Neuroscience Bulletin

, Volume 29, Issue 4, pp 509–516

Contrasting neuropathology and functional recovery after spinal cord injury in developing and adult rats

Original Article

DOI: 10.1007/s12264-013-1356-5

Cite this article as:
Yuan, Q., Su, H., Chiu, K. et al. Neurosci. Bull. (2013) 29: 509. doi:10.1007/s12264-013-1356-5


Conflicting findings exist regarding the link between functional recovery and the regrowth of spinal tracts across the lesion leading to the restoration of functional contacts. In the present study, we investigated whether functional locomotor recovery was attributable to anatomical regeneration at postnatal day 1 (PN1), PN7, PN14 and in adult rats two months after transection injury at the tenth thoracic segment of the spinal cord. The Basso, Beattie, and Bresnahan scores showed that transection led to a failure of hindlimb locomotor function in PN14 and adult rats. However, PN1 and PN7 rats showed a significant level of stepping function after complete spinal cord transection. Unexpectedly, unlike the transected PN14 and adult rats in which the spinal cord underwent limited secondary degeneration and showed a scar at the lesion site, the rats transected at PN1 and PN7 showed massive secondary degeneration both anterograde and retrograde, leaving a >5-mm gap between the two stumps. Furthermore, retrograde tracing with fluorogold (FG) also showed that FG did not cross the transection site in PN1 and PN7 rats as in PN14 and adult rats, and re-transection of the cord caused no apparent loss in locomotor performance in the rats transected at PN1. Thus, these three lines of evidence strongly indicated that the functional recovery after transection in neonatal rats is independent of regrowth of spinal tracts across the lesion site. Our results support the notion that the recovery of locomotor function in developing rats may be due to intrinsic adaptations in the spinal circuitry below the lesion that control hindlimb locomotor activity rather than the regrowth of spinal tracts across the lesion. The difference in secondary degeneration between neonatal and adult rats remains to be explored.


neonatal spinal cord injury regeneration functional recovery rat 

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of AnatomyThe University of Hong KongPokfulam, Hong Kong SARChina
  2. 2.School of Chinese Medicine, Faculty of ScienceThe Chinese University of Hong KongShatin, N.T. Hong Kong SARChina
  3. 3.State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical SciencesUniversity of MacauMacao SARChina
  4. 4.State Key Laboratory of Brain and Cognitive SciencesThe University of Hong KongPokfulam, Hong Kong SARChina
  5. 5.Research Center of Reproduction, Development and Growth, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulam, Hong Kong SARChina
  6. 6.GHM Institute of CNS RegenerationJinan UniversityGuangzhouChina

Personalised recommendations