Neuroscience Bulletin

, Volume 29, Issue 2, pp 199–215 | Cite as

Signaling mechanisms regulating myelination in the central nervous system

Review

Abstract

The precise and coordinated production of myelin is essential for proper development and function of the nervous system. Diseases that disrupt myelin, including multiple sclerosis, cause significant functional disability. Current treatment aims to reduce the inflammatory component of the disease, thereby preventing damage resulting from demyelination. However, therapies are not yet available to improve natural repair processes after damage has already occurred. A thorough understanding of the signaling mechanisms that regulate myelin generation will improve our ability to enhance repair. in this review, we summarize the positive and negative regulators of myelination, focusing primarily on central nervous system myelination. Axon-derived signals, extracellular signals from both diffusible factors and the extracellular matrix, and intracellular signaling pathways within myelinating oligodendrocytes are discussed. Much is known about the positive regulators that drive myelination, while less is known about the negative regulators that shift active myelination to myelin maintenance at the appropriate time. Therefore, we also provide new data on potential negative regulators of CNS myelination.

Keywords

myelination signaling oligodendrocyte Akt kinase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Geren BB, Raskind J. Development of the fine structure of the myelin sheath in sciatic nerves of chick embryos. Proc Natl Acad Sci U S A 1953, 39(8): 880–884.PubMedCrossRefGoogle Scholar
  2. [2]
    Nave KA. Myelination and the trophic support of long axons. Nat Rev Neurosci 2010, 11(4): 275–283.PubMedCrossRefGoogle Scholar
  3. [3]
    Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN, et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 2012, 487(7408): 443–448.PubMedCrossRefGoogle Scholar
  4. [4]
    Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AW. Mapping cortical change across the human life span. Nat Neurosci 2003, 6(3): 309–315.PubMedCrossRefGoogle Scholar
  5. [5]
    Rorke LB, Riggs HE. Myelination of the Brain in the Newborn. Philadelphia: Lipincott Company, 1969.Google Scholar
  6. [6]
    Wake H, Lee PR, Fields RD. Control of local protein synthesis and initial events in myelination by action potentials. Science 2011, 333(6049): 1647–1651.PubMedCrossRefGoogle Scholar
  7. [7]
    Zalc B, Fields RD. Do action potentials regulate myelination? Neuroscientist 2000, 6(1): 5–13.PubMedCrossRefGoogle Scholar
  8. [8]
    Taveggia C, Feltri ML, Wrabetz L. Signals to promote myelin formation and repair. Nat Rev Neurol 2010, 6(5): 276–287.PubMedCrossRefGoogle Scholar
  9. [9]
    Donaldson HH, Hoke GW. On the areas of the axis cylinder and medullary sheath as seen in cross sections of the spinal nerves of vertebrates. J Comp Neurol Psychol 1905, 15(1): 1–16.CrossRefGoogle Scholar
  10. [10]
    Friede RL. Control of myelin formation by axon caliber (with a model of the control mechanism). J Comp Neurol 1972, 144(2): 233–252.PubMedCrossRefGoogle Scholar
  11. [11]
    Nave KA. Myelination and support of axonal integrity by glia. Nature 2010, 468(7321): 244–252.PubMedCrossRefGoogle Scholar
  12. [12]
    Nave KA, Trapp BD. Axon-glial signaling and the glial support of axon function. Annu Rev Neurosci 2008, 31: 535–561.PubMedCrossRefGoogle Scholar
  13. [13]
    Bremer J, Baumann F, Tiberi C, Wessig C, Fischer H, Schwarz P, et al. Axonal prion protein is required for peripheral myelin maintenance. Nat Neurosci 2010, 13(3): 310–318.PubMedCrossRefGoogle Scholar
  14. [14]
    Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mörk S, Bö L. Axonal transection in the lesions of multiple sclerosis. N Engl J Med 1998, 338(5): 278–285.PubMedCrossRefGoogle Scholar
  15. [15]
    Trapp BD, Nave KA. Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci 2008, 31(1): 247–269. Retrieved from: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=18558855&retmode=ref&cmd=prlinks.PubMedCrossRefGoogle Scholar
  16. [16]
    Patrikios P, Stadelmann C, Kutzelnigg A, Rauschka H, Schmidbauer M, Laursen H, et al. Remyelination is extensive in a subset of multiple sclerosis patients. Brain 2006, 129(Pt 12): 3165–3172.PubMedCrossRefGoogle Scholar
  17. [17]
    Franklin RJM, Ffrench-Constant C, Edgar JM, Smith KJ. Neuroprotection and repair in multiple sclerosis. Nat Rev Neurol 2012, 8(11): 624–634.PubMedCrossRefGoogle Scholar
  18. [18]
    Franklin RJM. Why does remyelination fail in multiple sclerosis? Nat Rev Neurosci 2002, 3(9): 705–714.PubMedCrossRefGoogle Scholar
  19. [19]
    Fancy SPJ, Chan JR, Baranzini SE, Franklin RJM, Rowitch DH. Myelin regeneration: a recapitulation of development? Annu Rev Neurosci 2011, 34: 21–43.PubMedCrossRefGoogle Scholar
  20. [20]
    Talmage DA. Mechanisms of neuregulin action. Novartis Found Symp 2008, 289: 74–84; discussion84–93.PubMedCrossRefGoogle Scholar
  21. [21]
    Mei L, Xiong WC. Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat Rev Neurosci 2008, 9(6): 437–452.PubMedCrossRefGoogle Scholar
  22. [22]
    Falls DL. Neuregulins: functions, forms, and signaling strategies. Exp Cell Res 2003, 284(1): 14–30.PubMedCrossRefGoogle Scholar
  23. [23]
    Birchmeier C. ErbB receptors and the development of the nervous system. Exp Cell Res 2009, 315(4): 611–618.PubMedCrossRefGoogle Scholar
  24. [24]
    Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001, 2(2): 127–137.PubMedCrossRefGoogle Scholar
  25. [25]
    Olayioye MA, Neve RM, Lane HA, Hynes NE. The ErbB signaling network: receptor heterodimerization in development and cancer. EMBo J 2000, 19(13): 3159–3167.PubMedCrossRefGoogle Scholar
  26. [26]
    Pinkas-Kramarski R, Soussan L, Waterman H, Levkowitz G, Alroy I, Klapper L, et al. Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. EMBo J 1996, 15(10): 2452–2467.PubMedGoogle Scholar
  27. [27]
    Murphy S, Krainock R, Tham M. Neuregulin signaling via erbB receptor assemblies in the nervous system. Mol Neurobiol 2002, 25(1): 67–77.PubMedCrossRefGoogle Scholar
  28. [28]
    Nave KA, Salzer JL. Axonal regulation of myelination by neuregulin 1. Curr opin Neurobiol 2006, 16(5): 492–500.PubMedCrossRefGoogle Scholar
  29. [29]
    Wang JY, Miller SJ, Falls DL. The N-terminal region of neuregulin isoforms determines the accumulation of cell surface and released neuregulin ectodomain. J Biol Chem 2001, 276(4): 2841–2851.PubMedCrossRefGoogle Scholar
  30. [30]
    Yang X, Kuo Y, Devay P, Yu C, Role L. A cysteine-rich isoform of neuregulin controls the level of expression of neuronal nicotinic receptor channels during synaptogenesis. Neuron 1998, 20(2): 255–270.PubMedCrossRefGoogle Scholar
  31. [31]
    Wolpowitz D, Mason TB, Dietrich P, Mendelsohn M, Talmage DA, Role LW. Cysteine-rich domain isoforms of the neuregulin-1 gene are required for maintenance of peripheral synapses. Neuron 2000, 25(1): 79–91.PubMedCrossRefGoogle Scholar
  32. [32]
    Taveggia C, Zanazzi G, Petrylak A, Yano H, Rosenbluth J, Einheber S, et al. Neuregulin-1 type iii determines the ensheathment fate of axons. Neuron 2005, 47(5): 681–694.PubMedCrossRefGoogle Scholar
  33. [33]
    Michailov GV, Sereda MW, Brinkmann BG, Fischer TM, Haug B, Birchmeier C, et al. Axonal neuregulin-1 regulates myelin sheath thickness. Science, 304(5671): 700–703.Google Scholar
  34. [34]
    Chen S, Velardez Mo, Warot X, Yu ZX, Miller SJ, Cros D, et al. Neuregulin 1-erbB signaling is necessary for normal myelination and sensory function. J Neurosci 2006, 26(12): 3079–3086.PubMedCrossRefGoogle Scholar
  35. [35]
    Massa R, Palumbo C, Cavallaro T, Panico MB, Bei R, Terracciano C, et al. Overexpression of ErbB2 and ErbB3 receptors in Schwann cells of patients with Charcot-Marie-tooth disease type 1A. Muscle Nerve 2006, 33(3): 342–349.PubMedCrossRefGoogle Scholar
  36. [36]
    Canoll PD, Musacchio JM, Hardy R, Reynolds R, Marchionni MA, Salzer JL. GGF/neuregulin is a neuronal signal that promotes the proliferation and survival and inhibits the differentiation of oligodendrocyte progenitors. Neuron 1996, 17(2): 229–243.PubMedCrossRefGoogle Scholar
  37. [37]
    Flores Ai, Mallon BS, Matsui T, Ogawa W, Rosenzweig A, Okamoto T, et al. Akt-mediated survival of oligodendrocytes induced by neuregulins. J Neurosci 2000, 20(20): 7622–7630.PubMedGoogle Scholar
  38. [38]
    Vartanian T, Fischbach G, Miller R. Failure of spinal cord oligodendrocyte development in mice lacking neuregulin. Proc Natl Acad Sci U S A 1999, 96(2): 731–735.PubMedCrossRefGoogle Scholar
  39. [39]
    Taveggia C, Thaker P, Petrylak A, Caporaso GL, Toews A, Falls DL, et al. Type iii neuregulin-1 promotes oligodendrocyte myelination. Glia 2008, 56(3): 284–293.PubMedCrossRefGoogle Scholar
  40. [40]
    Park SK, Miller R, Krane I, Vartanian T. The erbB2 gene is required for the development of terminally differentiated spinal cord oligodendrocytes. J Cell Biol 2001, 154(6): 1245–1258.PubMedCrossRefGoogle Scholar
  41. [41]
    Kim JY, Sun Q, Oglesbee M, Yoon So. The role of ErbB2 signaling in the onset of terminal differentiation of oligodendrocytes in vivo. J Neurosci 2003, 23(13): 5561–5571.PubMedGoogle Scholar
  42. [42]
    Sussman CR, Vartanian T, Miller RH. The ErbB4 neuregulin receptor mediates suppression of oligodendrocyte maturation. J Neurosci 2005, 25(24): 5757–5762.PubMedCrossRefGoogle Scholar
  43. [43]
    Roy K, Murtie JC, El-Khodor BF, Edgar N, Sardi SP, Hooks BM, et al. Loss of erbB signaling in oligodendrocytes alters myelin and dopaminergic function, a potential mechanism for neuropsychiatric disorders. Proc Natl Acad Sci U S A 2007, 104(19): 8131–8136.PubMedCrossRefGoogle Scholar
  44. [44]
    Brinkmann BG, Agarwal A, Sereda MW, Garratt AN, Müller T, Wende H, et al. Neuregulin-1/ErbB signaling serves distinct functions in myelination of the peripheral and central nervous system. Neuron 2008, 59(4): 581–595.PubMedCrossRefGoogle Scholar
  45. [45]
    Cannon DM, Walshe M, Dempster E, Collier DA, Marshall N, Bramon E, et al. The association of white matter volume in psychotic disorders with genotypic variation in NRG1, MoG and CNP: a voxel-based analysis in affected individuals and their unaffected relatives. Transl Psychiatry 2012, 2: e167.PubMedCrossRefGoogle Scholar
  46. [46]
    Norton N, Williams HJ, Owen MJ. An update on the genetics of schizophrenia. Curr opin Psychiatry 2006, 19(2): 158–164.PubMedCrossRefGoogle Scholar
  47. [47]
    Cannistraro PA, Makris N, Howard JD, Wedig MM, Hodge SM, Wilhelm S, et al. A diffusion tensor imaging study of white matter in obsessive-compulsive disorder. Depress Anxiety 2007, 24(6): 440–446.PubMedCrossRefGoogle Scholar
  48. [48]
    Gruner P, Vo A, Ikuta T, Mahon K, Peters BD, Malhotra AK, et al. White matter abnormalities in pediatric obsessive-compulsive disorder. Neuropsychopharmacology 2012, 37(12): 2730–2739.PubMedCrossRefGoogle Scholar
  49. [49]
    Hajek T, Carrey N, Alda M. Neuroanatomical abnormalities as risk factors for bipolar disorder. Bipolar Disord 2005, 7(5): 393–403.PubMedCrossRefGoogle Scholar
  50. [50]
    Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S, et al. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 2002, 71(4): 877–892.PubMedCrossRefGoogle Scholar
  51. [51]
    Makinodan M, Rosen KM, Ito S, Corfas G. A critical period for social experience-dependent oligodendrocyte maturation and myelination. Science 2012, 337(6100): 1357–1360.PubMedCrossRefGoogle Scholar
  52. [52]
    Liu J, Dietz K, Deloyht JM, Pedre X, Kelkar D, Kaur J, et al. Impaired adult myelination in the prefrontal cortex of socially isolated mice. Nat Neurosci 2012, 15(12): 1621–1623PubMedCrossRefGoogle Scholar
  53. [53]
    Luo X, Prior M, He W, Hu X, Tang X, Shen W, et al. Cleavage of neuregulin-1 by BACE1 or ADAM10 protein produces differential effects on myelination. J Biol Chem 2011, 286(27): 23967–23974.PubMedCrossRefGoogle Scholar
  54. [54]
    Ohno M, Hiraoka Y, Matsuoka T, Tomimoto H, Takao K, Miyakawa T, et al. Nardilysin regulates axonal maturation and myelination in the central and peripheral nervous system. Nat Neurosci 2009, 12(12): 1506–1513.PubMedCrossRefGoogle Scholar
  55. [55]
    Hu X, Hicks CW, He W, Wong P, Macklin WB, Trapp BD, et al. Bace1 modulates myelination in the central and peripheral nervous system. Nat Neurosci 2006, 9(12): 1520–1525.PubMedCrossRefGoogle Scholar
  56. [56]
    Treiber H, Hagemeyer N, Ehrenreich H, Simons M. BACE1 in central nervous system myelination revisited. Mol Psychiatry 2012, 17(3): 237–239.PubMedCrossRefGoogle Scholar
  57. [57]
    La Marca R, Cerri F, Horiuchi K, Bachi A, Feltri ML, Wrabetz L, et al. TACE (ADAM17) inhibits Schwann cell myelination. Nat Neurosci 2011, 14(7): 857–865.PubMedCrossRefGoogle Scholar
  58. [58]
    Bao J, Wolpowitz D, Role LW, Talmage DA. Back signaling by the Nrg-1 intracellular domain. J Cell Biol 2003, 161(6): 1133–1141.PubMedCrossRefGoogle Scholar
  59. [59]
    Lai C, Feng L. Implication of gamma-secretase in neuregulininduced maturation of oligodendrocytes. Biochem Biophys Res Commun 2004, 314(2): 535–542.PubMedCrossRefGoogle Scholar
  60. [60]
    Watkins TA, Emery B, Mulinyawe S, Barres BA. Distinct stages of myelination regulated by gamma-secretase and astrocytes in a rapidly myelinating CNS coculture system. Neuron 2008, 60(4): 555–569.PubMedCrossRefGoogle Scholar
  61. [61]
    Peters A, Vaughn JE. Morphology and development of the myelin sheath. in: Davison AN, Peters A (eds.), Myelination. Springfield, IL: Charles C. Thomas, 1970: 3–79.Google Scholar
  62. [62]
    Butt AM, Colquhoun K, Tutton M, Berry M. Three-dimensional morphology of astrocytes and oligodendrocytes in the intact mouse optic nerve. J Neurocytol 1994, 23(8): 469–485.PubMedCrossRefGoogle Scholar
  63. [63]
    Colognato H, Tzvetanova ID. Glia unglued: how signals from the extracellular matrix regulate the development of myelinating glia. Dev Neurobiol 2011, 71(11): 924–955.PubMedCrossRefGoogle Scholar
  64. [64]
    Colognato H, Baron W, Avellana-Adalid V, Relvas JB, Baron-Van Evercooren A, Georges-Labouesse E, et al. CNS integrins switch growth factor signalling to promote targetdependent survival. Nat Cell Biol 2002, 4(11): 833–841.PubMedCrossRefGoogle Scholar
  65. [65]
    Eyermann C, Czaplinski K, Colognato H. Dystroglycan promotes filopodial formation and process branching in differentiating oligodendroglia. Journal of Neurochemistry 2012, 120(6): 928–947.PubMedGoogle Scholar
  66. [66]
    Powell SK, Williams CC, Nomizu M, Yamada Y, Kleinman HK. Laminin-like proteins are differentially regulated during cerebellar development and stimulate granule cell neurite outgrowth in vitro. J Neurosci Res 1998, 54(2): 233–247.PubMedCrossRefGoogle Scholar
  67. [67]
    Zhao C, Fancy SPJ, Franklin RJM, Ffrench-Constant C. Upregulation of oligodendrocyte precursor cell alphaV integrin and its extracellular ligands during central nervous system remyelination. J Neurosci Res 2009, 87(15): 3447–3455.PubMedCrossRefGoogle Scholar
  68. [68]
    Chun SJ, Rasband MN, Sidman RL, Habib AA, Vartanian T. Integrin-linked kinase is required for laminin-2-induced oligodendrocyte cell spreading and CNS myelination. J Cell Biol 2003, 163(2): 397–408.PubMedCrossRefGoogle Scholar
  69. [69]
    D’Ercole AJ, Ye P, O’Kusky JR. Mutant mouse models of insulin-like growth factor actions in the central nervous system. Neuropeptides 2002, 36(2-3): 209–220.PubMedCrossRefGoogle Scholar
  70. [70]
    O’Kusky J, Ye P. Neurodevelopmental effects of insulin-like growth factor signaling. Front Neuroendocrinol 2012, 33(3): 230–251.PubMedCrossRefGoogle Scholar
  71. [71]
    Furusho M, Dupree JL, Nave KA, Bansal R. Fibroblast growth factor receptor signaling in oligodendrocytes regulates myelin sheath thickness. J Neurosci 2012, 32(19): 6631–6641.PubMedCrossRefGoogle Scholar
  72. [72]
    Stankoff B, Aigrot MS, Noël F, Wattilliaux A, Zalc B, Lubetzki C. Ciliary neurotrophic factor (CNTF) enhances myelin formation: a novel role for CNTF and CNTF-related molecules. J Neurosci 2002, 22(21): 9221–9227.PubMedGoogle Scholar
  73. [73]
    Cellerino A, Carroll P, Thoenen H, Barde YA. Reduced size of retinal ganglion cell axons and hypomyelination in mice lacking brain-derived neurotrophic factor. Mol Cell Neurosci 1997, 9(5-6): 397–408.PubMedCrossRefGoogle Scholar
  74. [74]
    Vondran MW, Clinton-Luke P, Honeywell JZ, Dreyfus CF. BDNF+/-mice exhibit deficits in oligodendrocyte lineage cells of the basal forebrain. Glia 2010, 58(7): 848–856.PubMedGoogle Scholar
  75. [75]
    Kahn MA, Kumar S, Liebl D, Chang R, Parada LF, de Vellis J. Mice lacking NT-3, and its receptor TrkC, exhibit profound deficiencies in CNS glial cells. Glia 1999, 26(2): 153–165.PubMedCrossRefGoogle Scholar
  76. [76]
    Carson MJ, Behringer RR, Brinster RL, McMorris FA. Insulinlike growth factor I increases brain growth and central nervous system myelination in transgenic mice. Neuron 1993, 10(4): 729–740.PubMedCrossRefGoogle Scholar
  77. [77]
    Ye P, Carson J, D’Ercole AJ. In vivo actions of insulin-like growth factor-i (iGF-i) on brain myelination: studies of iGF-i and iGF binding protein-1 (iGFBP-1) transgenic mice. J Neurosci 1995, 15(11): 7344–7356.PubMedGoogle Scholar
  78. [78]
    Goddard DR, Berry M, Butt AM. In vivo actions of fibroblast growth factor-2 and insulin-like growth factor-i on oligodendrocyte development and myelination in the central nervous system. J Neurosci Res 1999, 57(1): 74–85.PubMedCrossRefGoogle Scholar
  79. [79]
    Ye P, Li L, Richards RG, DiAugustine RP, D’Ercole AJ. Myelination is altered in insulin-like growth factor-i null mutant mice. J Neurosci 2002, 22(14): 6041–6051.PubMedGoogle Scholar
  80. [80]
    Luzi P, Zaka M, Rao HZ, Curtis M, Rafi MA, Wenger DA. Generation of transgenic mice expressing insulin-like growth factor-1 under the control of the myelin basic protein promoter: increased myelination and potential for studies on the effects of increased iGF-1 on experimentally and genetically induced demyelination. Neurochem Res 2004, 29(5): 881–889.PubMedCrossRefGoogle Scholar
  81. [81]
    Ye P, Popken GJ, Kemper A, McCarthy K, Popko B, D’Ercole AJ. Astrocyte-specific overexpression of insulin-like growth factor-i promotes brain overgrowth and glial fibrillary acidic protein expression. J Neurosci Res 2004, 78(4): 472–484.PubMedCrossRefGoogle Scholar
  82. [82]
    Zeger M, Popken G, Zhang J, Xuan S, Lu QR, Schwab MH, et al. Insulin-like growth factor type 1 receptor signaling in the cells of oligodendrocyte lineage is required for normal in vivo oligodendrocyte development and myelination. Glia 2007, 55(4): 400–411.PubMedCrossRefGoogle Scholar
  83. [83]
    LeRoith D. A novel Drosophila insulin receptor: fly in the ointment or evolutionary conservation? Endocrinology 1995, 136(6): 2355–2356.PubMedCrossRefGoogle Scholar
  84. [84]
    Ye P, Li L, Lund PK, D’Ercole AJ. Deficient expression of insulin receptor substrate-1 (iRS-1) fails to block insulin-like growth factor-i (iGF-i) stimulation of brain growth and myelination. Brain Res Dev Brain Res 2002, 136(2): 111–121.PubMedCrossRefGoogle Scholar
  85. [85]
    Freude S, Leeser U, Müller M, Hettich MM, Udelhoven M, Schilbach K, et al. IRS-2 branch of iGF-1 receptor signaling is essential for appropriate timing of myelination. J Neurochem 2008, 107(4): 907–917.PubMedGoogle Scholar
  86. [86]
    Cao Y, Gunn AJ, Bennet L, Wu D, George S, Gluckman PD, et al. Insulin-like growth factor (iGF)-1 suppresses oligodendrocyte caspase-3 activation and increases glial proliferation after ischemia in near-term fetal sheep. J Cereb Blood Flow Metab 2003, 23(6): 739–747.PubMedCrossRefGoogle Scholar
  87. [87]
    Ye P, Kollias G, D’Ercole AJ. Insulin-like growth factor-i ameliorates demyelination induced by tumor necrosis factor-alpha in transgenic mice. J Neurosci Res 2007, 85(4): 712–722.PubMedCrossRefGoogle Scholar
  88. [88]
    Wood TL, Loladze V, Altieri S, Gangoli N, Levison SW, Brywe KG, et al. Delayed iGF-1 administration rescues oligodendrocyte progenitors from glutamate-induced cell death and hypoxic-ischemic brain damage. Dev Neurosci 2007, 29(4–5): 302–310.PubMedCrossRefGoogle Scholar
  89. [89]
    Bou Khalil R. Recombinant human iGF-1 for patients with schizophrenia. Med Hypotheses 2011, 77(3): 427–429.PubMedCrossRefGoogle Scholar
  90. [90]
    Wilczak N, De Keyser J. Insulin-like growth factor-i receptors in normal appearing white matter and chronic plaques in multiple sclerosis. Brain Res 1997, 772(1–2): 243–246.PubMedCrossRefGoogle Scholar
  91. [91]
    Riva MA, Mocchetti I. Developmental expression of the basic fibroblast growth factor gene in rat brain. Brain Res Dev Brain Res 1991, 62(1): 45–50.PubMedCrossRefGoogle Scholar
  92. [92]
    Matsuyama A, Iwata H, Okumura N, Yoshida S, Imaizumi K, Lee Y, et al. Localization of basic fibroblast growth factorlike immunoreactivity in the rat brain. Brain Res 1992, 587(1): 49–65.PubMedCrossRefGoogle Scholar
  93. [93]
    Ratzka A, Baron o, Grothe C. FGF-2 deficiency does not influence FGF ligand and receptor expression during development of the nigrostriatal system. PLoS one 2011, 6(8): e23564.PubMedCrossRefGoogle Scholar
  94. [94]
    Becker-Catania SG, Nelson JK, Olivares S, Chen SJ, DeVries GH. Oligodendrocyte progenitor cells proliferate and survive in an immature state following treatment with an axolemmaenriched fraction. ASN Neuro 2011, 3(1): e00053.PubMedCrossRefGoogle Scholar
  95. [95]
    Bansal R, Pfeiffer SE. Inhibition of protein and lipid sulfation in oligodendrocytes blocks biological responses to FGF-2 and retards cytoarchitectural maturation, but not developmental lineage progression. Dev Biol 1994, 162(2): 511–524.PubMedCrossRefGoogle Scholar
  96. [96]
    Baron W, de Jonge JC, de Vries H, Hoekstra D. Perturbation of myelination by activation of distinct signaling pathways: an in vitro study in a myelinating culture derived from fetal rat brain. J Neurosci Res 2000, 59(1): 74–85.PubMedCrossRefGoogle Scholar
  97. [97]
    Wang Z, Colognato H, Ffrench-Constant C. Contrasting effects of mitogenic growth factors on myelination in neuronoligodendrocyte co-cultures. Glia 2007, 55(5): 537–545.PubMedCrossRefGoogle Scholar
  98. [98]
    Bansal R, Kumar M, Murray K, Morrison RS, Pfeiffer SE. Regulation of FGF receptors in the oligodendrocyte lineage. Mol Cell Neurosci 1996, 7(4): 263–275.PubMedCrossRefGoogle Scholar
  99. [99]
    Fortin D, Rom E, Sun H, Yayon A, Bansal R. Distinct fibroblast growth factor (FGF)/FGF receptor signaling pairs initiate diverse cellular responses in the oligodendrocyte lineage. J Neurosci 2005, 25(32): 7470–7479.PubMedCrossRefGoogle Scholar
  100. [100]
    Furusho M, Kaga Y, Ishii A, Hébert JM, Bansal R. Fibroblast growth factor signaling is required for the generation of oligodendrocyte progenitors from the embryonic forebrain. J Neurosci 2011, 31(13): 5055–5066.PubMedCrossRefGoogle Scholar
  101. [101]
    Bryant MR, Marta CB, Kim FS, Bansal R. Phosphorylation and lipid raft association of fibroblast growth factor receptor-2 in oligodendrocytes. Glia 2009, 57(9): 935–946.PubMedCrossRefGoogle Scholar
  102. [102]
    Harari D, Finkelstein D, Bernard O. FGF plays a subtle role in oligodendrocyte maintenance in vivo. J Neurosci Res 1997, 49(4): 404–415.PubMedCrossRefGoogle Scholar
  103. [103]
    Krämer-Albers EM, White R. From axon-glial signalling to myelination: the integrating role of oligodendroglial Fyn kinase. Cell Mol Life Sci 2011, 68(12): 2003–2012.PubMedCrossRefGoogle Scholar
  104. [104]
    Tyler WA, Gangoli N, Gokina P, Kim HA, Covey M, Levison SW, et al. Activation of the mammalian target of rapamycin (mToR) is essential for oligodendrocyte differentiation. J Neurosci 2009, 29(19): 6367–6378.PubMedCrossRefGoogle Scholar
  105. [105]
    Colognato H, Ramachandrappa S, Olsen IM, Ffrench-Constant C. Integrins direct Src family kinases to regulate distinct phases of oligodendrocyte development. J Cell Biol 2004, 167(2): 365–375.PubMedCrossRefGoogle Scholar
  106. [106]
    Krämer EM, Klein C, Koch T, Boytinck M, Trotter J. Compartmentation of Fyn kinase with glycosylphosphatidylinositolanchored molecules in oligodendrocytes facilitates kinase activation during myelination. J Biol Chem 1999, 274(41): 29042–29049.PubMedCrossRefGoogle Scholar
  107. [107]
    Osterhout DJ, Wolven A, Wolf RM, Resh MD, Chao MV. Morphological differentiation of oligodendrocytes requires activation of Fyn tyrosine kinase. J Cell Biol 1999, 145(6):1209–18.PubMedCrossRefGoogle Scholar
  108. [108]
    Rajasekharan S, Baker KA, Horn KE, Jarjour AA, Antel JP, Kennedy TE. Netrin 1 and Dcc regulate oligodendrocyte process branching and membrane extension via Fyn and RhoA. Development 2009, 136(3): 415–426.PubMedCrossRefGoogle Scholar
  109. [109]
    Umemori H, Sato S, Yagi T, Aizawa S, Yamamoto T. Initial events of myelination involve Fyn tyrosine kinase signalling. Nature 1994, 367(6463): 572–576.PubMedCrossRefGoogle Scholar
  110. [110]
    Goto J, Tezuka T, Nakazawa T, Sagara H, Yamamoto T. Loss of Fyn tyrosine kinase on the C57BL/6 genetic background causes hydrocephalus with defects in oligodendrocyte development. Mol Cell Neurosci 2008, 38(2): 203–212.PubMedCrossRefGoogle Scholar
  111. [111]
    Umemori H, Kadowaki Y, Hirosawa K, Yoshida Y, Hironaka K, Okano H, et al. Stimulation of myelin basic protein gene transcription by Fyn tyrosine kinase for myelination. J Neurosci 1999,19(4): 1393–1397.PubMedGoogle Scholar
  112. [112]
    Lu Z, Ku L, Chen Y, Feng Y. Developmental abnormalities of myelin basic protein expression in fyn knock-out brain reveal a role of Fyn in posttranscriptional regulation. J Biol Chem 2005, 280(1): 389–395.PubMedGoogle Scholar
  113. [113]
    DeBruin LS, Haines JD, Wellhauser LA, Radeva G, Schonmann V, Bienzle D, et al. Developmental partitioning of myelin basic protein into membrane microdomains. J Neurosci Res 2005, 80(2): 211–225.PubMedCrossRefGoogle Scholar
  114. [114]
    White R, Gonsior C, Bauer NM, Krämer-Albers EM, Luhmann HJ, Trotter J Heterogeneous nuclear ribonucleoprotein (hnRNP) F is a novel component of oligodendroglial RNA transport granules contributing to regulation of myelin basic protein (MBP) synthesis. J Biol Chem 2012, 287(3): 1742–1754.PubMedCrossRefGoogle Scholar
  115. [115]
    Laursen LS, Chan CW, Ffrench-Constant C. An integrin-contactin complex regulates CNS myelination by differential Fyn phosphorylation. J Neurosci 2009, 29(29): 9174–9185.PubMedCrossRefGoogle Scholar
  116. [116]
    Nakahara J, Seiwa C, Tan-Takeuchi K, Gotoh M, Kishihara K, Ogawa M, et al. Involvement of CD45 in central nervous system myelination. Neurosci Lett 2005, 379(2): 116–121.PubMedCrossRefGoogle Scholar
  117. [117]
    Wang PS, Wang J, Xiao ZC, Pallen CJ. Protein-tyrosine phosphatase alpha acts as an upstream regulator of Fyn signaling to promote oligodendrocyte differentiation and myelination. J Biol Chem 2009, 284(48): 33692–33702.PubMedCrossRefGoogle Scholar
  118. [118]
    Relucio J, Tzvetanova ID, Ao W, Lindquist S, Colognato H. Laminin alters fyn regulatory mechanisms and promotes oligodendrocyte development. J Neurosci 2009, 29(38): 11794–11806.PubMedCrossRefGoogle Scholar
  119. [119]
    Czopka T, Holst von A, Ffrench-Constant C, Faissner A. Regulatory mechanisms that mediate tenascin C-dependent inhibition of oligodendrocyte precursor differentiation. J Neurosci 2010, 30(37): 12310–12322.PubMedCrossRefGoogle Scholar
  120. [120]
    Kuboyama K, Fujikawa A, Masumura M, Suzuki R, Matsumoto M, Noda M. Protein tyrosine phosphatase receptor type z negatively regulates oligodendrocyte differentiation and myelination. PLoS one 2012, 7(11): e48797.PubMedCrossRefGoogle Scholar
  121. [121]
    Kilpatrick TJ, Ortuño D, Bucci T, Lai C, Lemke G. Rat oligodendroglia express c-met and focal adhesion kinase, protein tyrosine kinases implicated in regulating epithelial cell motility. Neurosci Lett 2000, 279(1): 5–8.PubMedCrossRefGoogle Scholar
  122. [122]
    Bacon C, Lakics V, Machesky L, Rumsby M. N-WASP regulates extension of filopodia and processes by oligodendrocyte progenitors, oligodendrocytes, and Schwann cells-implications for axon ensheathment at myelination. Glia 2007, 55(8): 844–858.PubMedCrossRefGoogle Scholar
  123. [123]
    Hoshina N, Tezuka T, Yokoyama K, Kozuka-Hata H, Oyama M, Yamamoto T. Focal adhesion kinase regulates laminin-induced oligodendroglial process outgrowth. Genes Cells 2007, 12(11): 1245–1254.PubMedCrossRefGoogle Scholar
  124. [124]
    Newbern J, Birchmeier C. Nrg1/ErbB signaling networks in Schwann cell development and myelination. Semin Cell Dev Biol 2010, 21(9): 922–928.PubMedCrossRefGoogle Scholar
  125. [125]
    Lafrenaye AD, Fuss B. Focal adhesion kinase can play unique and opposing roles in regulating the morphology of differentiating oligodendrocytes. J Neurochem 2010, 115(1): 269–282.PubMedCrossRefGoogle Scholar
  126. [126]
    Forrest AD, Beggs HE, Reichardt LF, Dupree JL, Colello RJ, Fuss B. Focal adhesion kinase (FAK): A regulator of CNS myelination. J Neurosci Res 2009, 87(15): 3456–3464.PubMedCrossRefGoogle Scholar
  127. [127]
    Van’t Veer A, Du Y, Fischer TZ, Boetig DR, Wood MR, Dreyfus CF. Brain-derived neurotrophic factor effects on oligodendrocyte progenitors of the basal forebrain are mediated through trkB and the MAP kinase pathway. J Neurosci Res 2009, 87(1): 69–78.CrossRefGoogle Scholar
  128. [128]
    Cui QL, Almazan G. IGF-i-induced oligodendrocyte progenitor proliferation requires Pi3K/Akt, MEK/ERK, and Src-like tyrosine kinases. J Neurochem 2007, 100(6): 1480–1493.PubMedGoogle Scholar
  129. [129]
    Bansal R, Magge S, Winkler S. Specific inhibitor of FGF receptor signaling: FGF-2-mediated effects on proliferation, differentiation, and MAPK activation are inhibited by PD173074 in oligodendrocyte-lineage cells. J Neurosci Res 2003, 74(4): 486–493.PubMedCrossRefGoogle Scholar
  130. [130]
    Frederick TJ, Min J, Altieri SC, Mitchell NE, Wood TL. Synergistic induction of cyclin D1 in oligodendrocyte progenitor cells by iGF-i and FGF-2 requires differential stimulation of multiple signaling pathways. Glia 2007, 55(10): 1011–22.PubMedCrossRefGoogle Scholar
  131. [131]
    Galabova-Kovacs G, Catalanotti F, Matzen D, Reyes GX, Zezula J, Herbst R, et al. Essential role of B-Raf in oligodendrocyte maturation and myelination during postnatal central nervous system development. J Cell Biol 2008, 180(5): 947–955.PubMedCrossRefGoogle Scholar
  132. [132]
    Xiao J, Ferner AH, Wong AW, Denham M, Kilpatrick TJ, Murray SS. Extracellular signal-regulated kinase 1/2 signaling promotes oligodendrocyte myelination in vitro. J Neurochem 2012, 122(6): 1167–1180.PubMedCrossRefGoogle Scholar
  133. [133]
    Ishii A, Fyffe-Maricich SL, Furusho M, Miller RH, Bansal R. ERK1/ERK2 MAPK signaling is required to increase myelin thickness independent of oligodendrocyte differentiation and initiation of myelination. J Neurosci 2012, 32(26): 8855–8864.PubMedCrossRefGoogle Scholar
  134. [134]
    Bhat NR, Zhang P, Mohanty SB. p38 MAP kinase regulation of oligodendrocyte differentiation with CREB as a potential target. Neurochem Res 2007, 32(2): 293–302.PubMedCrossRefGoogle Scholar
  135. [135]
    Fragoso G, Haines JD, Roberston J, Pedraza L, Mushynski WE, Almazan G. p38 mitogen-activated protein kinase is required for central nervous system myelination. Glia 2007, 55(15): 1531–1541.PubMedCrossRefGoogle Scholar
  136. [136]
    Haines JD, Fragoso G, Hossain S, Mushynski WE, Almazan G. p38 Mitogen-activated protein kinase regulates myelination. J Mol Neurosci 2008, 35(1): 23–33.PubMedCrossRefGoogle Scholar
  137. [137]
    Chew LJ, Coley W, Cheng Y, Gallo V. Mechanisms of regulation of oligodendrocyte development by p38 mitogen-activated protein kinase. J Neurosci 2010, 30(33): 11011–11027.PubMedCrossRefGoogle Scholar
  138. [138]
    Tohda C, Nakanishi R, Kadowaki M. Learning deficits and agenesis of synapses and myelinated axons in phosphoinositide-3 kinase-deficient mice. Neurosignals 2006, 15(6): 293–306.PubMedCrossRefGoogle Scholar
  139. [139]
    Baron W, Decker L, Colognato H, Ffrench-Constant C. Regulation of integrin growth factor interactions in oligodendrocytes by lipid raft microdomains. Curr Biol 2003, 13(2): 151–155.PubMedCrossRefGoogle Scholar
  140. [140]
    Barros CS, Nguyen T, Spencer KSR, Nishiyama A, Colognato H, Müller U. Beta1 integrins are required for normal CNS myelination and promote AKT-dependent myelin outgrowth. Development. 2009, 136(16): 2717–2724.PubMedCrossRefGoogle Scholar
  141. [141]
    Zaka M, Rafi MA, Rao HZ, Luzi P, Wenger DA. Insulin-like growth factor-1 provides protection against psychosine-induced apoptosis in cultured mouse oligodendrocyte progenitor cells using primarily the Pi3K/Akt pathway. Mol Cell Neurosci 2005, 30(3): 398–407.PubMedCrossRefGoogle Scholar
  142. [142]
    Cui QL, Zheng WH, Quirion R, Almazan G. Inhibition of Srclike kinases reveals Akt-dependent and -independent pathways in insulin-like growth factor i-mediated oligodendrocyte progenitor survival. J Biol Chem 2005, 280(10): 8918–8928.PubMedCrossRefGoogle Scholar
  143. [143]
    Ness JK, Wood TL. Insulin-like growth factor I, but not neurotrophin-3, sustains Akt activation and provides long-term protection of immature oligodendrocytes from glutamate-mediated apoptosis. Mol Cell Neurosci 2002, 20(3): 476–488.PubMedCrossRefGoogle Scholar
  144. [144]
    Coelho RP, Yuelling LM, Fuss B, Sato-Bigbee C. Neurotrophin-3 targets the translational initiation machinery in oligodendrocytes. Glia 2009, 57(16): 1754–1764.PubMedCrossRefGoogle Scholar
  145. [145]
    Azari MF, Profyris C, Karnezis T, Bernard CC, Small DH, Cheema SS, et al. Leukemia inhibitory factor arrests oligodendrocyte death and demyelination in spinal cord injury. J Neuropathol Exp Neurol 2006, 65(9): 914–929.PubMedCrossRefGoogle Scholar
  146. [146]
    Slaets H, Dumont D, Vanderlocht J, Noben JP, Leprince P, Robben J, et al. Leukemia inhibitory factor induces an antiapoptotic response in oligodendrocytes through Akt-phosphorylation and up-regulation of 14-3-3. Proteomics 2008, 8(6): 1237–1247.PubMedCrossRefGoogle Scholar
  147. [147]
    Flores Ai, Narayanan SP, Morse EN, Shick HE, Yin X, Kidd G, et al. Constitutively active Akt induces enhanced myelination in the CNS. J Neurosci 2008, 28(28): 7174–7183.PubMedCrossRefGoogle Scholar
  148. [148]
    Narayanan SP, Flores Ai, Wang F, Macklin WB. Akt signals through the mammalian target of rapamycin pathway to regulate CNS myelination. J Neurosci 2009, 29(21): 6860–6870.PubMedCrossRefGoogle Scholar
  149. [149]
    Zou J, Zhou L, Du XX, Ji Y, Xu J, Tian J, et al. Rheb1 is required for mToRC1 and myelination in postnatal brain development. Dev Cell 2011, 20(1): 97–108.PubMedCrossRefGoogle Scholar
  150. [150]
    Tyler WA, Jain MR, Cifelli SE, Li Q, Ku L, Feng Y, et al. Proteomic identification of novel targets regulated by the mammalian target of rapamycin pathway during oligodendrocyte differentiation. Glia 2011, 59(11): 1754–1769.PubMedCrossRefGoogle Scholar
  151. [151]
    Stambolic V, Suzuki A, La Pompa de JL, Brothers GM, Mirtsos C, Sasaki T, et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 1998, 95(1): 29–39.PubMedCrossRefGoogle Scholar
  152. [152]
    Maehama T, Dixon JE. The tumor suppressor, PTEN/ MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 1998, 273(22): 13375–13378.PubMedCrossRefGoogle Scholar
  153. [153]
    Cotter L, Ozcelik M, Jacob C, Pereira JA, Locher V, Baumann R, et al. Dlg1-PTEN interaction Regulates Myelin Thickness to Prevent Damaging Peripheral Nerve overmyelination. Science 2010, 328(5984): 1415–1418.PubMedCrossRefGoogle Scholar
  154. [154]
    Goebbels S, Oltrogge JH, Wolfer S, Wieser GL, Nientiedt T, Pieper A, et al. Genetic disruption of Pten in a novel mouse model of tomaculous neuropathy. EMBo Mol Med 2012, 4(6): 486–499.PubMedCrossRefGoogle Scholar
  155. [155]
    Harrington EP, Zhao C, Fancy SPJ, Kaing S, Franklin RJM, Rowitch DH. Oligodendrocyte PTEN is required for myelin and axonal integrity, not remyelination. Ann Neurol 2010, 68(5): 703–716.PubMedCrossRefGoogle Scholar
  156. [156]
    Goebbels S, Oltrogge JH, Kemper R, Heilmann I, Bormuth I, Wolfer S, et al. Elevated phosphatidylinositol 3,4,5-trisphosphate in glia triggers cell-autonomous membrane wrapping and myelination. J Neurosci 2010, 30(26): 8953–8964.PubMedCrossRefGoogle Scholar
  157. [157]
    Vazquez F, Ramaswamy S, Nakamura N, Sellers WR. Phosphorylation of the PTEN tail regulates protein stability and function. Mol Cell Biol 2000, 20(14): 5010–5018.PubMedCrossRefGoogle Scholar
  158. [158]
    Gao T, Furnari F, Newton AC. PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Molecular Cell 2005, 18(1): 13–24.PubMedCrossRefGoogle Scholar
  159. [159]
    Molina JR, Agarwal NK, Morales FC, Hayashi Y, Aldape KD, Cote G, et al. PTEN, NHERF1 and PHLPP form a tumor suppressor network that is disabled in glioblastoma. oncogene 2011, 31(10): 1264–1274.PubMedCrossRefGoogle Scholar
  160. [160]
    Liu J, Stevens PD, Gao T. mToR-dependent regulation of PHLPP expression controls the rapamycin sensitivity in cancer cells. J Biol Chem 2011, 286(8): 6510–6520.PubMedCrossRefGoogle Scholar
  161. [161]
    Rauh MJ, Sly LM, Kalesnikoff J, Hughes MR, Cao LP, Lam V, et al. The role of SHiP1 in macrophage programming and activation. Biochem Soc Trans 2004, 32 (Pt 5): 785–788.Google Scholar
  162. [162]
    Dyson JM, Kong AM, Wiradjaja F, Astle MV, Gurung R, Mitchell CA. The SH2 domain containing inositol polyphosphate 5-phosphatase-2: SHiP2. Int J Biochem Cell Biol 2005, 37(11): 2260–2265.PubMedCrossRefGoogle Scholar
  163. [163]
    Navis AC, van den Eijnden M, Schepens JTG, Hooft van Huijsduijnen R, Wesseling P, Hendriks WJAJ. Protein tyrosine phosphatases in glioma biology. Acta Neuropathol 2010, 119(2): 157–175.PubMedCrossRefGoogle Scholar
  164. [164]
    Green MC, Shultz LD. Motheaten, an immunodeficient mutant of the mouse. i. Genetics and pathology. J Hered 1975, 66(5): 250–258.PubMedGoogle Scholar
  165. [165]
    Wishcamper CA, Coffin JD, Lurie Di. Lack of the protein tyrosine phosphatase SHP-1 results in decreased numbers of glia within the motheaten (me/me) mouse brain. J Comp Neurol 2001, 441(2): 118–133.PubMedCrossRefGoogle Scholar
  166. [166]
    Massa PT, Wu C, Fecenko-Tacka K. Dysmyelination and reduced myelin basic protein gene expression by oligodendrocytes of SHP-1-deficient mice. J Neurosci Res 2004, 77(1): 15–25.PubMedCrossRefGoogle Scholar
  167. [167]
    Massa PT, Saha S, Wu C, Jarosinski KW. Expression and function of the protein tyrosine phosphatase SHP-1 in oligodendrocytes. Glia 2000, 29(4): 376–385.PubMedCrossRefGoogle Scholar
  168. [168]
    Chan RJ, Feng GS. PTPN11 is the first identified protooncogene that encodes a tyrosine phosphatase. Blood 2007, 109(3): 862–867.PubMedCrossRefGoogle Scholar
  169. [169]
    Li S, Hsu DD, Wang H, Feng GS. Dual faces of SH2-containing protein-tyrosine phosphatase Shp2/PTPN11 in tumorigenesis. Front Med 2012, 6(3): 275–279.PubMedCrossRefGoogle Scholar
  170. [170]
    Marin TM, Keith K, Davies B, Conner DA, Guha P, Kalaitzidis D, et al. Rapamycin reverses hypertrophic cardiomyopathy in a mouse model of LEoPARD syndrome-associated PTPN11 mutation. J Clin invest 2011, 121(3): 1026–1043.PubMedCrossRefGoogle Scholar
  171. [171]
    Nagata N, Matsuo K, Bettaieb A, Bakke J, Matsuo I, Graham J, et al. Hepatic Src homology phosphatase 2 regulates energy balance in mice. Endocrinology 2012 153(7): 3158–3169.PubMedCrossRefGoogle Scholar
  172. [172]
    Coskun V, Zhao J, Sun YE. Neurons or glia? Can SHP2 know it all? Sci STKE 2007, 2007(410): pe58.PubMedCrossRefGoogle Scholar
  173. [173]
    Grossmann KS, Wende H, Paul FE, Cheret C, Garratt AN, Zurborg S, et al. The tyrosine phosphatase Shp2 (PTPN11) directs Neuregulin-1/ErbB signaling throughout Schwann cell development. Proc Natl Acad Sci U S A 2009, 106(39): 16704–16709.PubMedCrossRefGoogle Scholar
  174. [174]
    Liu X, Li Y, Zhang Y, Lu Y, Guo W, Liu P, et al. SHP-2 promotes the maturation of oligodendrocyte precursor cells through Akt and ERK1/2 signaling in vitro. PLoS one 2011, 6(6): e21058.PubMedCrossRefGoogle Scholar
  175. [175]
    Kuo E, Park DK, Tzvetanova ID, Leiton CV, Cho BS, Colognato H. Tyrosine phosphatases Shp1 and Shp2 have unique and opposing roles in oligodendrocyte development. J Neurochem 2010, 113(1): 200–212.PubMedCrossRefGoogle Scholar
  176. [176]
    Zhu Y, Park J, Hu X, Zheng K, Li H, Cao Q, et al. Control of oligodendrocyte generation and proliferation by Shp2 protein tyrosine phosphatase. Glia 2010, 58(12): 1407–1414.PubMedGoogle Scholar
  177. [177]
    Lu W, Gong D, Bar-Sagi D, Cole PA. Site-specific incorporation of a phosphotyrosine mimetic reveals a role for tyrosine phosphorylation of SHP-2 in cell signaling. Molecular Cell 2001, 8(4): 759–769.PubMedCrossRefGoogle Scholar
  178. [178]
    Fabrizi GM, Taioli F, Cavallaro T, Rigatelli F, Simonati A, Mariani G, et al. Focally folded myelin in Charcot-Marie-Tooth neuropathy type 1B with Ser49Leu in the myelin protein zero. Acta Neuropathol 2000, 100(3): 299–304.PubMedCrossRefGoogle Scholar
  179. [179]
    Fabrizi GM, Taioli F, Cavallaro T, Ferrari S, Bertolasi L, Casarotto M, et al. Further evidence that mutations in FGD4/frabin cause Charcot-Marie-Tooth disease type 4H. Neurology 2009, 72(13): 1160–1164.PubMedCrossRefGoogle Scholar
  180. [180]
    Adlkofer K, Frei R, Neuberg DH, Zielasek J, Toyka KV, Suter U. Heterozygous peripheral myelin protein 22-deficient mice are affected by a progressive demyelinating tomaculous neuropathy. J Neurosci 1997, 17(12): 4662–4671.PubMedGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Cell and Developmental BiologyUniversity of Colorado School of MedicineAuroraUSA

Personalised recommendations