Neuroscience Bulletin

, Volume 29, Issue 2, pp 165–176 | Cite as

Polydendrocytes in development and myelin repair



Polydendrocytes (NG2 cells) are a distinct type of glia that populate the developing and adult central nervous systems (CNS). In the adult CNS, they retain mitotic activity and represent the largest proliferating cell population. Genetic and epigenetic mechanisms regulate the fate of polydendrocytes, which give rise to both oligodendrocytes and astrocytes. In addition, polydendrocytes actively differentiate into myelin-forming oligodendrocytes in response to demyelination. This review summarizes the current knowledge regarding polydendrocyte development, which provides an important basis for understanding the mechanisms that lead to the remyelination of demyelinated lesions.


polydendrocytes NG2 cells oligodendrocytes myelin cell fate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Nishiyama A, Watanabe M, Yang Z, Bu J. Identity, distribution, and development of polydendrocytes: NG2-expressing glial cells. J Neurocytol 2002, 31: 437–455.PubMedCrossRefGoogle Scholar
  2. [2]
    Nishiyama A, Komitova M, Suzuki R, Zhu X. Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nat Rev Neurosci 2009, 10: 9–22.PubMedCrossRefGoogle Scholar
  3. [3]
    Dawson MR, Levine JM, Reynolds R. NG2-expressing cells in the central nervous system: are they oligodendroglial progenitors? J Neurosci Res 2000, 61: 471–479.PubMedCrossRefGoogle Scholar
  4. [4]
    Lu QR, Yuk D, Alberta JA, Zhu Z, Pawlitzky I, Chan J, et al. Sonic hedgehog—regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron 2000, 25: 317–329.PubMedCrossRefGoogle Scholar
  5. [5]
    Zhou Q, Wang S, Anderson DJ. Identification of a novel family of oligodendrocyte lineage-specific basic helix-loop-helix transcription factors. Neuron 2000, 25: 331–343.PubMedCrossRefGoogle Scholar
  6. [6]
    Takebayashi H, Yoshida S, Sugimori M, Kosako H, Kominami R, Nakafuku M, et al. Dynamic expression of basic helixloop-helix Olig family members: implication of Olig2 in neuron and oligodendrocyte differentiation and identification of a new member, Olig3. Mech Dev 2000, 99: 143–148.PubMedCrossRefGoogle Scholar
  7. [7]
    Fu H, Qi Y, Tan M, Cai J, Takebayashi H, Nakafuku M, et al. Dual origin of spinal oligodendrocyte progenitors and evidence for the cooperative role of Olig2 and Nkx2.2 in the control of oligodendrocyte differentiation. Development 2002, 129: 681–693.PubMedGoogle Scholar
  8. [8]
    Nishiyama A, Lin XH, Giese N, Heldin CH, Stallcup WB. Colocalization of NG2 proteoglycan and PDGF alpha-receptor on O2A progenitor cells in the developing rat brain. J Neurosci Res 1996, 43: 299–314.PubMedCrossRefGoogle Scholar
  9. [9]
    Fogarty M, Richardson WD, Kessaris N. A subset of oligodendrocytes generated from radial glia in the dorsal spinal cord. Development 2005, 132: 1951–1959.PubMedCrossRefGoogle Scholar
  10. [10]
    Cai J, Qi Y, Hu X, Tan M, Liu Z, Zhang J, et al. Generation of oligodendrocyte precursor cells from mouse dorsal spinal cord independent of Nkx6 regulation and Shh signaling. Neuron 2005, 45: 41–53.PubMedCrossRefGoogle Scholar
  11. [11]
    Vallstedt A, Klos JM, Ericson J. Multiple dorsoventral origins of oligodendrocyte generation in the spinal cord and hindbrain. Neuron 2005, 45: 55–67.PubMedCrossRefGoogle Scholar
  12. [12]
    Kessaris N, Fogarty M, Iannarelli P, Grist M, Wegner M, Richardson WD. Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat Neurosci 2006, 9: 173–179.PubMedCrossRefGoogle Scholar
  13. [13]
    Orentas DM, Hayes JE, Dyer KL, Miller RH. Sonic hedgehog signaling is required during the appearance of spinal cord oligodendrocyte precursors. Development 1999, 126: 2419–2429.PubMedGoogle Scholar
  14. [14]
    Alberta JA, Park SK, Mora J, Yuk D, Pawlitzky I, Iannarelli P, et al. Sonic hedgehog is required during an early phase of oligodendrocyte development in mammalian brain. Mol Cell Neurosci 2001, 18: 434–441.PubMedCrossRefGoogle Scholar
  15. [15]
    Nery S, Wichterle H, Fishell G. Sonic hedgehog contributes to oligodendrocyte specification in the mammalian forebrain. Development 2001, 128: 527–540.PubMedGoogle Scholar
  16. [16]
    Sussman CR, Davies JE, Miller RH. Extracellular and intracellular regulation of oligodendrocyte development: roles of Sonic hedgehog and expression of E proteins. Glia 2002, 40: 55–64.PubMedCrossRefGoogle Scholar
  17. [17]
    Tekki-Kessaris N, Woodruff R, Hall AC, Gaffield W, Kimura S, Stiles CD, et al. Hedgehog-dependent oligodendrocyte lineage specification in the telencephalon. Development 2001, 128: 2545–2554.PubMedGoogle Scholar
  18. [18]
    Liu R, Cai J, Hu X, Tan M, Qi Y, German M, et al. Regionspecific and stage-dependent regulation of Olig gene expression and oligodendrogenesis by Nkx6.1 homeodomain transcription factor. Development 2003, 130: 6221–6231.PubMedCrossRefGoogle Scholar
  19. [19]
    Lu QR, Sun T, Zhu Z, Ma N, Garcia M, Stiles CD, et al. Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 2002, 109: 75–86.PubMedCrossRefGoogle Scholar
  20. [20]
    Zhou Q, Anderson DJ. The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 2002, 109: 61–73.PubMedCrossRefGoogle Scholar
  21. [21]
    Takebayashi H, Nabeshima Y, Yoshida S, Chisaka O, Ikenaka K, Nabeshima Y. The basic helix-loop-helix factor olig2 is essential for the development of motoneuron and oligodendrocyte lineages. Curr Biol 2002, 12: 1157–1163.PubMedCrossRefGoogle Scholar
  22. [22]
    Maire CL, Wegener A, Kerninon C, Nait Oumesmar B. Gainof-function of Olig transcription factors enhances oligodendrogenesis and myelination. Stem Cells 2010, 28: 1611–1622.PubMedCrossRefGoogle Scholar
  23. [23]
    Ligon KL, Kesari S, Kitada M, Sun T, Arnett HA, Alberta JA, et al. Development of NG2 neural progenitor cells requires Olig gene function. Proc Natl Acad Sci U S A 2006, 103: 7853–7858.PubMedCrossRefGoogle Scholar
  24. [24]
    Parras CM, Hunt C, Sugimori M, Nakafuku M, Rowitch D, Guillemot F. The proneural gene Mash1 specifies an early population of telencephalic oligodendrocytes. J Neurosci 2007, 27: 4233–4242.PubMedCrossRefGoogle Scholar
  25. [25]
    Petryniak MA, Potter GB, Rowitch DH, Rubenstein JL. Dlx1 and Dlx2 control neuronal versus oligodendroglial cell fate acquisition in the developing forebrain. Neuron 2007, 55: 417–433.PubMedCrossRefGoogle Scholar
  26. [26]
    Stolt CC, Lommes P, Sock E, Chaboissier MC, Schedl A, Wegner M. The Sox9 transcription factor determines glial fate choice in the developing spinal cord. Genes Dev 2003, 17: 1677–1689.PubMedCrossRefGoogle Scholar
  27. [27]
    Stolt CC, Schmitt S, Lommes P, Sock E, Wegner M. Impact of transcription factor Sox8 on oligodendrocyte specification in the mouse embryonic spinal cord. Dev Biol 2005, 281: 309–317.PubMedCrossRefGoogle Scholar
  28. [28]
    Stolt CC, Schlierf A, Lommes P, Hillgartner S, Werner T, Kosian T, et al. SoxD proteins influence multiple stages of oligodendrocyte development and modulate SoxE protein function. Dev Cell 2006, 11: 697–709.PubMedCrossRefGoogle Scholar
  29. [29]
    Horner PJ, Power AE, Kempermann G, Kuhn HG, Palmer TD, Winkler J, et al. Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. J Neurosci 2000, 20: 2218–2228.PubMedGoogle Scholar
  30. [30]
    Dawson MR, Polito A, Levine JM, Reynolds R. NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS. Mol Cell Neurosci 2003, 24: 476–488.PubMedCrossRefGoogle Scholar
  31. [31]
    Lasiene J, Matsui A, Sawa Y, Wong F Horner PJ. Age-related myelin dynamics revealed by increased oligodendrogenesis and short internodes. Aging Cell 2009, 8: 201–213.PubMedCrossRefGoogle Scholar
  32. [32]
    Kukley M, Kiladze M, Tognatta R, Hans M, Swandulla D, Schramm J, et al. Glial cells are born with synapses. FASEB J 2008, 22: 2957–2969.PubMedCrossRefGoogle Scholar
  33. [33]
    Psachoulia K, Jamen F, Young KM, Richardson WD. Cell cycle dynamics of NG2 cells in the postnatal and ageing brain. Neuron Glia Biol 2009, 5: 57–67.PubMedCrossRefGoogle Scholar
  34. [34]
    Simon C, Gotz M, Dimou L. Progenitors in the adult cerebral cortex: cell cycle properties and regulation by physiological stimuli and injury. Glia 2011, 59: 869–881.PubMedCrossRefGoogle Scholar
  35. [35]
    Rivers LE, Young KM, Rizzi M, Jamen F, Psachoulia K, Wade A, et al. PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nat Neurosci 2008, 11: 1392–1401.PubMedCrossRefGoogle Scholar
  36. [36]
    Clarke LE, Young KM, Hamilton NB, Li H, Richardson WD, Attwell D. Properties and fate of oligodendrocyte progenitor cells in the corpus callosum, motor cortex, and piriform cortex of the mouse. J Neurosci 2012, 32: 8173–8185.PubMedCrossRefGoogle Scholar
  37. [37]
    Levine JM, Stallcup WB. Plasticity of developing cerebellar cells in vitro studied with antibodies against the NG2 antigen. J Neurosci 1987, 7: 2721–2731.PubMedGoogle Scholar
  38. [38]
    Stallcup WB, Beasley L. Bipotential glial precursor cells of the optic nerve express the NG2 proteoglycan. J Neurosci 1987, 7: 2737–2744.PubMedGoogle Scholar
  39. [39]
    Zhu X, Bergles DE, Nishiyama A. NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development 2008, 135: 145–157.PubMedCrossRefGoogle Scholar
  40. [40]
    Zhu X, Hill RA, Nishiyama A. NG2 cells generate oligodendrocytes and gray matter astrocytes in the spinal cord. Neuron Glia Biol 2008, 4: 19–26.PubMedCrossRefGoogle Scholar
  41. [41]
    Zhu X, Hill RA, Dietrich D, Komitova M, Suzuki R, Nishiyama A. Age-dependent fate and lineage restriction of single NG2 cells. Development 2011, 138: 745–753.PubMedCrossRefGoogle Scholar
  42. [42]
    Dimou L, Simon C, Kirchhoff F, Takebayashi H, Gotz M. Progeny of Olig2-expressing progenitors in the gray and white matter of the adult mouse cerebral cortex. J Neurosci 2008, 28: 10434–10442.PubMedCrossRefGoogle Scholar
  43. [43]
    Guo F, Ma J, McCauley E, Bannerman P, Pleasure D. Early postnatal proteolipid promoter-expressing progenitors produce multilineage cells in vivo. J Neurosci 2009, 29: 7256–7270.PubMedCrossRefGoogle Scholar
  44. [44]
    Sugiarto S, Persson AI, Munoz EG, Waldhuber M, Lamagna C, Andor N, et al. Asymmetry-defective oligodendrocyte progenitors are glioma precursors. Cancer Cell 2011, 20: 328–340.PubMedCrossRefGoogle Scholar
  45. [45]
    Raff MC, Miller RH, Noble M. A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature 1983, 303: 390–396.PubMedCrossRefGoogle Scholar
  46. [46]
    Mabie PC, Mehler MF, Marmur R, Papavasiliou A, Song Q, Kessler JA. Bone morphogenetic proteins induce astroglial differentiation of oligodendroglial-astroglial progenitor cells. J Neurosci 1997, 17: 4112–4120.PubMedGoogle Scholar
  47. [47]
    Reynolds R, Dawson M, Papadopoulos D, Polito A, Di Bello IC, Pham-Dinh D, et al. The response of NG2-expressing oligodendrocyte progenitors to demyelination in MOG-EAE and MS. J Neurocytol 2002, 31: 523–536.PubMedCrossRefGoogle Scholar
  48. [48]
    Nishiyama A, Yang Z, Butt A. Astrocytes and NG2-glia: what’s in a name? J Anat 2005, 207: 687–693.PubMedCrossRefGoogle Scholar
  49. [49]
    Liu Y, Wu Y, Lee JC, Xue H, Pevny LH, Kaprielian Z, et al. Oligodendrocyte and astrocyte development in rodents: an in situ and immunohistological analysis during embryonic development. Glia 2002, 40: 25–43.PubMedCrossRefGoogle Scholar
  50. [50]
    Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 2008, 28: 264–278.PubMedCrossRefGoogle Scholar
  51. [51]
    Kang SH, Fukaya M, Yang JK, Rothstein JD, Bergles DE. NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron 2010, 68: 668–681.PubMedCrossRefGoogle Scholar
  52. [52]
    Mallon BS, Shick HE, Kidd GJ, Macklin WB. Proteolipid promoter activity distinguishes two populations of NG2-positive cells throughout neonatal cortical development. J Neurosci 2002, 22: 876–885.PubMedGoogle Scholar
  53. [53]
    Kondo T, Raff M. Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 2000, 289: 1754–1757.PubMedCrossRefGoogle Scholar
  54. [54]
    Kondo T, Raff M. Chromatin remodeling and histone modification in the conversion of oligodendrocyte precursors to neural stem cells. Genes Dev 2004, 18: 2963–2972.PubMedCrossRefGoogle Scholar
  55. [55]
    Belachew S, Chittajallu R, Aguirre AA, Yuan X, Kirby M, Anderson S, et al. Postnatal NG2 proteoglycan-expressing progenitor cells are intrinsically multipotent and generate functional neurons. J Cell Biol 2003, 161: 169–186.PubMedCrossRefGoogle Scholar
  56. [56]
    Aguirre AA, Chittajallu R, Belachew S, Gallo V. NG2-expressing cells in the subventricular zone are type C-like cells and contribute to interneuron generation in the postnatal hippocampus. J Cell Biol 2004, 165: 575–589.PubMedCrossRefGoogle Scholar
  57. [57]
    Aguirre A, Gallo V. Postnatal neurogenesis and gliogenesis in the olfactory bulb from NG2-expressing progenitors of the subventricular zone. J Neurosci 2004, 24: 10530–10541.PubMedCrossRefGoogle Scholar
  58. [58]
    Li H, Richardson WD. Genetics meets epigenetics: HDACs and Wnt signaling in myelin development and regeneration. Nat Neurosci 2009, 12: 815–817.PubMedCrossRefGoogle Scholar
  59. [59]
    Chong SY, Chan JR. Tapping into the glial reservoir: cells committed to remaining uncommitted. J Cell Biol 2010, 188: 305–312.PubMedCrossRefGoogle Scholar
  60. [60]
    Emery B. Transcriptional and post-transcriptional control of CNS myelination. Curr Opin Neurobiol 2010, 20: 601–607.PubMedCrossRefGoogle Scholar
  61. [61]
    Zhu X, Zuo H, Maher BJ, Serwanski DR, LoTurco JJ, Lu QR, et al. Olig2-dependent developmental fate switch of NG2 cells. Development 2012, 139: 2299–2307.PubMedCrossRefGoogle Scholar
  62. [62]
    Xin M, Yue T, Ma Z, Wu FF, Gow A, Lu QR. Myelinogenesis and axonal recognition by oligodendrocytes in brain are uncoupled in Olig1-null mice. J Neurosci 2005, 25: 1354–1365.PubMedCrossRefGoogle Scholar
  63. [63]
    Li H, Lu Y, Smith HK, Richardson WD. Olig1 and Sox10 interact synergistically to drive myelin basic protein transcription in oligodendrocytes. J Neurosci 2007, 27: 14375–14382.PubMedCrossRefGoogle Scholar
  64. [64]
    Lee SK, Lee B, Ruiz EC, Pfaff SL. Olig2 and Ngn2 function in opposition to modulate gene expression in motor neuron progenitor cells. Genes Dev 2005, 19: 282–294.PubMedCrossRefGoogle Scholar
  65. [65]
    Li H, de Faria JP, Andrew P, Nitarska J, Richardson WD. Phosphorylation regulates OLIG2 cofactor choice and the motor neuron-oligodendrocyte fate switch. Neuron 2011, 69: 918–929.PubMedCrossRefGoogle Scholar
  66. [66]
    Samanta J, Kessler JA. Interactions between ID and OLIG proteins mediate the inhibitory effects of BMP4 on oligodendroglial differentiation. Development 2004, 131: 4131–4142.PubMedCrossRefGoogle Scholar
  67. [67]
    Wang S, Sdrulla A, Johnson JE, Yokota Y Barres BA. A role for the helix-loop-helix protein Id2 in the control of oligodendrocyte development. Neuron 2001, 29: 603–614.PubMedCrossRefGoogle Scholar
  68. [68]
    Chen XS, Zhang YH, Cai QY, Yao ZX. ID2: A negative transcription factor regulating oligodendroglia differentiation. J Neurosci Res 2012, 90: 925–932.PubMedCrossRefGoogle Scholar
  69. [69]
    He Y, Dupree J, Wang J, Sandoval J, Li J, Liu H, et al. The transcription factor Yin Yang 1 is essential for oligodendrocyte progenitor differentiation. Neuron 2007, 55: 217–230.PubMedCrossRefGoogle Scholar
  70. [70]
    Ye F, Chen Y, Hoang T, Montgomery RL, Zhao XH, Bu H, et al. HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the beta-catenin-TCF interaction. Nat Neurosci 2009, 12: 829–838.PubMedCrossRefGoogle Scholar
  71. [71]
    Zhou Q, Choi G, Anderson DJ. The bHLH transcription factor Olig2 promotes oligodendrocyte differentiation in collaboration with Nkx2.2. Neuron 2001, 31: 791–807.CrossRefGoogle Scholar
  72. [72]
    Qi Y, Cai J, Wu Y, Wu R, Lee J, Fu H, et al. Control of oligodendrocyte differentiation by the Nkx2.2 homeodomain transcription factor. Development 2001, 128: 2723–2733.PubMedGoogle Scholar
  73. [73]
    Sugimori M, Nagao M, Parras CM, Nakatani H, Lebel M, Guillemot F, et al. Ascl1 is required for oligodendrocyte development in the spinal cord. Development 2008, 135: 1271–1281.PubMedCrossRefGoogle Scholar
  74. [74]
    Wang SZ, Dulin J, Wu H, Hurlock E, Lee SE, Jansson K, et al. An oligodendrocyte-specific zinc-finger transcription regulator cooperates with Olig2 to promote oligodendrocyte differentiation. Development 2006, 133: 3389–3398.PubMedCrossRefGoogle Scholar
  75. [75]
    Kuspert M, Hammer A, Bosl MR, Wegner M. Olig2 regulates Sox10 expression in oligodendrocyte precursors through an evolutionary conserved distal enhancer. Nucleic Acids Res 2011, 39: 1280–1293.PubMedCrossRefGoogle Scholar
  76. [76]
    Stolt CC, Rehberg S, Ader M, Lommes P, Riethmacher D, Schachner M, et al. Terminal differentiation of myelin-forming oligodendrocytes depends on the transcription factor Sox10. Genes Dev 2002, 16: 165–170.PubMedCrossRefGoogle Scholar
  77. [77]
    Chen Y, Wu H, Wang S, Koito H, Li J, Ye F, et al. The oligodendrocyte-specific G protein-coupled receptor GPR17 is a cell-intrinsic timer of myelination. Nat Neurosci 2009, 12: 1398–1406.PubMedCrossRefGoogle Scholar
  78. [78]
    Wang S, Sdrulla AD, diSibio G, Bush G, Nofziger D, Hicks C, et al. Notch receptor activation inhibits oligodendrocyte differentiation. Neuron 1998, 21: 63–75.PubMedCrossRefGoogle Scholar
  79. [79]
    Genoud S, Lappe-Siefke C, Goebbels S, Radtke F, Aguet M, Scherer SS, et al. Notch1 control of oligodendrocyte differentiation in the spinal cord. J Cell Biol 2002, 158: 709–718.PubMedCrossRefGoogle Scholar
  80. [80]
    Watkins TA, Emery B, Mulinyawe S, Barres BA. Distinct stages of myelination regulated by gamma-secretase and astrocytes in a rapidly myelinating CNS coculture system. Neuron 2008, 60: 555–569.PubMedCrossRefGoogle Scholar
  81. [81]
    Zhang Y, Argaw AT, Gurfein BT, Zameer A, Snyder BJ, Ge C, et al. Notch1 signaling plays a role in regulating precursor dif ferentiation during CNS remyelination. Proc Natl Acad Sci U S A 2009, 106: 19162–19167.PubMedCrossRefGoogle Scholar
  82. [82]
    Liu A, Li J, Marin-Husstege M, Kageyama R, Fan Y, Gelinas C, et al. A molecular insight of Hes5-dependent inhibition of myelin gene expression: old partners and new players. EMBO J 2006, 25: 4833–4842.PubMedCrossRefGoogle Scholar
  83. [83]
    Emery B, Agalliu D, Cahoy JD, Watkins TA, Dugas JC, Mulinyawe SB, et al. Myelin gene regulatory factor is a critical transcriptional regulator required for CNS myelination. Cell 2009, 138: 172–185.PubMedCrossRefGoogle Scholar
  84. [84]
    Copray S, Huynh JL, Sher F, Casaccia-Bonnefil P, Boddeke E. Epigenetic mechanisms facilitating oligodendrocyte development, maturation, and aging. Glia 2009, 57: 1579–1587.PubMedCrossRefGoogle Scholar
  85. [85]
    Yu Y, Casaccia P, Lu QR. Shaping the oligodendrocyte identity by epigenetic control. Epigenetics 2010, 5: 124–128.PubMedCrossRefGoogle Scholar
  86. [86]
    Liu J, Casaccia P. Epigenetic regulation of oligodendrocyte identity. Trends Neurosci 2010, 33: 193–201.PubMedCrossRefGoogle Scholar
  87. [87]
    Marin-Husstege M, Muggironi M, Liu A, Casaccia-Bonnefil P. Histone deacetylase activity is necessary for oligodendrocyte lineage progression. J Neurosci 2002, 22: 10333–10345.PubMedGoogle Scholar
  88. [88]
    Shen S, Li J, Casaccia-Bonnefil P. Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developing rat brain. J Cell Biol 2005, 169: 577–589.PubMedCrossRefGoogle Scholar
  89. [89]
    Shen S, Sandoval J, Swiss VA, Li J, Dupree J, Franklin RJ, et al. Age-dependent epigenetic control of differentiation inhibitors is critical for remyelination efficiency. Nat Neurosci 2008, 11: 1024–1034.PubMedCrossRefGoogle Scholar
  90. [90]
    Zhao X, He X, Han X, Yu Y, Ye F, Chen Y, et al. MicroRNAmediated control of oligodendrocyte differentiation. Neuron 2010, 65: 612–626.PubMedCrossRefGoogle Scholar
  91. [91]
    Zheng K, Li H, Zhu Y, Zhu Q, Qiu M. MicroRNAs are essential for the developmental switch from neurogenesis to gliogenesis in the developing spinal cord. J Neurosci 2010, 30: 8245–8250.PubMedCrossRefGoogle Scholar
  92. [92]
    Shin D, Shin JY, McManus MT, Ptacek LJ, Fu YH. Dicer ablation in oligodendrocytes provokes neuronal impairment in mice. Ann Neurol 2009, 66: 843–857.PubMedCrossRefGoogle Scholar
  93. [93]
    Dugas JC, Cuellar TL, Scholze A, Ason B, Ibrahim A, Emery B, et al. Dicer1 and miR-219 Are required for normal oligodendrocyte differentiation and myelination. Neuron 2010, 65: 597–611.PubMedCrossRefGoogle Scholar
  94. [94]
    Lau P, Verrier JD, Nielsen JA, Johnson KR, Notterpek L, Hudson LD. Identification of dynamically regulated microRNA and mRNA networks in developing oligodendrocytes. J Neurosci 2008, 28: 11720–11730.PubMedCrossRefGoogle Scholar
  95. [95]
    Letzen BS, Liu C, Thakor NV, Gearhart JD, All AH, Kerr CL. MicroRNA expression profiling of oligodendrocyte differentiation from human embryonic stem cells. PLoS One 2010, 5: e10480.PubMedCrossRefGoogle Scholar
  96. [96]
    Budde H, Schmitt S, Fitzner D, Opitz L, Salinas-Riester G, Simons M. Control of oligodendroglial cell number by the miR-17-92 cluster. Development 2010, 137: 2127–2132.PubMedCrossRefGoogle Scholar
  97. [97]
    Wang E, Cambi F. MicroRNA expression in mouse oligodendrocytes and regulation of proteolipid protein gene expression. J Neurosci Res 2012, 90: 1701–1712.PubMedCrossRefGoogle Scholar
  98. [98]
    Zhao X, Wu J, Zheng M, Gao F, Ju G. Specification and maintenance of oligodendrocyte precursor cells from neural progenitor cells: involvement of microRNA-7a. Mol Biol Cell 2012, 23: 2867–2878.PubMedCrossRefGoogle Scholar
  99. [99]
    Franklin RJ, Blakemore WF. Transplanting oligodendrocyte progenitors into the adult CNS. J Anat 1997, 190(Pt 1): 23–33.PubMedCrossRefGoogle Scholar
  100. [100]
    Levine JM, Reynolds R, Fawcett JW. The oligodendrocyte precursor cell in health and disease. Trends Neurosci 2001, 24: 39–47.PubMedCrossRefGoogle Scholar
  101. [101]
    Keirstead HS, Levine JM, Blakemore WF. Response of the oligodendrocyte progenitor cell population (defined by NG2 labelling) to demyelination of the adult spinal cord. Glia 1998, 22: 161–170.PubMedCrossRefGoogle Scholar
  102. [102]
    Di Bello IC, Dawson MR, Levine JM, Reynolds R. Generation of oligodendroglial progenitors in acute inflammatory demyelinating lesions of the rat brain stem is associated with demyelination rather than inflammation. J Neurocytol 1999, 28: 365–381.PubMedCrossRefGoogle Scholar
  103. [103]
    Levine JM, Reynolds R. Activation and proliferation of endogenous oligodendrocyte precursor cells during ethidium bromide-induced demyelination. Exp Neurol 1999, 160: 333–347.PubMedCrossRefGoogle Scholar
  104. [104]
    Watanabe M, Toyama Y Nishiyama A. Differentiation of proliferated NG2-positive glial progenitor cells in a remyelinating lesion. J Neurosci Res 2002, 69: 826–836.PubMedCrossRefGoogle Scholar
  105. [105]
    Tripathi RB, Rivers LE, Young KM, Jamen F, Richardson WD. NG2 glia generate new oligodendrocytes but few astrocytes in a murine experimental autoimmune encephalomyelitis model of demyelinating disease. J Neurosci 2010, 30: 16383–16390.PubMedCrossRefGoogle Scholar
  106. [106]
    Guo F, Maeda Y, Ma J, Delgado M, Sohn J, Miers L, et al. Macroglial plasticity and the origins of reactive astroglia in experimental autoimmune encephalomyelitis. J Neurosci 2011, 31: 11914–11928.PubMedCrossRefGoogle Scholar
  107. [107]
    Zawadzka M, Rivers LE, Fancy SP, Zhao C, Tripathi R, Jamen F, et al. CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell 2010, 6: 578–590.PubMedCrossRefGoogle Scholar
  108. [108]
    Alonso G. NG2 proteoglycan-expressing cells of the adult rat brain: possible involvement in the formation of glial scar astrocytes following stab wound. Glia 2005, 49: 318–338.PubMedCrossRefGoogle Scholar
  109. [109]
    Komitova M, Serwanski DR, Lu QR, Nishiyama A. NG2 cells are not a major source of reactive astrocytes after neocortical stab wound injury. Glia 2011, 59: 800–809.PubMedCrossRefGoogle Scholar
  110. [110]
    Franklin RJ. Why does remyelination fail in multiple sclerosis? Nat Rev Neurosci 2002, 3: 705–714.PubMedCrossRefGoogle Scholar
  111. [111]
    Chang A, Tourtellotte WW, Rudick R, Trapp BD. Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med 2002, 346: 165–173.PubMedCrossRefGoogle Scholar
  112. [112]
    Mason JL, Toews A, Hostettler JD, Morell P, Suzuki K, Goldman JE, et al. Oligodendrocytes and progenitors become progressively depleted within chronically demyelinated lesions. Am J Pathol 2004, 164: 1673–1682.PubMedCrossRefGoogle Scholar
  113. [113]
    Armstrong RC, Le TQ, Flint NC, Vana AC, Zhou YX. Endogenous cell repair of chronic demyelination. J Neuropathol Exp Neurol 2006, 65: 245–256.PubMedGoogle Scholar
  114. [114]
    Shields SA, Gilson JM, Blakemore WF, Franklin RJ. Remyelination occurs as extensively but more slowly in old rats compared to young rats following gliotoxin-induced CNS demyelination. Glia 1999, 28: 77–83.PubMedCrossRefGoogle Scholar
  115. [115]
    Li WW, Penderis J, Zhao C, Schumacher M, Franklin RJ. Females remyelinate more efficiently than males following demyelination in the aged but not young adult CNS. Exp Neurol 2006, 202: 250–254.PubMedCrossRefGoogle Scholar
  116. [116]
    Sim FJ, Zhao C, Penderis J, Franklin RJ. The age-related decrease in CNS remyelination efficiency is attributable to an impairment of both oligodendrocyte progenitor recruitment and differentiation. J Neurosci 2002, 22: 2451–2459.PubMedGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Physiology and NeurobiologyUniversity of ConnecticutStorrsUSA
  2. 2.University of Connecticut Stem Cell InstituteStorrsUSA

Personalised recommendations