Neuroscience Bulletin

, Volume 29, Issue 4, pp 411–420 | Cite as

Signaling pathways that regulate axon regeneration

Review

Abstract

Neurons in the mammalian central nervous system (CNS) cannot regenerate axons after injury. in contrast, neurons in the mammalian peripheral nervous system and in some non-mammalian models, such as C. elegans and Drosophila, are able to regrow axons. Understanding the molecular mechanisms by which these neurons support axon regeneration will help us find ways to enhance mammalian CNS axon regeneration. Here, recent studies in which signaling pathways regulating naturally-occurring axon regeneration that have been identified are reviewed, focusing on how these pathways control gene expression and growth-cone function during axon regeneration.

Keywords

axon regeneration axonal growth signal transduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Park KK, Liu K, Hu Y, Smith PD, Wang C, Cai B, et al. Promoting axon regeneration in the adult CNS by modulation of the PTEN/mToR pathway. Science 2008, 322: 963–966.PubMedCrossRefGoogle Scholar
  2. [2]
    Liu K, Lu Y, Lee JK, Samara R, Willenberg R, Sears-Kraxberger I, et al. PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat Neurosci 2010, 13: 1075–1081.PubMedCrossRefGoogle Scholar
  3. [3]
    Moore DL, Blackmore MG, Hu Y, Kaestner KH, Bixby JL, Lemmon VP, et al. KLF family members regulate intrinsic axon regeneration ability. Science 2009, 326: 298–301.PubMedCrossRefGoogle Scholar
  4. [4]
    Sun F, Park KK, Belin S, Wang D, Lu T, Chen G, et al. Sustained axon regeneration induced by co-deletion of PTEN and SoCS3. Nature 2011, 480: 372–375.PubMedCrossRefGoogle Scholar
  5. [5]
    Smith PD, Sun F, Park KK, Cai B, Wang C, Kuwako K, et al. SoCS3 deletion promotes optic nerve regeneration in vivo. Neuron 2009, 64: 617–623.PubMedCrossRefGoogle Scholar
  6. [6]
    Wang Z, Jin Y. Genetic dissection of axon regeneration. Curr opin Neurobiol 2011, 21: 189–196.PubMedCrossRefGoogle Scholar
  7. [7]
    Chen L, Chisholm AD. Axon regeneration mechanisms: insights from C. elegans. Trends Cell Biol 2011, 21: 577–584.PubMedCrossRefGoogle Scholar
  8. [8]
    El Bejjani R, Hammarlund M. Neural regeneration in Caenorhabditis elegans. Annu Rev Genet 2012, 46: 499–513.PubMedCrossRefGoogle Scholar
  9. [9]
    Hammarlund M, Nix P, Hauth L, Jorgensen EM, Bastiani M. Axon regeneration requires a conserved MAP kinase pathway. Science 2009, 323: 802–806.PubMedCrossRefGoogle Scholar
  10. [10]
    Yanik MF, Cinar H, Cinar HN, Chisholm AD, Jin Y, Ben-Yakar A. Neurosurgery: functional regeneration after laser axotomy. Nature 2004, 432: 822.PubMedCrossRefGoogle Scholar
  11. [11]
    Byrne AB, Edwards TJ, Hammarlund M. In vivo laser axotomy in C. elegans. J Vis Exp 2011, (51). e2707. DOI: 10. 3791/2707.Google Scholar
  12. [12]
    Stone MC, Nguyen MM, Tao J, Allender DL, Rolls MM. Global up-regulation of microtubule dynamics and polarity reversal during regeneration of an axon from a dendrite. Mol Biol Cell 2010, 21: 767–777.PubMedCrossRefGoogle Scholar
  13. [13]
    O’Brien GS, Rieger S, Martin SM, Cavanaugh AM, Portera-Cailliau C, Sagasti A. Two-photon axotomy and time-lapse confocal imaging in live zebrafish embryos. J Vis Exp 2009. (24). 1129. DOI: 10.3791/1129.Google Scholar
  14. [14]
    Bradke F, Fawcett JW, Spira ME. Assembly of a new growth cone after axotomy: the precursor to axon regeneration. Nat Rev Neurosci 2012, 13: 183–193.PubMedGoogle Scholar
  15. [15]
    Hur EM, Saijilafu, Zhou FQ. Growing the growth cone: remodeling the cytoskeleton to promote axon regeneration. Trends Neurosci 2012, 35: 164–174.PubMedCrossRefGoogle Scholar
  16. [16]
    Yan D, Wu Z, Chisholm AD, Jin Y. The DLK-1 kinase promotes mRNA stability and local translation in C. elegans synapses and axon regeneration. Cell 2009, 138: 1005–1018.PubMedCrossRefGoogle Scholar
  17. [17]
    Ghosh-Roy A, Goncharov A, Jin Y, Chisholm AD. Kinesin-13 and tubulin posttranslational modifications regulate microtubule growth in axon regeneration. Dev Cell 2012, 23: 716–728.PubMedCrossRefGoogle Scholar
  18. [18]
    Chen L, Wang Z, Ghosh-Roy A, Hubert T, Yan D, O’Rourke S, et al. Axon regeneration pathways identified by systematic genetic screening in C. elegans. Neuron 2011, 71: 1043–1057.PubMedCrossRefGoogle Scholar
  19. [19]
    Ghosh-Roy A, Wu Z, Goncharov A, Jin Y, Chisholm AD. Calcium and cyclic AMP promote axonal regeneration in Caenorhabditis elegans and require DLK-1 kinase. J Neurosci 2010, 30: 3175–3183.PubMedCrossRefGoogle Scholar
  20. [20]
    Pinan-Lucarre B, Gabel CV, Reina CP, Hulme SE, Shevkoplyas SS, Slone RD, et al. The core apoptotic executioner proteins CED-3 and CED-4 promote initiation of neuronal regeneration in Caenorhabditis elegans. PLoS Biol 2012, 10: e1001331.PubMedCrossRefGoogle Scholar
  21. [21]
    Nix P, Hisamoto N, Matsumoto K, Bastiani M. Axon regeneration requires coordinate activation of p38 and JNK MAPK pathways. Proc Natl Acad Sci U S A 2011, 108: 10738–10743.PubMedCrossRefGoogle Scholar
  22. [22]
    Leyssen M, Ayaz D, Hebert SS, Reeve S, De Strooper B, Hassan BA. Amyloid precursor protein promotes postdevelopmental neurite arborization in the Drosophila brain. EMBo J 2005, 24: 2944–2955.PubMedCrossRefGoogle Scholar
  23. [23]
    Xiong X, Collins CA. A conditioning lesion protects axons from degeneration via the Wallenda/DLK MAP kinase signaling cascade. J Neurosci 2012, 32: 610–615.PubMedCrossRefGoogle Scholar
  24. [24]
    Ayaz D, Leyssen M, Koch M, Yan J, Srahna M, Sheeba V, et al. Axonal injury and regeneration in the adult brain of Drosophila. J Neurosci 2008, 28: 6010–6021.PubMedCrossRefGoogle Scholar
  25. [25]
    Barnat M, Enslen H, Propst F, Davis RJ, Soares S, Nothias F. Distinct roles of c-Jun N-terminal kinase isoforms in neurite initiation and elongation during axonal regeneration. J Neurosci 2010, 30: 7804–7816.PubMedCrossRefGoogle Scholar
  26. [26]
    Chang L, Jones Y, Ellisman MH, Goldstein LS, Karin M. JNK1 is required for maintenance of neuronal microtubules and controls phosphorylation of microtubule-associated proteins. Dev Cell 2003, 4: 521–533.PubMedCrossRefGoogle Scholar
  27. [27]
    Ciani L, Salinas PC. c-Jun N-terminal kinase (JNK) cooperates with Gsk3beta to regulate Dishevelled-mediated microtubule stability. BMC Cell Biol 2007, 8: 27.PubMedCrossRefGoogle Scholar
  28. [28]
    Tararuk T, Ostman N, Li W, Bjorkblom B, Padzik A, Zdrojewska J, et al. JNK1 phosphorylation of SCG10 determines microtubule dynamics and axodendritic length. J Cell Biol 2006, 173: 265–277.PubMedCrossRefGoogle Scholar
  29. [29]
    Li C, Hisamoto N, Nix P, Kanao S, Mizuno T, Bastiani M, et al. The growth factor SVH-1 regulates axon regeneration in C. elegans via the JNK MAPK cascade. Nat Neurosci 2012, 15: 551–557.PubMedCrossRefGoogle Scholar
  30. [30]
    Pastuhov Si, Fujiki K, Nix P, Kanao S, Bastiani M, Matsumoto K, et al. Endocannabinoid-Goalpha signalling inhibits axon regeneration in Caenorhabditis elegans by antagonizing Gqalpha-PKC-JNK signalling. Nat Commun 2012, 3: 1136.PubMedCrossRefGoogle Scholar
  31. [31]
    El Bejjani R, Hammarlund M. Notch signaling inhibits axon regeneration. Neuron 2012, 73: 268–278.PubMedCrossRefGoogle Scholar
  32. [32]
    Veldman MB, Bemben MA, Thompson RC, Goldman D. Gene expression analysis of zebrafish retinal ganglion cells during optic nerve regeneration identifies KLF6a and KLF7a as important regulators of axon regeneration. Dev Biol 2007, 312: 596–612.PubMedCrossRefGoogle Scholar
  33. [33]
    Veldman MB, Bemben MA, Goldman D. Tuba1a gene expression is regulated by KLF6/7 and is necessary for CNS development and regeneration in zebrafish. Mol Cell Neurosci 2010, 43: 370–383.PubMedCrossRefGoogle Scholar
  34. [34]
    Neumann S, Woolf CJ. Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron 1999, 23: 83–91.PubMedCrossRefGoogle Scholar
  35. [35]
    Neumann S, Skinner K, Basbaum AI. Sustaining intrinsic growth capacity of adult neurons promotes spinal cord regeneration. Proc Natl Acad Sci U S A 2005, 102: 16848–16852.PubMedCrossRefGoogle Scholar
  36. [36]
    Ylera B, Erturk A, Hellal F, Nadrigny F, Hurtado A, Tahirovic S, et al. Chronically CNS-injured adult sensory neurons gain regenerative competence upon a lesion of their peripheral axon. Curr Biol 2009, 19: 930–936.PubMedCrossRefGoogle Scholar
  37. [37]
    van Kesteren RE, Mason MR, Macgillavry HD, Smit AB, Verhaagen J. A gene network perspective on axonal regeneration. Front Mol Neurosci 2011, 4: 46.PubMedGoogle Scholar
  38. [38]
    Saijilafu, Hur EM, Zhou FQ. Genetic dissection of axon regeneration via in vivo electroporation of adult mouse sensory neurons. Nat Commun 2011, 2: 543.PubMedCrossRefGoogle Scholar
  39. [39]
    Saijilafu, Zhou FQ. Genetic study of axon regeneration with cultured adult dorsal root ganglion neurons. J Vis Exp 2012, (66): e4141.Google Scholar
  40. [40]
    Liu RY, Snider WD. Different signaling pathways mediate regenerative versus developmental sensory axon growth. J Neurosci 2001, 21: RC164.PubMedGoogle Scholar
  41. [41]
    Zhou FQ, Walzer M, Wu YH, Zhou J, Dedhar S, Snider WD. Neurotrophins support regenerative axon assembly over CSPGs by an ECM-integrin-independent mechanism. J Cell Sci 2006, 119: 2787–2796.PubMedCrossRefGoogle Scholar
  42. [42]
    Campenot RB. Development of sympathetic neurons in compartmentalized cultures. II. Local control of neurite survival by nerve growth factor. Dev Biol 1982, 93: 13–21.PubMedCrossRefGoogle Scholar
  43. [43]
    Campenot RB. Development of sympathetic neurons in compartmentalized cultures. II Local control of neurite growth by nerve growth factor. Dev Biol 1982, 93: 1–12.PubMedCrossRefGoogle Scholar
  44. [44]
    Taylor AM, Jeon NL. Microfluidic and compartmentalized platforms for neurobiological research. Crit Rev Biomed Eng 2011, 39: 185–200.PubMedCrossRefGoogle Scholar
  45. [45]
    Hur EM, Yang IH, Kim DH, Byun J, Saijilafu, Xu WL, et al. Engineering neuronal growth cones to promote axon regeneration over inhibitory molecules. Proc Natl Acad Sci U S A 2011, 108(12): 5057–5062.PubMedCrossRefGoogle Scholar
  46. [46]
    Markus A, Zhong J, Snider WD. Raf and akt mediate distinct aspects of sensory axon growth. Neuron 2002, 35: 65–76.PubMedCrossRefGoogle Scholar
  47. [47]
    Atwal JK, Massie B, Miller FD, Kaplan DR. The TrkB-Shc site signals neuronal survival and local axon growth via MEK and Pi3-kinase. Neuron 2000, 27: 265–277.PubMedCrossRefGoogle Scholar
  48. [48]
    Smith DS, Skene JH. A transcription-dependent switch controls competence of adult neurons for distinct modes of axon growth. J Neurosci 1997, 17: 646–658.PubMedGoogle Scholar
  49. [49]
    Diamond J, Coughlin M, Macintyre L, Holmes M, Visheau B. Evidence that endogenous beta nerve growth factor is responsible for the collateral sprouting, but not the regeneration, of nociceptive axons in adult rats. Proc Natl Acad Sci U S A 1987, 84: 6596–6600.PubMedCrossRefGoogle Scholar
  50. [50]
    Lentz Si, Miner JH, Sanes JR, Snider WD. Distribution of the ten known laminin chains in the pathways and targets of developing sensory axons. J Comp Neurol 1997, 378: 547–561.PubMedCrossRefGoogle Scholar
  51. [51]
    Werner A, Willem M, Jones LL, Kreutzberg GW, Mayer U, Raivich G. Impaired axonal regeneration in alpha7 integrindeficient mice. J Neurosci 2000, 20: 1822–1830.PubMedGoogle Scholar
  52. [52]
    Hur EM, Saijilafu, Lee BD, Kim SJ, Xu WL, Zhou FQ. GSK3 controls axon growth via CLASP-mediated regulation of growth cone microtubules. Genes Dev 2011, 25: 1968–1981.PubMedCrossRefGoogle Scholar
  53. [53]
    Jiang K, Akhmanova A. Microtubule tip-interacting proteins: a view from both ends. Curr opin Cell Biol 2011, 23: 94–101.PubMedCrossRefGoogle Scholar
  54. [54]
    Janke C, Bulinski JC. Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat Rev Mol Cell Biol 2011, 12: 773–786.PubMedCrossRefGoogle Scholar
  55. [55]
    Cho Y, Cavalli V. HDAC5 is a novel injury-regulated tubulin deacetylase controlling axon regeneration. EMBo J 2012, 31: 3063–3078.PubMedCrossRefGoogle Scholar
  56. [56]
    Tedeschi A. Tuning the orchestra: transcriptional pathways controlling axon regeneration. Front Mol Neurosci 2011, 4: 60.PubMedGoogle Scholar
  57. [57]
    Liu CM, Hur EM, Zhou FQ. Coordinating gene expression and axon assembly to control axon growth: potential role of GSK3 signaling. Front Mol Neurosci 2012, 5: 3.PubMedGoogle Scholar
  58. [58]
    Eickholt BJ, Ahmed Ai, Davies M, Papakonstanti EA, Pearce W, Starkey ML, et al. Control of axonal growth and regeneration of sensory neurons by the p110delta Pi 3-kinase. PLoS one 2007, 2: e869.PubMedCrossRefGoogle Scholar
  59. [59]
    Shin JE, Cho Y, Beirowski B, Milbrandt J, Cavalli V, DiAntonio A. Dual leucine zipper kinase is required for retrograde injury signaling and axonal regeneration. Neuron 2012, 74: 1015–1022.PubMedCrossRefGoogle Scholar
  60. [60]
    Itoh A, Horiuchi M, Bannerman P, Pleasure D, Itoh T. Impaired regenerative response of primary sensory neurons in ZPK/DLK gene-trap mice. Biochem Biophys Res Commun 2009, 383: 258–262.PubMedCrossRefGoogle Scholar
  61. [61]
    Hirai S, Cui de F, Miyata T, Ogawa M, Kiyonari H, Suda Y, et al. The c-Jun N-terminal kinase activator dual leucine zipper kinase regulates axon growth and neuronal migration in the developing cerebral cortex. J Neurosci 2006, 26: 11992–12002.PubMedCrossRefGoogle Scholar
  62. [62]
    Selvaraj BT, Frank N, Bender FL, Asan E, Sendtner M. Local axonal function of STAT3 rescues axon degeneration in the pmn model of motoneuron disease. J Cell Biol 2012, 199: 437–451.PubMedCrossRefGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Orthopaedic SurgeryThe Johns Hopkins UniversityBaltimoreUSA
  2. 2.The Solomon H. Snyder Department of NeuroscienceThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations