Neuroscience Bulletin

, Volume 30, Issue 2, pp 243–252 | Cite as

Neuronal failure in Alzheimer’s disease: a view through the oxidative stress looking-glass

  • David J. Bonda
  • Xinglong Wang
  • Hyoung-Gon Lee
  • Mark A. Smith
  • George Perry
  • Xiongwei ZhuEmail author


Considerable debate and controversy surround the cause(s) of Alzheimer’s disease (AD). To date, several theories have gained notoriety, however none is universally accepted. In this review, we provide evidence for the oxidative stress-induced AD cascade that posits aged mitochondria as the critical origin of neurodegeneration in AD.


Alzheimer’s disease amyloid-beta free radicals mitochondria mitochondrial dynamics oxidative stress 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 2007, 3: 186–191.PubMedGoogle Scholar
  2. [2]
    Smith MA. Alzheimer disease. Int Rev Neurobiol 1998, 42: 1–54.PubMedGoogle Scholar
  3. [3]
    Yan MH, Wang X, Zhu X. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic Biol Med 2013, 62: 90–101.PubMedCentralPubMedGoogle Scholar
  4. [4]
    Walker LC, Diamond MI, Duff KE, Hyman BT. Mechanisms of protein seeding in neurodegenerative diseases. JAMA Neurol 2013, 70: 304–310.PubMedGoogle Scholar
  5. [5]
    Moh C, Kubiak JZ, Bajic VP, Zhu X, Smith MA, Lee HG. Cell cycle deregulation in the neurons of Alzheimer’s disease. Results Probl Cell Differ 2011, 53: 565–576.PubMedGoogle Scholar
  6. [6]
    Zhu X, Perry G, Smith MA, Wang X. Abnormal mitochondrial dynamics in the pathogenesis of Alzheimer’s disease. J Alzheimers Dis 2013, 33Suppl 1: S253–262.PubMedGoogle Scholar
  7. [7]
    Selkoe DJ. Alzheimer’s disease is a synaptic failure. Science 2002, 298: 789–791.PubMedGoogle Scholar
  8. [8]
    Sheng M, Sabatini BL, Sudhof TC. Synapses and Alzheimer’s disease. Cold Spring Harb Perspect Biol 2012, 4.Google Scholar
  9. [9]
    Krstic D, Knuesel I. Deciphering the mechanism underlying late-onset Alzheimer disease. Nat Rev Neurol 2013, 9: 25–34.PubMedGoogle Scholar
  10. [10]
    Camandola S, Mattson MP. Aberrant subcellular neuronal calcium regulation in aging and Alzheimer’s disease. Biochim Biophys Acta 2011, 1813: 965–973.PubMedCentralPubMedGoogle Scholar
  11. [11]
    Querfurth HW, LaFerla FM. Alzheimer’s disease. N Engl J Med 2010, 362: 329–344.PubMedGoogle Scholar
  12. [12]
    Kivipelto M, Helkala EL, Laakso MP, Hanninen T, Hallikainen M, Alhainen K, et al. Midlife vascular risk factors and Alzheimer’s disease in later life: longitudinal, population based study. BMJ 2001, 322: 1447–1451.PubMedCentralPubMedGoogle Scholar
  13. [13]
    de la Torre JC. Pathophysiology of neuronal energy crisis in Alzheimer’s disease. Neurodegener Dis 2008, 5: 126–132.PubMedGoogle Scholar
  14. [14]
    Zhu X, Smith MA, Honda K, Aliev G, Moreira PI, Nunomura A, et al. Vascular oxidative stress in Alzheimer disease. J Neurol Sci 2007, 257: 240–246.PubMedCentralPubMedGoogle Scholar
  15. [15]
    Schonheit B, Zarski R, Ohm TG. Spatial and temporal relationships between plaques and tangles in Alzheimerpathology. Neurobiol Aging 2004, 25: 697–711.PubMedGoogle Scholar
  16. [16]
    Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA. Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol 2003, 60: 1119–1122.PubMedGoogle Scholar
  17. [17]
    Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 2001, 81: 741–766.PubMedGoogle Scholar
  18. [18]
    Tanzi RE, Bertram L. Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell 2005, 120: 545–555.PubMedGoogle Scholar
  19. [19]
    Selkoe DJ. Alzheimer’s disease results from the cerebral accumulation and cytotoxicity of amyloid beta-protein. J Alzheimers Dis 2001, 3: 75–80.PubMedGoogle Scholar
  20. [20]
    Herrup K. Reimagining Alzheimer’s disease—an age-based hypothesis. J Neurosci 2010, 30: 16755–16762.PubMedCentralPubMedGoogle Scholar
  21. [21]
    Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. Abnormal phosphorylation of the microtubuleassociated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A 1986, 83: 4913–4917.PubMedCentralPubMedGoogle Scholar
  22. [22]
    Bonda DJ, Lee HP, Lee HG, Friedlich AL, Perry G, Zhu X, et al. Novel therapeutics for Alzheimer’s disease: an update. Curr Opin Drug Discov Devel 2010, 13: 235–246.PubMedCentralPubMedGoogle Scholar
  23. [23]
    Wang JZ, Xia YY, Grundke-Iqbal I, Iqbal K. Abnormal hyperphosphorylation of tau: sites, regulation, and molecular mechanism of neurofibrillary degeneration. J Alzheimers Dis 2013, 33Suppl 1: S123–139.PubMedGoogle Scholar
  24. [24]
    Goedert M, Strittmatter WJ, Roses AD. Alzheimer’s disease. Risky apolipoprotein in brain. Nature 1994, 372: 45–46.Google Scholar
  25. [25]
    Castellani RJ, Lee HG, Siedlak SL, Nunomura A, Hayashi T, Nakamura M, et al. Reexamining Alzheimer’s disease: evidence for a protective role for amyloid-beta protein precursor and amyloid-beta. J Alzheimers Dis 2009, 18: 447–452.PubMedCentralPubMedGoogle Scholar
  26. [26]
    Castellani RJ, Lee HG, Zhu X, Perry G, Smith MA. Alzheimer disease pathology as a host response. J Neuropathol Exp Neurol 2008, 67: 523–531.PubMedCentralPubMedGoogle Scholar
  27. [27]
    Hardy J, Duff K, Hardy KG, Perez-Tur J, Hutton M. Genetic dissection of Alzheimer’s disease and related dementias: amyloid and its relationship to tau. Nat Neurosci 1998, 1: 355–358.PubMedGoogle Scholar
  28. [28]
    Schellenberg GD, Bird TD, Wijsman EM, Orr HT, Anderson L, Nemens E, et al. Genetic linkage evidence for a familial Alzheimer’s disease locus on chromosome 14. Science 1992, 258: 668–671.PubMedGoogle Scholar
  29. [29]
    Levy-Lahad E, Wijsman EM, Nemens E, Anderson L, Goddard KA, Weber JL, et al. A familial Alzheimer’s disease locus on chromosome 1. Science 1995, 269: 970–973.PubMedGoogle Scholar
  30. [30]
    Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 1991, 349: 704–706.PubMedGoogle Scholar
  31. [31]
    Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 2000, 87: 840–844.PubMedGoogle Scholar
  32. [32]
    Nunomura A, Tamaoki T, Motohashi N, Nakamura M, McKeel DW, Jr., Tabaton M, et al. The earliest stage of cognitive impairment in transition from normal aging to Alzheimer disease is marked by prominent RNA oxidation in vulnerable neurons. J Neuropathol Exp Neurol 2012, 71: 233–241.PubMedCentralPubMedGoogle Scholar
  33. [33]
    Bradley-Whitman MA, Timmons MD, Beckett TL, Murphy MP, Lynn BC, Lovell MA. Nucleic Acid Oxidation: An early feature of Alzheimer’s disease. J Neurochem 2014 128(2): 294–304.PubMedGoogle Scholar
  34. [34]
    Hardas SS, Sultana R, Clark AM, Beckett TL, Szweda LI, Murphy MP, et al. Oxidative modification of lipoic acid by HNE in Alzheimer disease brain. Redox Biol 2013, 1: 80–85.PubMedCentralPubMedGoogle Scholar
  35. [35]
    Sayre LM, Smith MA, Perry G. Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr Med Chem 2001, 8: 721–738.PubMedGoogle Scholar
  36. [36]
    Di Domenico F, Coccia R, Cocciolo A, Murphy MP, Cenini G, Head E, et al. Impairment of proteostasis network in Down syndrome prior to the development of Alzheimer’s disease neuropathology: redox proteomics analysis of human brain. Biochim Biophys Acta 2013, 1832: 1249–1259.PubMedCentralPubMedGoogle Scholar
  37. [37]
    Zhu X, Castellani RJ, Moreira PI, Aliev G, Shenk JC, Siedlak SL, et al. Hydroxynonenal-generated crosslinking fluorophore accumulation in Alzheimer disease reveals a dichotomy of protein turnover. Free Radical Biology and Medicine 2012, 52: 699–704.PubMedCentralPubMedGoogle Scholar
  38. [38]
    Aksenov MY, Tucker HM, Nair P, Aksenova MV, Butterfield DA, Estus S, et al. The expression of key oxidative stresshandling genes in different brain regions in Alzheimer’s disease. J Mol Neurosci 1998, 11: 151–164.PubMedGoogle Scholar
  39. [39]
    Sayre LM, Perry G, Smith MA. Redox metals and neurodegenerative disease. Curr Opin Chem Biol 1999, 3: 220–225.PubMedGoogle Scholar
  40. [40]
    Pratico D. Oxidative stress hypothesis in Alzheimer’s disease: a reappraisal. Trends Pharmacol Sci 2008, 29: 609–615.PubMedGoogle Scholar
  41. [41]
    Nunomura A, Moreira PI, Castellani RJ, Lee HG, Zhu X, Smith MA, et al. Oxidative damage to RNA in aging and neurodegenerative disorders. Neurotox Res 2012, 22: 231–248.PubMedGoogle Scholar
  42. [42]
    Sultana R, Butterfield DA. Oxidative modification of brain proteins in Alzheimer’s disease: perspective on future studies based on results of redox proteomics studies. J Alzheimers Dis 2013, 33Suppl 1: S243–251.PubMedGoogle Scholar
  43. [43]
    Zhu X, Su B, Wang X, Smith MA, Perry G. Causes of oxidative stress in Alzheimer disease. Cell Mol Life Sci 2007, 64: 2202–2210.PubMedGoogle Scholar
  44. [44]
    Gibson GE, Shi Q. A mitocentric view of Alzheimer’s disease suggests multi-faceted treatments. J Alzheimers Dis 2010, 20Suppl 2: S591–607.PubMedCentralPubMedGoogle Scholar
  45. [45]
    Schon EA, Przedborski S. Mitochondria: the next (neurode) generation. Neuron 2011, 70: 1033–1053.PubMedCentralPubMedGoogle Scholar
  46. [46]
    Cheng X, Kanki T, Fukuoh A, Ohgaki K, Takeya R, Aoki Y, et al. PDIP38 associates with proteins constituting the mitochondrial DNA nucleoid. J Biochem 2005, 138: 673–678.PubMedGoogle Scholar
  47. [47]
    Hirai K, Aliev G, Nunomura A, Fujioka H, Russell RL, Atwood CS, et al. Mitochondrial abnormalities in Alzheimer’s disease. J Neurosci 2001, 21: 3017–3023.PubMedGoogle Scholar
  48. [48]
    Keller JN, Guo Q, Holtsberg FW, Bruce-Keller AJ, Mattson MP. Increased sensitivity to mitochondrial toxin-induced apoptosis in neural cells expressing mutant presenilin-1 is linked to perturbed calcium homeostasis and enhanced oxyradical production. J Neurosci 1998, 18: 4439–4450.PubMedGoogle Scholar
  49. [49]
    Coskun PE, Beal MF, Wallace DC. Alzheimer’s brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication. Proc Natl Acad Sci U S A 2004, 101: 10726–10731.PubMedCentralPubMedGoogle Scholar
  50. [50]
    Bonda DJ, Wang X, Perry G, Smith MA, Zhu X. Mitochondrial dynamics in Alzheimer’s disease: opportunities for future treatment strategies. Drugs Aging 2010, 27: 181–192.PubMedCentralPubMedGoogle Scholar
  51. [51]
    Wang X, Su B, Zheng L, Perry G, Smith MA, Zhu X. The role of abnormal mitochondrial dynamics in the pathogenesis of Alzheimer’s disease. J Neurochem 2009, 109Suppl 1: 153–159.PubMedCentralPubMedGoogle Scholar
  52. [52]
    Wang X, Su B, Fujioka H, Zhu X. Dynamin-like protein 1 reduction underlies mitochondrial morphology and distribution abnormalities in fibroblasts from sporadic Alzheimer’s disease patients. Am J Pathol 2008, 173: 470–482.PubMedCentralPubMedGoogle Scholar
  53. [53]
    Chen H, McCaffery JM, Chan DC. Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell 2007, 130: 548–562.PubMedGoogle Scholar
  54. [54]
    Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 2008, 27: 433–446.PubMedCentralPubMedGoogle Scholar
  55. [55]
    Wang X, Su B, Siedlak SL, Moreira PI, Fujioka H, Wang Y, et al. Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc Natl Acad Sci U S A 2008, 105: 19318–19323.PubMedCentralPubMedGoogle Scholar
  56. [56]
    Wang X, Su B, Lee HG, Li X, Perry G, Smith MA, et al. Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J Neurosci 2009, 29: 9090–9103.PubMedCentralPubMedGoogle Scholar
  57. [57]
    Manczak M, Calkins MJ, Reddy PH. Impaired mitochondrialdynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer’s disease: implications for neuronal damage. Hum Mol Genet 2011, 20: 2495–2509.PubMedCentralPubMedGoogle Scholar
  58. [58]
    Reddy PH, Tripathi R, Troung Q, Tirumala K, Reddy TP, Anekonda V, et al. Abnormal mitochondrial dynamics and synaptic degeneration as early events in Alzheimer’s disease: implications to mitochondria-targeted antioxidant therapeutics. Biochimica et Biophysica Acta 2012, 1822: 639–649.PubMedCentralPubMedGoogle Scholar
  59. [59]
    Nunomura A, Perry G, Pappolla MA, Wade R, Hirai K, Chiba S, et al. RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer’s disease. J Neurosci 1999, 19: 1959–1964.PubMedGoogle Scholar
  60. [60]
    Nunomura A, Tamaoki T, Motohashi N, Nakamura M, McKeel DW, Jr., Tabaton M, et al. The earliest stage of cognitive impairment in transition from normal aging to Alzheimer disease is marked by prominent RNA oxidation in vulnerable neurons. Journal of Neuropathology and Experimental Neurology 2012, 71: 233–241.PubMedCentralPubMedGoogle Scholar
  61. [61]
    Sultana R, Baglioni M, Cecchetti R, Cai J, Klein JB, Bastiani P, et al. Lymphocyte mitochondria: toward identification of peripheral biomarkers in the progression of Alzheimer disease. Free Radic Biol Med 2013, 65: 595–606.PubMedGoogle Scholar
  62. [62]
    Smith MA, Zhu X, Tabaton M, Liu G, McKeel DW, Jr., Cohen ML, et al. Increased iron and free radical generation in preclinical Alzheimer disease and mild cognitive impairment. J Alzheimers Dis 2010, 19: 363–372.PubMedCentralPubMedGoogle Scholar
  63. [63]
    Barone E, Di Domenico F, Sultana R, Coccia R, Mancuso C, Perluigi M, et al. Heme oxygenase-1 posttranslational modifications in the brain of subjects with Alzheimer disease and mild cognitive impairment. Free Radic Biol Med 2012, 52: 2292–2301.PubMedCentralPubMedGoogle Scholar
  64. [64]
    Smith MA, Hirai K, Hsiao K, Pappolla MA, Harris PL, Siedlak SL, et al. Amyloid-beta deposition in Alzheimer transgenic mice is associated with oxidative stress. J Neurochem 1998, 70: 2212–2215.PubMedGoogle Scholar
  65. [65]
    Blass JP. The mitochondrial spiral. An adequate cause of dementia in the Alzheimer’s syndrome. Ann N Y Acad Sci 2000, 924: 170–183.PubMedGoogle Scholar
  66. [66]
    Bubber P, Haroutunian V, Fisch G, Blass JP, Gibson GE. Mitochondrial abnormalities in Alzheimer brain: mechanistic implications. Ann Neurol 2005, 57: 695–703.PubMedGoogle Scholar
  67. [67]
    Bush AI. The metal theory of Alzheimer’s disease. J Alzheimers Dis 2013, 33Suppl 1: S277–281.PubMedGoogle Scholar
  68. [68]
    Smith MA, Rottkamp CA, Nunomura A, Raina AK, Perry G. Oxidative stress in Alzheimer’s disease. Biochim Biophys Acta 2000, 1502: 139–144.PubMedGoogle Scholar
  69. [69]
    Cho HH, Cahill CM, Vanderburg CR, Scherzer CR, Wang B, Huang X, et al. Selective translational control of the Alzheimer amyloid precursor protein transcript by iron regulatory protein-1. J Biol Chem 2010, 285: 31217–31232.PubMedCentralPubMedGoogle Scholar
  70. [70]
    Duce JA, Tsatsanis A, Cater MA, James SA, Robb E, Wikhe K, et al. Iron-export ferroxidase activity of beta-amyloid precursor protein is inhibited by zinc in Alzheimer’s disease. Cell 2010, 142: 857–867.PubMedCentralPubMedGoogle Scholar
  71. [71]
    Giaccone G, Pedrotti B, Migheli A, Verga L, Perez J, Racagni G, et al. beta PP and Tau interaction. A possible link between amyloid and neurofibrillary tangles in Alzheimer’s disease. Am J Pathol 1996, 148: 79–87.PubMedCentralPubMedGoogle Scholar
  72. [72]
    Christen Y. Oxidative stress and Alzheimer disease. Am J Clin Nutr 2000, 71: 621S–629S.PubMedGoogle Scholar
  73. [73]
    Nunomura A, Chiba S, Lippa CF, Cras P, Kalaria RN, Takeda A, et al. Neuronal RNA oxidation is a prominent feature of familial Alzheimer’s disease. Neurobiol Dis 2004, 17: 108–113.PubMedGoogle Scholar
  74. [74]
    Bogdanovic N, Zilmer M, Zilmer K, Rehema A, Karelson E. The Swedish APP670/671 Alzheimer’s disease mutation: the first evidence for strikingly increased oxidative injury in the temporal inferior cortex. Dement Geriatr Cogn Disord 2001, 12: 364–370.PubMedGoogle Scholar
  75. [75]
    Combs CK, Karlo JC, Kao SC, Landreth GE. beta-Amyloid stimulation of microglia and monocytes results in TNFalphadependent expression of inducible nitric oxide synthase and neuronal apoptosis. J Neurosci 2001, 21: 1179–1188.PubMedGoogle Scholar
  76. [76]
    Bonda DJ, Mailankot M, Stone JG, Garrett MR, Staniszewska M, Castellani RJ, et al. Indoleamine 2,3-dioxygenase and 3-hydroxykynurenine modifications are found in the neuropathology of Alzheimer’s disease. Redox Rep 2010, 15: 161–168.PubMedCentralPubMedGoogle Scholar
  77. [77]
    Eastman CL, Guilarte TR. The role of hydrogen peroxide in the in vitro cytotoxicity of 3-hydroxykynurenine. Neurochem Res 1990, 15: 1101–1107.PubMedGoogle Scholar
  78. [78]
    Klivenyi P, Toldi J, Vecsei L. Kynurenines in neurodegenerative disorders: therapeutic consideration. Adv Exp Med Biol 2004, 541: 169–183.PubMedGoogle Scholar
  79. [79]
    Mark RJ, Lovell MA, Markesbery WR, Uchida K, Mattson MP. A role for 4-hydroxynonenal, an aldehydic product of lipid peroxidation, in disruption of ion homeostasis and neuronal death induced by amyloid beta-peptide. J Neurochem 1997, 68: 255–264.PubMedGoogle Scholar
  80. [80]
    Mark RJ, Pang Z, Geddes JW, Uchida K, Mattson MP. Amyloid beta-peptide impairs glucose transport in hippocampal and cortical neurons: involvement of membrane lipid peroxidation. J Neurosci 1997, 17: 1046–1054.PubMedGoogle Scholar
  81. [81]
    Markesbery WR, Lovell MA. Four-hydroxynonenal, a product of lipid peroxidation, is increased in the brain in Alzheimer’s disease. Neurobiol Aging 1998, 19: 33–36.PubMedGoogle Scholar
  82. [82]
    Sayre LM, Zelasko DA, Harris PL, Perry G, Salomon RG, Smith MA. 4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer’sdisease. J Neurochem 1997, 68: 2092–2097.PubMedGoogle Scholar
  83. [83]
    Butterfield DA, Drake J, Pocernich C, Castegna A. Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid beta-peptide. Trends Mol Med 2001, 7: 548–554.PubMedGoogle Scholar
  84. [84]
    Smith MA, Casadesus G, Joseph JA, Perry G. Amyloidbeta and tau serve antioxidant functions in the aging and Alzheimer brain. Free Radic Biol Med 2002, 33: 1194–1199.PubMedGoogle Scholar
  85. [85]
    Yan SD, Yan SF, Chen X, Fu J, Chen M, Kuppusamy P, et al. Non-enzymatically glycated tau in Alzheimer’s disease induces neuronal oxidant stress resulting in cytokine gene expression and release of amyloid beta-peptide. Nat Med 1995, 1: 693–699.PubMedGoogle Scholar
  86. [86]
    Nunomura A, Perry G, Pappolla MA, Friedland RP, Hirai K, Chiba S, et al. Neuronal oxidative stress precedes amyloidbeta deposition in Down syndrome. J Neuropathol Exp Neurol 2000, 59: 1011–1017.PubMedGoogle Scholar
  87. [87]
    Nunomura A, Perry G, Aliev G, Hirai K, Takeda A, Balraj EK, et al. Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 2001, 60: 759–767.PubMedGoogle Scholar
  88. [88]
    Gomez-Isla T, Hollister R, West H, Mui S, Growdon JH, Petersen RC, et al. Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol 1997, 41: 17–24.PubMedGoogle Scholar
  89. [89]
    Kril JJ, Patel S, Harding AJ, Halliday GM. Neuron loss from the hippocampus of Alzheimer’s disease exceeds extracellular neurofibrillary tangle formation. Acta Neuropathol (Berl) 2002, 103: 370–376.Google Scholar
  90. [90]
    Kuchibhotla KV, Wegmann S, Kopeikina KJ, Hawkes J, Rudinskiy N, Andermann ML, et al. Neurofibrillary tanglebearing neurons are functionally integrated in cortical circuits in vivo. Proc Natl Acad Sci U S A 2014, 111: 510–514.PubMedCentralPubMedGoogle Scholar
  91. [91]
    Morsch R, Simon W, Coleman PD. Neurons may live for decades with neurofibrillary tangles. J Neuropathol Exp Neurol 1999, 58: 188–197.PubMedGoogle Scholar
  92. [92]
    Li HL, Wang HH, Liu SJ, Deng YQ, Zhang YJ, Tian Q, et al. Phosphorylation of tau antagonizes apoptosis by stabilizing beta-catenin, a mechanism involved in Alzheimer’s neurodegeneration. Proc Natl Acad Sci U S A 2007, 104: 3591–3596.PubMedCentralPubMedGoogle Scholar
  93. [93]
    Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006, 443: 787–795.PubMedGoogle Scholar
  94. [94]
    Sherer TB, Greenamyre JT. Oxidative damage in Parkinson’s disease. Antioxid Redox Signal 2005, 7: 627–629.PubMedGoogle Scholar
  95. [95]
    Wang X, Michaelis EK. Selective neuronal vulnerability to oxidative stress in the brain. Front Aging Neurosci 2010, 2: 12.PubMedCentralPubMedGoogle Scholar
  96. [96]
    Lipski J, Nistico R, Berretta N, Guatteo E, Bernardi G, Mercuri NB. L-DOPA: a scapegoat for accelerated neurodegeneration in Parkinson’s disease? Prog Neurobiol 2011, 94: 389–407.PubMedGoogle Scholar
  97. [97]
    Rottkamp CA, Raina AK, Zhu X, Gaier E, Bush AI, Atwood CS, et al. Redox-active iron mediates amyloid-beta toxicity. Free Radic Biol Med 2001, 30: 447–450.PubMedGoogle Scholar
  98. [98]
    Petersen RC, Thomas RG, Grundman M, Bennett D, Doody R, Ferris S, et al. Vitamin E and donepezil for the treatment of mild cognitive impairment. N Engl J Med 2005, 352: 2379–2388.PubMedGoogle Scholar
  99. [99]
    Smith RA, Kelso GF, James AM, Murphy MP. Targeting coenzyme Q derivatives to mitochondria. Methods Enzymol 2004, 382: 45–67.PubMedGoogle Scholar
  100. [100]
    Lu C, Zhang D, Whiteman M, Armstrong JS. Is antioxidant potential of the mitochondrial targeted ubiquinone derivative MitoQ conserved in cells lacking mtDNA? Antioxid Redox Signal 2008, 10: 651–660.PubMedGoogle Scholar
  101. [101]
    Murphy MP, Smith RA. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol 2007, 47: 629–656.PubMedGoogle Scholar
  102. [102]
    Tauskela JS. MitoQ—a mitochondria-targeted antioxidant. IDrugs 2007, 10: 399–412.PubMedGoogle Scholar
  103. [103]
    Siedlak SL, Casadesus G, Webber KM, Pappolla MA, Atwood CS, Smith MA, et al. Chronic antioxidant therapy reduces oxidative stress in a mouse model of Alzheimer’s disease. Free Radic Res 2009, 43: 156–164.PubMedCentralPubMedGoogle Scholar
  104. [104]
    Liu J, Head E, Gharib AM, Yuan W, Ingersoll RT, Hagen TM, et al. Memory loss in old rats is associated with brain mitochondrial decay and RNA/DNA oxidation: partial reversal by feeding acetyl-L-carnitine and/or R-alpha -lipoic acid. Proc Natl Acad Sci U S A 2002, 99: 2356–2361.PubMedCentralPubMedGoogle Scholar
  105. [105]
    Liu J, Atamna H, Kuratsune H, Ames BN. Delaying brain mitochondrial decay and aging with mitochondrial antioxidants and metabolites. Ann N Y Acad Sci 2002, 959: 133–166.PubMedGoogle Scholar
  106. [106]
    Long J, Gao F, Tong L, Cotman CW, Ames BN, Liu J. Mitochondrial decay in the brains of old rats: ameliorating effect of alpha-lipoic acid and acetyl-L-carnitine. Neurochem Res 2009, 34: 755–763.PubMedCentralPubMedGoogle Scholar
  107. [107]
    Aliev G, Liu J, Shenk JC, Fischbach K, Pacheco GJ, Chen SG, et al. Neuronal mitochondrial amelioration by feeding acetyl-L-carnitine and lipoic acid to aged rats. J Cell Mol Med 2009, 13(2): 320–333..PubMedCentralPubMedGoogle Scholar
  108. [108]
    Liu J, Killilea DW, Ames BN. Age-associated mitochondrial oxidative decay: improvement of carnitine acetyltransferase substrate-binding affinity and activity in brain by feeding old rats acetyl-L-carnitine and/or R-alpha -lipoic acid. Proc Natl Acad Sci U S A 2002, 99: 1876–1881.PubMedCentralPubMedGoogle Scholar
  109. [109]
    Ames BN, Liu J. Delaying the mitochondrial decay of aging with acetylcarnitine. Ann N Y Acad Sci 2004, 1033: 108–116.PubMedGoogle Scholar
  110. [110]
    Milgram NW, Araujo JA, Hagen TM, Treadwell BV, Ames BN. Acetyl-L-carnitine and alpha-lipoic acid supplementation of aged beagle dogs improves learning in two landmark discrimination tests. FASEB J 2007, 21: 3756–3762.PubMedGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • David J. Bonda
    • 1
  • Xinglong Wang
    • 1
  • Hyoung-Gon Lee
    • 1
  • Mark A. Smith
    • 1
  • George Perry
    • 1
    • 2
  • Xiongwei Zhu
    • 1
    Email author
  1. 1.Department of PathologyCase Western Reserve UniversityClevelandUSA
  2. 2.UTSA Neurosciences Institute and Department of BiologyUniversity of Texas at San AntonioSan AntonioUSA

Personalised recommendations