamen showed significantly higher CBF/CBV ratios than the cerebral cortices and centrum semiovale. We created maps of the CBF/CBV ratio in normal volunteers and demonstrated higher CBF/CBV ratios in the cerebellum and putamen than in the cerebral cortices and deep cerebral white matter. The CBF/CBV may reflect the local CPP and should be studied in hemodynamically compromised patients and in patients with risk factors for small-artery diseases of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Powers WJ. Cerebral hemodynamics in ischemic cerebrovascular disease. Ann Neurol 1991, 29: 231–240.

    Article  PubMed  CAS  Google Scholar 

  2. Derdeyn CP, Videen TO, Yundt KD, Fritsch SM, Carpenter DA, Grubb RL, et al. Variability of cerebral blood volume and oxygen extraction: stages of cerebral haemodynamic impairment revisited. Brain 2002, 125: 595–607.

    Article  PubMed  Google Scholar 

  3. Gibbs JM, Wise RJ, Leenders KL, Jones T. Evaluation of cerebral perfusion reserve in patients with carotid-artery occlusion. Lancet 1984, 1: 310–314.

    Article  PubMed  CAS  Google Scholar 

  4. Sette G, Baron JC, Mazoyer B, Levasseur M, Pappata S, Crouzel C. Local brain haemodynamics and oxygen metabolism in cerebrovascular disease. Positron emission tomography. Brain 1989, 112(Pt 4): 931–951.

    Article  PubMed  Google Scholar 

  5. Schumann P, Touzani O, Young AR, Morello R, Baron JC, MacKenzie ET. Evaluation of the ratio of cerebral blood flow to cerebral blood volume as an index of local cerebral perfusion pressure. Brain 1998, 121(Pt 7): 1369–1379.

    Article  PubMed  Google Scholar 

  6. Ibaraki M, Miura S, Shimosegawa E, Sugawara S, Mizuta T, Ishikawa A, et al. Quantification of cerebral blood flow and oxygen metabolism with 3-dimensional PET and 15O: validation by comparison with 2-dimensional PET. J Nucl Med 2008, 49: 50–59.

    Article  PubMed  Google Scholar 

  7. Mintun MA, Raichle ME, Martin WR, Herscovitch P. Brain oxygen utilization measured with O-15 radiotracers and positron emission tomography. J Nucl Med 1984, 25: 177–187.

    PubMed  CAS  Google Scholar 

  8. Phelps ME, Huang SC, Hoffman EJ, Kuhl DE. Validation of tomographic measurement of cerebral blood volume with C-11-labeled carboxyhemoglobin. J Nucl Med 1979, 20: 328–334.

    PubMed  CAS  Google Scholar 

  9. Herscovitch P, Markham J, Raichle ME. Brain blood flow measured with intravenous H2(15)O. I. Theory and error analysis. J Nucl Med 1983, 24: 782–789.

    PubMed  CAS  Google Scholar 

  10. Kanno I, Iida H, Miura S, Murakami M, Takahashi K, Sasaki H, et al. A system for cerebral blood flow measurement using an H215O autoradiographic method and positron emission tomography. J Cereb Blood Flow Metab 1987, 7: 143–153.

    Article  PubMed  CAS  Google Scholar 

  11. Iida H, Kanno I, Miura S, Murakami M, Takahashi K, Uemura K. Error analysis of a quantitative cerebral blood flow measurement using H2(15)O autoradiography and positron emission tomography, with respect to the dispersion of the input function. J Cereb Blood Flow Metab 1986, 6: 536–545.

    Article  PubMed  CAS  Google Scholar 

  12. Ibaraki M, Ito H, Shimosegawa E, Toyoshima H, Ishigame K, Takahashi K, et al. Cerebral vascular mean transit time in healthy humans: a comparative study with PET and dynamic susceptibility contrast-enhanced MRI. J Cereb Blood Flow Metab 2007, 27: 404–413.

    Article  PubMed  Google Scholar 

  13. Ito H, Kanno I, Takahashi K, Ibaraki M, Miura S. Regional distribution of human cerebral vascular mean transit time measured by positron emission tomography. Neuroimage 2003, 19: 1163–1169.

    Article  PubMed  Google Scholar 

  14. Ibaraki M, Shinohara Y, Nakamura K, Miura S, Kinoshita F, Kinoshita T. Interindividual variations of cerebral blood flow, oxygen delivery, and metabolism in relation to hemoglobin concentration measured by positron emission tomography in humans. J Cereb Blood Flow Metab 2010, 30: 1296–1305.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Okazawa H, Yonekura Y, Fujibayashi Y, Yamauchi H, Ishizu K, Nishizawa S, et al. Measurement of regional cerebral plasma pool and hematocrit with copper-62-labeled HSA-DTS. J Nucl Med 1996, 37: 1080–1085.

    PubMed  CAS  Google Scholar 

  16. Yamauchi H, Fukuyama H, Nagahama Y, Okazawa H, Konishi J. A decrease in regional cerebral blood volume and hematocrit in crossed cerebellar diaschisis. Stroke 1999, 30: 1429–1431.

    Article  PubMed  CAS  Google Scholar 

  17. Cremer JE, Seville MP. Regional brain blood flow, blood volume, and haematocrit values in the adult rat. J Cereb Blood Flow Metab 1983, 3: 254–256.

    Article  PubMed  CAS  Google Scholar 

  18. Kinoshita T, Okudera T, Tamura H, Ogawa T, Hatazawa J. Assessment of lacunar hemorrhage associated with hypertensive stroke by echo-planar gradient-echo T2*-weighted MRI. Stroke 2000, 31: 1646–1650.

    Article  PubMed  CAS  Google Scholar 

  19. Kato H, Izumiyama M, Izumiyama K, Takahashi A, Itoyama Y. Silent cerebral microbleeds on T2*-weighted MRI: correlation with stroke subtype, stroke recurrence, and leukoaraiosis. Stroke 2002, 33: 1536–1540.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadashi Watabe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watabe, T., Shimosegawa, E., Kato, H. et al. CBF/CBV maps in normal volunteers studied with 15O PET: a possible index of cerebral perfusion pressure. Neurosci. Bull. 30, 857–862 (2014). https://doi.org/10.1007/s12264-013-1458-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-013-1458-0

Keywords

Navigation