Skip to main content

Advertisement

Log in

Lipid metabolism in Alzheimer’s disease

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Lipids play crucial roles in cell signaling and various physiological processes, especially in the brain. Impaired lipid metabolism in the brain has been implicated in neurodegenerative diseases, such as Alzheimer’s disease (AD), and other central nervous system insults. The brain contains thousands of lipid species, but the complex lipid compositional diversity and the function of each of lipid species are currently poorly understood. This review integrates current knowledge about major lipid changes with the molecular mechanisms that underlie AD pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bjorkhem I, Meaney S. Brain cholesterol: long secret life behind a barrier. Arterioscler Thromb Vasc Biol 2004, 24: 806–815.

    PubMed  Google Scholar 

  2. Korade Z, Kenworthy AK. Lipid rafts, cholesterol, and the brain. Neuropharmacology 2008, 55: 1265–1273.

    PubMed Central  PubMed  CAS  Google Scholar 

  3. West XZ, Malinin NL, Merkulova AA, Tischenko M, Kerr BA, Borden EC, et al. Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands. Nature 2010, 467: 972–976.

    PubMed Central  PubMed  CAS  Google Scholar 

  4. Haughey NJ, Bandaru VV, Bae M, Mattson MP. Roles for dysfunctional sphingolipid metabolism in Alzheimer’s disease neuropathogenesis. Biochim Biophys Acta 2010, 1801: 878–886.

    PubMed Central  PubMed  CAS  Google Scholar 

  5. Jana A, Pahan K. Fibrillar amyloid-beta-activated human astroglia kill primary human neurons via neutral sphingomyelinase: implications for Alzheimer’s disease. J Neurosci 2010, 30: 12676–12689.

    PubMed Central  PubMed  CAS  Google Scholar 

  6. Sanchez-Mejia RO, Newman JW, Toh S, Yu GQ, Zhou Y, Halabisky B, et al. Phospholipase A2 reduction ameliorates cognitive deficits in a mouse model of Alzheimer’s disease. Nat Neurosci 2008, 11: 1311–1318.

    PubMed Central  PubMed  CAS  Google Scholar 

  7. Esposito G, Giovacchini G, Liow JS, Bhattacharjee AK, Greenstein D, Schapiro M, et al. Imaging neuroinflammation in Alzheimer’s disease with radiolabeled arachidonic acid and PET. J Nucl Med 2008, 49: 1414–1421.

    PubMed Central  PubMed  CAS  Google Scholar 

  8. Shevchenko A, Simons K. Lipidomics: coming to grips with lipid diversity. Nat Rev Mol Cell Biol 2010, 11: 593–598.

    PubMed  CAS  Google Scholar 

  9. van Meer G. Cellular lipidomics. EMBO J 2005, 24: 3159–3165.

    PubMed Central  PubMed  Google Scholar 

  10. Yetukuri L, Ekroos K, Vidal-Puig A, Oresic M. Informatics and computational strategies for the study of lipids. Mol Biosyst 2008, 4: 121–127.

    PubMed  CAS  Google Scholar 

  11. Wenk MR. The emerging field of lipidomics. Nat Rev Drug Discov 2005, 4: 594–610.

    PubMed  CAS  Google Scholar 

  12. Hussain G, Schmitt F, Loeffler JP, de Aguilar JL. Fatting the brain: a brief of recent research. Front Cell Neurosci 2013, 7: 144.

    PubMed Central  PubMed  Google Scholar 

  13. Fester L, Zhou L, Butow A, Huber C, von Lossow R, Prange-Kiel J, et al. Cholesterol-promoted synaptogenesis requires the conversion of cholesterol to estradiol in the hippocampus. Hippocampus 2009, 19: 692–705.

    PubMed  CAS  Google Scholar 

  14. Goritz C, Mauch DH, Pfrieger FW. Multiple mechanisms mediate cholesterol-induced synaptogenesis in a CNS neuron. Mol Cell Neurosci 2005, 29: 190–201.

    PubMed  CAS  Google Scholar 

  15. de Chaves EI, Rusinol AE, Vance DE, Campenot RB, Vance JE. Role of lipoproteins in the delivery of lipids to axons during axonal regeneration. J Biol Chem 1997, 272: 30766–30773.

    PubMed  Google Scholar 

  16. Goritz C, Mauch DH, Nagler K, Pfrieger FW. Role of gliaderived cholesterol in synaptogenesis: new revelations in the synapse-glia affair. J Physiol Paris 2002, 96: 257–263.

    PubMed  CAS  Google Scholar 

  17. Koudinov AR, Berezov TT. Cholesterol, statins, and Alzheimer disease. PLoS Med 2005, 2: e81; author reply e85.

    PubMed Central  PubMed  Google Scholar 

  18. Mauch DH, Nagler K, Schumacher S, Goritz C, Muller EC, Otto A, et al. CNS synaptogenesis promoted by glia-derived cholesterol. Science 2001, 294: 1354–1357.

    PubMed  CAS  Google Scholar 

  19. Klopfenstein DR, Tomishige M, Stuurman N, Vale RD. Role of phosphatidylinositol(4,5)bisphosphate organization in membrane transport by the Unc104 kinesin motor. Cell 2002, 109: 347–358.

    PubMed Central  PubMed  CAS  Google Scholar 

  20. Michikawa M. Role of cholesterol in amyloid cascade: cholesterol-dependent modulation of tau phosphorylation and mitochondrial function. Acta Neurol Scand Suppl 2006, 185: 21–26.

    PubMed  CAS  Google Scholar 

  21. Linetti A, Fratangeli A, Taverna E, Valnegri P, Francolini M, Cappello V, et al. Cholesterol reduction impairs exocytosis of synaptic vesicles. J Cell Sci 2010, 123: 595–605.

    PubMed  CAS  Google Scholar 

  22. Liu Q, Trotter J, Zhang J, Peters MM, Cheng H, Bao J, et al. Neuronal LRP1 knockout in adult mice leads to impaired brain lipid metabolism and progressive, age-dependent synapse loss and neurodegeneration. J Neurosci 2010, 30: 17068–17078.

    PubMed Central  PubMed  CAS  Google Scholar 

  23. Liu Q, Zerbinatti CV, Zhang J, Hoe HS, Wang B, Cole SL, et al. Amyloid precursor protein regulates brain apolipoprotein E and cholesterol metabolism through lipoprotein receptor LRP1. Neuron 2007, 56: 66–78.

    PubMed Central  PubMed  CAS  Google Scholar 

  24. Madra M, Sturley SL. Niemann-Pick type C pathogenesis and treatment: from statins to sugars. Clin Lipidol 2010, 5: 387–395.

    PubMed Central  PubMed  CAS  Google Scholar 

  25. Block RC, Dorsey ER, Beck CA, Brenna JT, Shoulson I. Altered cholesterol and fatty acid metabolism in Huntington disease. J Clin Lipidol 2010, 4: 17–23.

    PubMed Central  PubMed  Google Scholar 

  26. Di Paolo G, Kim TW. Linking lipids to Alzheimer’s disease: cholesterol and beyond. Nat Rev Neurosci 2011, 12: 284–296.

    PubMed Central  PubMed  Google Scholar 

  27. Wang Q, Yan J, Chen X, Li J, Yang Y, Weng J, et al. Statins: multiple neuroprotective mechanisms in neurodegenerative diseases. Exp Neurol 2011, 230: 27–34.

    PubMed  CAS  Google Scholar 

  28. Frisardi V, Panza F, Seripa D, Farooqui T, Farooqui AA. Glycerophospholipids and glycerophospholipid-derived lipid mediators: a complex meshwork in Alzheimer’s disease pathology. Prog Lipid Res 2011, 50: 313–330.

    PubMed  CAS  Google Scholar 

  29. Palsdottir H, Hunte C. Lipids in membrane protein structures. Biochim Biophys Acta 2004, 1666: 2–18.

    PubMed  CAS  Google Scholar 

  30. Bazan NG. Lipid signaling in neural plasticity, brain repair, and neuroprotection. Mol Neurobiol 2005, 32: 89–103.

    PubMed  CAS  Google Scholar 

  31. Han X, Holtzman DM, McKeel DW, Jr. Plasmalogen deficiency in early Alzheimer’s disease subjects and in animal models: molecular characterization using electrospray ionization mass spectrometry. J Neurochem 2001, 77: 1168–1180.

    PubMed  CAS  Google Scholar 

  32. Pettegrew JW, Panchalingam K, Hamilton RL, McClure RJ. Brain membrane phospholipid alterations in Alzheimer’s disease. Neurochem Res 2001, 26: 771–782.

    PubMed  CAS  Google Scholar 

  33. Farooqui AA, Rapoport SI, Horrocks LA. Membrane phospholipid alterations in Alzheimer’s disease: deficiency of ethanolamine plasmalogens. Neurochem Res 1997, 22: 523–527.

    PubMed  CAS  Google Scholar 

  34. Stephenson D, Rash K, Smalstig B, Roberts E, Johnstone E, Sharp J, et al. Cytosolic phospholipase A2 is induced in reactive glia following different forms of neurodegeneration. Glia 1999, 27: 110–128.

    PubMed  CAS  Google Scholar 

  35. Farooqui AA, Ong WY, Horrocks LA. Plasmalogens, docosahexaenoic acid and neurological disorders. Adv Exp Med Biol 2003, 544: 335–354.

    PubMed  CAS  Google Scholar 

  36. Kanfer JN, Sorrentino G, Sitar DS. Phospholipases as mediators of amyloid beta peptide neurotoxicity: an early event contributing to neurodegeneration characteristic of Alzheimer’s disease. Neurosci Lett 1998, 257: 93–96.

    PubMed  CAS  Google Scholar 

  37. Malaplate-Armand C, Florent-Bechard S, Youssef I, Koziel V, Sponne I, Kriem B, et al. Soluble oligomers of amyloid-beta peptide induce neuronal apoptosis by activating a cPLA2-dependent sphingomyelinase-ceramide pathway. Neurobiol Dis 2006, 23: 178–189.

    PubMed  CAS  Google Scholar 

  38. Kriem B, Sponne I, Fifre A, Malaplate-Armand C, Lozac’h-Pillot K, Koziel V, et al. Cytosolic phospholipase A2 mediates neuronal apoptosis induced by soluble oligomers of the amyloid-beta peptide. FASEB J 2005, 19: 85–87.

    PubMed  CAS  Google Scholar 

  39. Yu H, Bi Y, Ma W, He L, Yuan L, Feng J, et al. Long-term effects of high lipid and high energy diet on serum lipid, brain fatty acid composition, and memory and learning ability in mice. Int J Dev Neurosci 2010, 28: 271–276.

    PubMed  CAS  Google Scholar 

  40. Ochoa JJ, Pamplona R, Ramirez-Tortosa MC, Granados-Principal S, Perez-Lopez P, Naudi A, et al. Age-related changes in brain mitochondrial DNA deletion and oxidative stress are differentially modulated by dietary fat type and coenzyme Q(1)(0). Free Radic Biol Med 2011, 50: 1053–1064.

    PubMed  CAS  Google Scholar 

  41. Pfrieger FW. Cholesterol homeostasis and function in neurons of the central nervous system. Cell Mol Life Sci 2003, 60: 1158–1171.

    PubMed  CAS  Google Scholar 

  42. Papassotiropoulos A, Lutjohann D, Bagli M, Locatelli S, Jessen F, Rao ML, et al. Plasma 24S-hydroxycholesterol: a peripheral indicator of neuronal degeneration and potential state marker for Alzheimer’s disease. Neuroreport 2000, 11: 1959–1962.

    PubMed  CAS  Google Scholar 

  43. Poirier J, Baccichet A, Dea D, Gauthier S. Cholesterol synthesis and lipoprotein reuptake during synaptic remodelling in hippocampus in adult rats. Neuroscience 1993, 55: 81–90.

    PubMed  CAS  Google Scholar 

  44. Herz J, Bock HH. Lipoprotein receptors in the nervous system. Annu Rev Biochem 2002, 71: 405–434.

    PubMed  CAS  Google Scholar 

  45. Cam JA, Bu G. Modulation of beta-amyloid precursor protein trafficking and processing by the low density lipoprotein receptor family. Mol Neurodegener 2006, 1: 8.

    PubMed Central  PubMed  Google Scholar 

  46. Fryer JD, Demattos RB, McCormick LM, O’Dell MA, Spinner ML, Bales KR, et al. The low density lipoprotein receptor regulates the level of central nervous system human and murine apolipoprotein E but does not modify amyloid plaque pathology in PDAPP mice. J Biol Chem 2005, 280: 25754–25759.

    PubMed  CAS  Google Scholar 

  47. Lamsa R, Helisalmi S, Herukka SK, Tapiola T, Pirttila T, Vepsalainen S, et al. Genetic study evaluating LDLR polymorphisms and Alzheimer’s disease. Neurobiol Aging 2008, 29: 848–855.

    PubMed  CAS  Google Scholar 

  48. Zou F, Gopalraj RK, Lok J, Zhu H, Ling IF, Simpson JF, et al. Sex-dependent association of a common low-density lipoprotein receptor polymorphism with RNA splicing efficiency in the brain and Alzheimer’s disease. Hum Mol Genet 2008, 17: 929–935.

    PubMed Central  PubMed  CAS  Google Scholar 

  49. Cao D, Fukuchi K, Wan H, Kim H, Li L. Lack of LDL receptor aggravates learning deficits and amyloid deposits in Alzheimer transgenic mice. Neurobiol Aging 2006, 27: 1632–1643.

    PubMed  CAS  Google Scholar 

  50. Kim J, Castellano JM, Jiang H, Basak JM, Parsadanian M, Pham V, et al. Overexpression of low-density lipoprotein receptor in the brain markedly inhibits amyloid deposition and increases extracellular A beta clearance. Neuron 2009, 64: 632–644.

    PubMed Central  PubMed  Google Scholar 

  51. Bu G. Apolipoprotein E and its receptors in Alzheimer’s disease: pathways, pathogenesis and therapy. Nat Rev Neurosci 2009, 10: 333–344.

    PubMed Central  PubMed  CAS  Google Scholar 

  52. Zerbinatti CV, Wozniak DF, Cirrito J, Cam JA, Osaka H, Bales KR, et al. Increased soluble amyloid-beta peptide and memory deficits in amyloid model mice overexpressing the low-density lipoprotein receptor-related protein. Proc Natl Acad Sci U S A 2004, 101: 1075–1080.

    PubMed Central  PubMed  CAS  Google Scholar 

  53. Rebeck GW, Reiter JS, Strickland DK, Hyman BT. Apolipoprotein E in sporadic Alzheimer’s disease: allelic variation and receptor interactions. Neuron 1993, 11: 575–580.

    PubMed  CAS  Google Scholar 

  54. Rapp A, Gmeiner B, Huttinger M. Implication of apoE isoforms in cholesterol metabolism by primary rat hippocampal neurons and astrocytes. Biochimie 2006, 88: 473–483.

    PubMed  CAS  Google Scholar 

  55. Fagan AM, Bu G, Sun Y, Daugherty A, Holtzman DM. Apolipoprotein E-containing high density lipoprotein promotes neurite outgrowth and is a ligand for the low density lipoprotein receptor-related protein. J Biol Chem 1996, 271: 30121–30125.

    PubMed  CAS  Google Scholar 

  56. Dean M, Allikmets R. Complete characterization of the human ABC gene family. J Bioenerg Biomembr 2001, 33: 475–479.

    PubMed  CAS  Google Scholar 

  57. Schmitz G, Langmann T, Heimerl S. Role of ABCG1 and other ABCG family members in lipid metabolism. J Lipid Res 2001, 42: 1513–1520.

    PubMed  CAS  Google Scholar 

  58. Dean M, Hamon Y, Chimini G. The human ATP-binding cassette (ABC) transporter superfamily. J Lipid Res 2001, 42: 1007–1017.

    PubMed  CAS  Google Scholar 

  59. Schmitz G, Kaminski WE, Orso E. ABC transporters in cellular lipid trafficking. Curr Opin Lipidol 2000, 11: 493–501.

    PubMed  CAS  Google Scholar 

  60. Puglielli L, Tanzi RE, Kovacs DM. Alzheimer’s disease: the cholesterol connection. Nat Neurosci 2003, 6: 345–351.

    PubMed  CAS  Google Scholar 

  61. Hirsch-Reinshagen V, Zhou S, Burgess BL, Bernier L, McIsaac SA, Chan JY, et al. Deficiency of ABCA1 impairs apolipoprotein E metabolism in brain. J Biol Chem 2004, 279: 41197–41207.

    PubMed  CAS  Google Scholar 

  62. Wahrle SE, Jiang H, Parsadanian M, Legleiter J, Han X, Fryer JD, et al. ABCA1 is required for normal central nervous system ApoE levels and for lipidation of astrocyte-secreted apoE. J Biol Chem 2004, 279: 40987–40993.

    PubMed  CAS  Google Scholar 

  63. Gelissen IC, Harris M, Rye KA, Quinn C, Brown AJ, Kockx M, et al. ABCA1 and ABCG1 synergize to mediate cholesterol export to apoA-I. Arterioscler Thromb Vasc Biol 2006, 26: 534–540.

    PubMed  CAS  Google Scholar 

  64. Vaughan AM, Oram JF. ABCA1 and ABCG1 or ABCG4 act sequentially to remove cellular cholesterol and generate cholesterol-rich HDL. J Lipid Res 2006, 47: 2433–2443.

    PubMed  CAS  Google Scholar 

  65. Kennedy MA, Barrera GC, Nakamura K, Baldan A, Tarr P, Fishbein MC, et al. ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation. Cell Metab 2005, 1: 121–131.

    PubMed  CAS  Google Scholar 

  66. Baldan A, Tarr P, Vales CS, Frank J, Shimotake TK, Hawgood S, et al. Deletion of the transmembrane transporter ABCG1 results in progressive pulmonary lipidosis. J Biol Chem 2006, 281: 29401–29410.

    PubMed  CAS  Google Scholar 

  67. Karten B, Campenot RB, Vance DE, Vance JE. Expression of ABCG1, but not ABCA1, correlates with cholesterol release by cerebellar astroglia. J Biol Chem 2006, 281: 4049–4057.

    PubMed  CAS  Google Scholar 

  68. Holtzman DM, Mandelkow E, Selkoe DJ. Alzheimer disease in 2020. Cold Spring Harb Perspect Med 2012, 2.

    Google Scholar 

  69. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002, 297: 353–356.

    PubMed  CAS  Google Scholar 

  70. Steiner H, Haass C. Intramembrane proteolysis by presenilins. Nat Rev Mol Cell Biol 2000, 1: 217–224.

    PubMed  CAS  Google Scholar 

  71. Rall SC, Jr., Weisgraber KH, Mahley RW. Human apolipoprotein E. The complete amino acid sequence. J Biol Chem 1982, 257: 4171–4178.

    CAS  Google Scholar 

  72. Zannis VI, Breslow JL, Utermann G, Mahley RW, Weisgraber KH, Havel RJ, et al. Proposed nomenclature of apoE isoproteins, apoE genotypes, and phenotypes. J Lipid Res 1982, 23: 911–914.

    PubMed  CAS  Google Scholar 

  73. Grehan S, Tse E, Taylor JM. Two distal downstream enhancers direct expression of the human apolipoprotein E gene to astrocytes in the brain. J Neurosci 2001, 21: 812–822.

    PubMed  CAS  Google Scholar 

  74. Xu PT, Schmechel D, Qiu HL, Herbstreith M, Rothrock-Christian T, Eyster M, et al. Sialylated human apolipoprotein E (apoEs) is preferentially associated with neuron-enriched cultures from APOE transgenic mice. Neurobiol Dis 1999, 6: 63–75.

    PubMed  CAS  Google Scholar 

  75. Corder EH, Saunders AM, Risch NJ, Strittmatter WJ, Schmechel DE, Gaskell PC, Jr., et al. Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet 1994, 7: 180–184.

    PubMed  CAS  Google Scholar 

  76. Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet 2007, 39: 17–23.

    PubMed  CAS  Google Scholar 

  77. Roses AD. Apolipoprotein E alleles as risk factors in Alzheimer’s disease. Annu Rev Med 1996, 47: 387–400.

    PubMed  CAS  Google Scholar 

  78. Gomez-Isla T, West HL, Rebeck GW, Harr SD, Growdon JH, Locascio JJ, et al. Clinical and pathological correlates of apolipoprotein E epsilon 4 in Alzheimer’s disease. Ann Neurol 1996, 39: 62–70.

    PubMed  CAS  Google Scholar 

  79. Strittmatter WJ, Saunders AM, Goedert M, Weisgraber KH, Dong LM, Jakes R, et al. Isoform-specific interactions of apolipoprotein E with microtubule-associated protein tau: implications for Alzheimer disease. Proc Natl Acad Sci U S A 1994, 91: 11183–11186.

    PubMed Central  PubMed  CAS  Google Scholar 

  80. Fassbender K, Simons M, Bergmann C, Stroick M, Lutjohann D, Keller P, et al. Simvastatin strongly reduces levels of Alzheimer’s disease beta -amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo. Proc Natl Acad Sci U S A 2001, 98: 5856–5861.

    PubMed Central  PubMed  CAS  Google Scholar 

  81. Simons M, Keller P, De Strooper B, Beyreuther K, Dotti CG, Simons K. Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. Proc Natl Acad Sci U S A 1998, 95: 6460–6464.

    PubMed Central  PubMed  CAS  Google Scholar 

  82. Wahrle S, Das P, Nyborg AC, McLendon C, Shoji M, Kawarabayashi T, et al. Cholesterol-dependent gammasecretase activity in buoyant cholesterol-rich membrane microdomains. Neurobiol Dis 2002, 9: 11–23.

    PubMed  CAS  Google Scholar 

  83. Zha Q, Ruan Y, Hartmann T, Beyreuther K, Zhang D. GM1 ganglioside regulates the proteolysis of amyloid precursor protein. Mol Psychiatry 2004, 9: 946–952.

    PubMed  CAS  Google Scholar 

  84. Refolo LM, Pappolla MA, LaFrancois J, Malester B, Schmidt SD, Thomas-Bryant T, et al. A cholesterol-lowering drug reduces beta-amyloid pathology in a transgenic mouse model of Alzheimer’s disease. Neurobiol Dis 2001, 8: 890–899.

    PubMed  CAS  Google Scholar 

  85. Sun Y, Yao J, Kim TW, Tall AR. Expression of liver X receptor target genes decreases cellular amyloid beta peptide secretion. J Biol Chem 2003, 278: 27688–27694.

    PubMed  CAS  Google Scholar 

  86. Hirsch-Reinshagen V, Maia LF, Burgess BL, Blain JF, Naus KE, McIsaac SA, et al. The absence of ABCA1 decreases soluble ApoE levels but does not diminish amyloid deposition in two murine models of Alzheimer disease. J Biol Chem 2005, 280: 43243–43256.

    PubMed  CAS  Google Scholar 

  87. Hirsch-Reinshagen V, Donkin J, Stukas S, Chan J, Wilkinson A, Fan J, et al. LCAT synthesized by primary astrocytes esterifies cholesterol on glia-derived lipoproteins. J Lipid Res 2009, 50: 885–893.

    PubMed Central  PubMed  CAS  Google Scholar 

  88. Yanagisawa K. Cholesterol and amyloid beta fibrillogenesis. Subcell Biochem 2005, 38: 179–202.

    PubMed  CAS  Google Scholar 

  89. Kakio A, Nishimoto SI, Yanagisawa K, Kozutsumi Y, Matsuzaki K. Cholesterol-dependent formation of GM1 ganglioside-bound amyloid beta-protein, an endogenous seed for Alzheimer amyloid. J Biol Chem 2001, 276: 24985–24990.

    PubMed  CAS  Google Scholar 

  90. Amtul Z, Westaway D, Cechetto DF, Rozmahel RF. Oleic acid ameliorates amyloidosis in cellular and mouse models of Alzheimer’s disease. Brain Pathol 2011, 21: 321–329.

    PubMed  CAS  Google Scholar 

  91. Amtul Z, Uhrig M, Wang L, Rozmahel RF, Beyreuther K. Detrimental effects of arachidonic acid and its metabolites in cellular and mouse models of Alzheimer’s disease: structural insight. Neurobiol Aging 2012, 33: 831 e821–831.

    Google Scholar 

  92. Puglielli L, Konopka G, Pack-Chung E, Ingano LA, Berezovska O, Hyman BT, et al. Acyl-coenzyme A: cholesterol acyltransferase modulates the generation of the amyloid beta-peptide. Nat Cell Biol 2001, 3: 905–912.

    PubMed  CAS  Google Scholar 

  93. Hutter-Paier B, Huttunen HJ, Puglielli L, Eckman CB, Kim DY, Hofmeister A, et al. The ACAT inhibitor CP-113,818 markedly reduces amyloid pathology in a mouse model of Alzheimer’s disease. Neuron 2004, 44: 227–238.

    PubMed  CAS  Google Scholar 

  94. Shobab LA, Hsiung GY, Feldman HH. Cholesterol in Alzheimer’s disease. Lancet Neurol 2005, 4: 841–852.

    PubMed  CAS  Google Scholar 

  95. Bjorkhem I, Cedazo-Minguez A, Leoni V, Meaney S. Oxysterols and neurodegenerative diseases. Mol Aspects Med 2009, 30: 171–179.

    PubMed  Google Scholar 

  96. Bjorkhem I. Crossing the barrier: oxysterols as cholesterol transporters and metabolic modulators in the brain. J Intern Med 2006, 260: 493–508.

    PubMed  CAS  Google Scholar 

  97. Lutjohann D, Papassotiropoulos A, Bjorkhem I, Locatelli S, Bagli M, Oehring RD, et al. Plasma 24S-hydroxycholesterol (cerebrosterol) is increased in Alzheimer and vascular demented patients. J Lipid Res 2000, 41: 195–198.

    PubMed  CAS  Google Scholar 

  98. Kolsch H, Heun R, Kerksiek A, Bergmann KV, Maier W, Lutjohann D. Altered levels of plasma 24S- and 27-hydroxycholesterol in demented patients. Neurosci Lett 2004, 368: 303–308.

    PubMed  CAS  Google Scholar 

  99. Khandelwal PJ, Herman AM, Moussa CE. Inflammation in the early stages of neurodegenerative pathology. J Neuroimmunol 2011, 238: 1–11.

    PubMed Central  PubMed  CAS  Google Scholar 

  100. Fan QW, Yu W, Senda T, Yanagisawa K, Michikawa M. Cholesterol-dependent modulation of tau phosphorylation in cultured neurons. J Neurochem 2001, 76: 391–400.

    PubMed  CAS  Google Scholar 

  101. Glockner F, Meske V, Lutjohann D, Ohm TG. Dietary cholesterol and its effect on tau protein: a study in apolipoprotein E-deficient and P301L human tau mice. J Neuropathol Exp Neurol 2011, 70: 292–301.

    PubMed  Google Scholar 

  102. Love S, Bridges LR, Case CP. Neurofibrillary tangles in Niemann-Pick disease type C. Brain 1995, 118(Pt 1): 119–129.

    PubMed  Google Scholar 

  103. Sawamura N, Gong JS, Chang TY, Yanagisawa K, Michikawa M. Promotion of tau phosphorylation by MAP kinase Erk1/2 is accompanied by reduced cholesterol level in detergentinsoluble membrane fraction in Niemann-Pick C1-deficient cells. J Neurochem 2003, 84: 1086–1096.

    PubMed  CAS  Google Scholar 

  104. Bu B, Li J, Davies P, Vincent I. Deregulation of cdk5, hyperphosphorylation, and cytoskeletal pathology in the Niemann-Pick type C murine model. J Neurosci 2002, 22: 6515–6525.

    PubMed  CAS  Google Scholar 

  105. Amtul Z, Uhrig M, Rozmahel RF, Beyreuther K. Structural insight into the differential effects of omega-3 and omega-6 fatty acids on the production of Abeta peptides and amyloid plaques. J Biol Chem 2011, 286: 6100–6107.

    PubMed Central  PubMed  CAS  Google Scholar 

  106. Lebbadi M, Julien C, Phivilay A, Tremblay C, Emond V, Kang JX, et al. Endogenous conversion of omega-6 into omega-3 fatty acids improves neuropathology in an animal model of Alzheimer’s disease. J Alzheimers Dis 2011, 27: 853–869.

    PubMed  CAS  Google Scholar 

  107. Martin V, Fabelo N, Santpere G, Puig B, Marin R, Ferrer I, et al. Lipid alterations in lipid rafts from Alzheimer’s disease human brain cortex. J Alzheimers Dis 2010, 19: 489–502.

    PubMed  CAS  Google Scholar 

  108. Fraser T, Tayler H, Love S. Fatty acid composition of frontal, temporal and parietal neocortex in the normal human brain and in Alzheimer’s disease. Neurochem Res 2010, 35: 503–513.

    PubMed  CAS  Google Scholar 

  109. Han X, D MH, McKeel DW, Jr., Kelley J, Morris JC. Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer’s disease: potential role in disease pathogenesis. J Neurochem 2002, 82: 809–818.

    PubMed  CAS  Google Scholar 

  110. Cutler RG, Kelly J, Storie K, Pedersen WA, Tammara A, Hatanpaa K, et al. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc Natl Acad Sci U S A 2004, 101: 2070–2075.

    PubMed Central  PubMed  CAS  Google Scholar 

  111. He X, Huang Y, Li B, Gong CX, Schuchman EH. Deregulation of sphingolipid metabolism in Alzheimer’s disease. Neurobiol Aging 2010, 31: 398–408.

    PubMed Central  PubMed  CAS  Google Scholar 

  112. Satoi H, Tomimoto H, Ohtani R, Kitano T, Kondo T, Watanabe M, et al. Astroglial expression of ceramide in Alzheimer’s disease brains: a role during neuronal apoptosis. Neuroscience 2005, 130: 657–666.

    PubMed  CAS  Google Scholar 

  113. Hejazi L, Wong JW, Cheng D, Proschogo N, Ebrahimi D, Garner B, et al. Mass and relative elution time profiling: twodimensional analysis of sphingolipids in Alzheimer’s disease brains. Biochem J 2011, 438: 165–175.

    PubMed  CAS  Google Scholar 

  114. Lee JT, Xu J, Lee JM, Ku G, Han X, Yang DI, et al. Amyloidbeta peptide induces oligodendrocyte death by activating the neutral sphingomyelinase-ceramide pathway. J Cell Biol 2004, 164: 123–131.

    PubMed Central  PubMed  CAS  Google Scholar 

  115. Patil S, Melrose J, Chan C. Involvement of astroglial ceramide in palmitic acid-induced Alzheimer-like changes in primary neurons. Eur J Neurosci 2007, 26: 2131–2141.

    PubMed  Google Scholar 

  116. Puglielli L, Ellis BC, Saunders AJ, Kovacs DM. Ceramide stabilizes beta-site amyloid precursor protein-cleaving enzyme 1 and promotes amyloid beta-peptide biogenesis. J Biol Chem 2003, 278: 19777–19783.

    PubMed  CAS  Google Scholar 

  117. Kracun I, Kalanj S, Talan-Hranilovic J, Cosovic C. Cortical distribution of gangliosides in Alzheimer’s disease. Neurochem Int 1992, 20: 433–438.

    PubMed  CAS  Google Scholar 

  118. Svennerholm L, Gottfries CG. Membrane lipids, selectively diminished in Alzheimer brains, suggest synapse loss as a primary event in early-onset form (type I) and demyelination in late-onset form (type II). J Neurochem 1994, 62: 1039–1047.

    PubMed  CAS  Google Scholar 

  119. Svennerholm L, Bostrom K, Jungbjer B, Olsson L. Membrane lipids of adult human brain: lipid composition of frontal and temporal lobe in subjects of age 20 to 100 years. J Neurochem 1994, 63: 1802–1811.

    PubMed  CAS  Google Scholar 

  120. Crino PB, Ullman MD, Vogt BA, Bird ED, Volicer L. Brain gangliosides in dementia of the Alzheimer type. Arch Neurol 1989, 46: 398–401.

    PubMed  CAS  Google Scholar 

  121. Han X, Cheng H, Fryer JD, Fagan AM, Holtzman DM. Novel role for apolipoprotein E in the central nervous system. Modulation of sulfatide content. J Biol Chem 2003, 278: 8043–8051.

    CAS  Google Scholar 

  122. Yuki D, Sugiura Y, Zaima N, Akatsu H, Hashizume Y, Yamamoto T, et al. Hydroxylated and non-hydroxylated sulfatide are distinctly distributed in the human cerebral cortex. Neuroscience 2011, 193: 44–53.

    PubMed  CAS  Google Scholar 

  123. Cheng H, Xu J, McKeel DW, Jr., Han X. Specificity and potential mechanism of sulfatide deficiency in Alzheimer’s disease: an electrospray ionization mass spectrometric study. Cell Mol Biol (Noisy-le-grand) 2003, 49: 809–818.

    CAS  Google Scholar 

  124. Li H, Evin G, Hill AF, Hung YH, Bush AI, Garner B. Dissociation of ERK signalling inhibition from the antiamyloidogenic action of synthetic ceramide analogues. Clin Sci (Lond) 2012, 122: 409–419.

    CAS  Google Scholar 

  125. Colombaioni L, Garcia-Gil M. Sphingolipid metabolites in neural signalling and function. Brain Res Brain Res Rev 2004, 46: 328–355.

    PubMed  CAS  Google Scholar 

  126. Hagen N, Hans M, Hartmann D, Swandulla D, van Echten-Deckert G. Sphingosine-1-phosphate links glycosphingolipid metabolism to neurodegeneration via a calpain-mediated mechanism. Cell Death Differ 2011, 18: 1356–1365.

    PubMed Central  PubMed  CAS  Google Scholar 

  127. Geekiyanage H, Upadhye A, Chan C. Inhibition of serine palmitoyltransferase reduces Abeta and tau hyperphosphorylation in a murine model: a safe therapeutic strategy for Alzheimer’s disease. Neurobiol Aging 2013, 34: 2037–2051.

    PubMed  CAS  Google Scholar 

  128. Nitsch R, Pittas A, Blusztajn JK, Slack BE, Growdon JH, Wurtman RJ. Alterations of phospholipid metabolites in postmortem brain from patients with Alzheimer’s disease. Ann N Y Acad Sci 1991, 640: 110–113.

    PubMed  CAS  Google Scholar 

  129. Mulder C, Wahlund LO, Teerlink T, Blomberg M, Veerhuis R, van Kamp GJ, et al. Decreased lysophosphatidylcholine/phosphatidylcholine ratio in cerebrospinal fluid in Alzheimer’s disease. J Neural Transm 2003, 110: 949–955.

    PubMed  CAS  Google Scholar 

  130. Stokes CE, Hawthorne JN. Reduced phosphoinositide concentrations in anterior temporal cortex of Alzheimerdiseased brains. J Neurochem 1987, 48: 1018–1021.

    PubMed  CAS  Google Scholar 

  131. Soderberg M, Edlund C, Kristensson K, Dallner G. Fatty acid composition of brain phospholipids in aging and in Alzheimer’s disease. Lipids 1991, 26: 421–425.

    PubMed  CAS  Google Scholar 

  132. Wells K, Farooqui AA, Liss L, Horrocks LA. Neural membrane phospholipids in Alzheimer disease. Neurochem Res 1995, 20: 1329–1333.

    PubMed  CAS  Google Scholar 

  133. Guan Z, Wang Y, Cairns NJ, Lantos PL, Dallner G, Sindelar PJ. Decrease and structural modifications of phosphatidylethanolamine plasmalogen in the brain with Alzheimer disease. J Neuropathol Exp Neurol 1999, 58: 740–747.

    PubMed  CAS  Google Scholar 

  134. Igarashi M, Ma K, Gao F, Kim HW, Rapoport SI, Rao JS. Disturbed choline plasmalogen and phospholipid fatty acid concentrations in Alzheimer’s disease prefrontal cortex. J Alzheimers Dis 2011, 24: 507–517.

    PubMed Central  PubMed  CAS  Google Scholar 

  135. Farooqui AA. Studies on plasmalogen-selective phospholipase A2 in brain. Mol Neurobiol 2010, 41: 267–273.

    PubMed  CAS  Google Scholar 

  136. Vane JR, Bakhle YS, Botting RM. Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol 1998, 38: 97–120.

    PubMed  CAS  Google Scholar 

  137. Farooqui AA, Horrocks LA, Farooqui T. Interactions between neural membrane glycerophospholipid and sphingolipid mediators: a recipe for neural cell survival or suicide. J Neurosci Res 2007, 85: 1834–1850.

    PubMed  CAS  Google Scholar 

  138. Pasinetti GM, Aisen PS. Cyclooxygenase-2 expression is increased in frontal cortex of Alzheimer’s disease brain. Neuroscience 1998, 87: 319–324.

    PubMed  CAS  Google Scholar 

  139. Qin W, Ho L, Pompl PN, Peng Y, Zhao Z, Xiang Z, et al. Cyclooxygenase (COX)-2 and COX-1 potentiate beta-amyloid peptide generation through mechanisms that involve gammasecretase activity. J Biol Chem 2003, 278: 50970–50977.

    PubMed  CAS  Google Scholar 

  140. Halliday G, Robinson SR, Shepherd C, Kril J. Alzheimer’s disease and inflammation: a review of cellular and therapeutic mechanisms. Clin Exp Pharmacol Physiol 2000, 27: 1–8.

    PubMed  CAS  Google Scholar 

  141. Heneka MT, O’Banion MK. Inflammatory processes in Alzheimer’s disease. J Neuroimmunol 2007, 184: 69–91.

    PubMed  CAS  Google Scholar 

  142. Hong S, Gronert K, Devchand PR, Moussignac RL, Serhan CN. Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. Autacoids in anti-inflammation. J Biol Chem 2003, 278: 14677–14687.

    CAS  Google Scholar 

  143. Marcheselli VL, Hong S, Lukiw WJ, Tian XH, Gronert K, Musto A, et al. Novel docosanoids inhibit brain ischemiareperfusion-mediated leukocyte infiltration and proinflammatory gene expression. J Biol Chem 2003, 278: 43807–43817.

    PubMed  CAS  Google Scholar 

  144. Serhan CN, Yang R, Martinod K, Kasuga K, Pillai PS, Porter TF, et al. Maresins: novel macrophage mediators with potent antiinflammatory and proresolving actions. J Exp Med 2009, 206: 15–23.

    PubMed Central  PubMed  CAS  Google Scholar 

  145. Lukiw WJ, Cui JG, Marcheselli VL, Bodker M, Botkjaer A, Gotlinger K, et al. A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J Clin Invest 2005, 115: 2774–2783.

    PubMed Central  PubMed  CAS  Google Scholar 

  146. Bazan NG. Neuroprotectin D1-mediated anti-inflammatory and survival signaling in stroke, retinal degenerations, and Alzheimer’s disease. J Lipid Res 2009, 50 Suppl: S400–405.

    Google Scholar 

  147. Bazan NG. Cellular and molecular events mediated by docosahexaenoic acid-derived neuroprotectin D1 signaling in photoreceptor cell survival and brain protection. Prostaglandins Leukot Essent Fatty Acids 2009, 81: 205–211.

    PubMed Central  PubMed  CAS  Google Scholar 

  148. Zhao Y, Calon F, Julien C, Winkler JW, Petasis NA, Lukiw WJ, et al. Docosahexaenoic acid-derived neuroprotectin D1 induces neuronal survival via secretase- and PPARgamma-mediated mechanisms in Alzheimer’s disease models. PLoS One 2011, 6: e15816.

    PubMed Central  PubMed  CAS  Google Scholar 

  149. Farooqui A, Horrocks L. Glycerophospholipids in the Brain: Phospholipases A2 in Neurological Disorders. New York: Springer. 2007: 1–394.

    Google Scholar 

  150. Ikonomovic MD, Abrahamson EE, Uz T, Manev H, Dekosky ST. Increased 5-lipoxygenase immunoreactivity in the hippocampus of patients with Alzheimer’s disease. J Histochem Cytochem 2008, 56: 1065–1073.

    PubMed Central  PubMed  CAS  Google Scholar 

  151. Sayas CL, Moreno-Flores MT, Avila J, Wandosell F. The neurite retraction induced by lysophosphatidic acid increases Alzheimer’s disease-like Tau phosphorylation. J Biol Chem 1999, 274: 37046–37052.

    PubMed  CAS  Google Scholar 

  152. Sayas CL, Avila J, Wandosell F. Regulation of neuronal cytoskeleton by lysophosphatidic acid: role of GSK-3. Biochim Biophys Acta 2002, 1582: 144–153.

    PubMed  CAS  Google Scholar 

  153. Ryan SD, Whitehead SN, Swayne LA, Moffat TC, Hou W, Ethier M, et al. Amyloid-beta42 signals tau hyperphosphorylation and compromises neuronal viability by disrupting alkylacylglycerophosphocholine metabolism. Proc Natl Acad Sci U S A 2009, 106: 20936–20941.

    PubMed Central  PubMed  CAS  Google Scholar 

  154. Hesse C, Larsson H, Fredman P, Minthon L, Andreasen N, Davidsson P, et al. Measurement of apolipoprotein E (apoE) in cerebrospinal fluid. Neurochem Res 2000, 25: 511–517.

    PubMed  CAS  Google Scholar 

  155. Gupta VB, Laws SM, Villemagne VL, Ames D, Bush AI, Ellis KA, et al. Plasma apolipoprotein E and Alzheimer disease risk: the AIBL study of aging. Neurology 2011, 76: 1091–1098.

    PubMed  CAS  Google Scholar 

  156. Cramer PE, Cirrito JR, Wesson DW, Lee CY, Karlo JC, Zinn AE, et al. ApoE-directed therapeutics rapidly clear betaamyloid and reverse deficits in AD mouse models. Science 2012, 335: 1503–1506.

    PubMed Central  PubMed  CAS  Google Scholar 

  157. Chawla A, Boisvert WA, Lee CH, Laffitte BA, Barak Y, Joseph SB, et al. A PPAR gamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell 2001, 7: 161–171.

    PubMed  CAS  Google Scholar 

  158. Riddell DR, Zhou H, Comery TA, Kouranova E, Lo CF, Warwick HK, et al. The LXR agonist TO901317 selectively lowers hippocampal Abeta42 and improves memory in the Tg2576 mouse model of Alzheimer’s disease. Mol Cell Neurosci 2007, 34: 621–628.

    PubMed  CAS  Google Scholar 

  159. Vanmierlo T, Rutten K, Dederen J, Bloks VW, van Varkvan der Zee LC, Kuipers F, et al. Liver X receptor activation restores memory in aged AD mice without reducing amyloid. Neurobiol Aging 2011, 32: 1262–1272.

    PubMed  CAS  Google Scholar 

  160. Bales KR, Verina T, Dodel RC, Du Y, Altstiel L, Bender M, et al. Lack of apolipoprotein E dramatically reduces amyloid beta-peptide deposition. Nat Genet 1997, 17: 263–264.

    PubMed  CAS  Google Scholar 

  161. Mahley RW, Weisgraber KH, Huang Y. Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer’s disease. Proc Natl Acad Sci U S A 2006, 103: 5644–5651.

    PubMed Central  PubMed  CAS  Google Scholar 

  162. Chen HK, Liu Z, Meyer-Franke A, Brodbeck J, Miranda RD, McGuire JG, et al. Small molecule structure correctors abolish detrimental effects of apolipoprotein E4 in cultured neurons. J Biol Chem 2012, 287: 5253–5266.

    PubMed Central  PubMed  CAS  Google Scholar 

  163. Fonseca AC, Resende R, Oliveira CR, Pereira CM. Cholesterol and statins in Alzheimer’s disease: current controversies. Exp Neurol 2010, 223: 282–293.

    PubMed  CAS  Google Scholar 

  164. Kandiah N, Feldman HH. Therapeutic potential of statins in Alzheimer’s disease. J Neurol Sci 2009, 283: 230–234.

    PubMed  CAS  Google Scholar 

  165. Menge T, Hartung HP, Stuve O. Statins—a cure-all for the brain? Nat Rev Neurosci 2005, 6: 325–331.

    PubMed  CAS  Google Scholar 

  166. Jick H, Zornberg GL, Jick SS, Seshadri S, Drachman DA. Statins and the risk of dementia. Lancet 2000, 356: 1627–1631.

    PubMed  CAS  Google Scholar 

  167. Hajjar I, Schumpert J, Hirth V, Wieland D, Eleazer GP. The impact of the use of statins on the prevalence of dementia and the progression of cognitive impairment. J Gerontol A Biol Sci Med Sci 2002, 57: M414–418.

    PubMed  Google Scholar 

  168. Rockwood K, Kirkland S, Hogan DB, MacKnight C, Merry H, Verreault R, et al. Use of lipid-lowering agents, indication bias, and the risk of dementia in community-dwelling elderly people. Arch Neurol 2002, 59: 223–227.

    PubMed  Google Scholar 

  169. Rodriguez EG, Dodge HH, Birzescu MA, Stoehr GP, Ganguli M. Use of lipid-lowering drugs in older adults with and without dementia: a community-based epidemiological study. J Am Geriatr Soc 2002, 50: 1852–1856.

    PubMed  Google Scholar 

  170. Dufouil C, Richard F, Fievet N, Dartigues JF, Ritchie K, Tzourio C, et al. APOE genotype, cholesterol level, lipidlowering treatment, and dementia: the Three-City Study. Neurology 2005, 64: 1531–1538.

    PubMed  CAS  Google Scholar 

  171. Haag MD, Hofman A, Koudstaal PJ, Stricker BH, Breteler MM. Statins are associated with a reduced risk of Alzheimer disease regardless of lipophilicity. The Rotterdam Study. J Neurol Neurosurg Psychiatry 2009, 80: 13–17.

    PubMed  CAS  Google Scholar 

  172. Piomelli D, Astarita G, Rapaka R. A neuroscientist’s guide to lipidomics. Nat Rev Neurosci 2007, 8: 743–754.

    PubMed  CAS  Google Scholar 

  173. Klose C, Surma MA, Simons K. Organellar lipidomics—background and perspectives. Curr Opin Cell Biol 2013, 25: 406–413.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Zhang, J. Lipid metabolism in Alzheimer’s disease. Neurosci. Bull. 30, 331–345 (2014). https://doi.org/10.1007/s12264-013-1410-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-013-1410-3

Keywords

Navigation