Neuroscience Bulletin

, Volume 29, Issue 2, pp 155–164 | Cite as

Regulation of the timing of oligodendrocyte differentiation: mechanisms and perspectives

  • Hao Huang
  • Xiao-Feng Zhao
  • Kang Zheng
  • Mengsheng Qiu
Review

Abstract

Axonal myelination is an essential process for normal functioning of the vertebrate central nervous system. Proper formation of myelin sheaths around axons depends on the timely differentiation of oligodendrocytes. This differentiation occurs on a predictable schedule both in culture and during development. However, the timing mechanisms for oligodendrocyte differentiation during normal development have not been fully uncovered. Recent studies have identified a large number of regulatory factors, including cell-intrinsic factors and extracellular signals, that could control the timing of oligodendrocyte differentiation. Here we provide a mechanistic and critical review of the timing control of oligodendrocyte differentiation.

Keywords

oligodendrocytes differentiation timing remyelination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Durand B, Raff M. A cell-intrinsic timer that operates during oligodendrocyte development. Bioessays 2000, 22: 64–71.PubMedCrossRefGoogle Scholar
  2. [2]
    Temple S, Raff MC. Clonal analysis of oligodendrocyte development in culture: evidence for a developmental clock that counts cell divisions. Cell 1986, 44(5): 773–779.PubMedCrossRefGoogle Scholar
  3. [3]
    Gao FB, Durand B, Raff M. Oligodendrocyte precursor cells count time but not cell divisions before differentiation. Curr Biol 1997, 7: 152–155.PubMedCrossRefGoogle Scholar
  4. [4]
    Richardson WD, Pringle NP, Yu WP, Hall AC. Origins of spinal cord oligodendrocytes: possible developmental and evolutionary relationships with motor neurons. Dev Neurosci 1997, 19: 58–68.PubMedCrossRefGoogle Scholar
  5. [5]
    Qi Y, Tan M, Hui CC, Qiu M. Gli2 is required for normal Shh signaling and oligodendrocyte development in the spinal cord. Mol Cell Neurosci 2003, 23: 440–450.PubMedCrossRefGoogle Scholar
  6. [6]
    Liu R, Cai J, Hu X, Tan M, Qi Y, German M, et al. Regionspecific and stage-dependent regulation of Olig gene expression and oligodendrogenesis by Nkx6.1 homeodomain transcription factor. Development 2003, 130: 6221–6231.PubMedCrossRefGoogle Scholar
  7. [7]
    Cai J, Qi Y, Hu X, Tan M, Liu Z, Zhang J, et al. Generation of oligodendrocyte precursor cells from mouse dorsal spinal cord independent of Nkx6 regulation and Shh signaling. Neuron 2005, 45: 41–53.PubMedCrossRefGoogle Scholar
  8. [8]
    Zheng K, Li H, Zhu Y, Zhu Q, Qiu M. MicroRNAs are essential for the developmental switch from neurogenesis to gliogenesis in the developing spinal cord. J Neurosci 2010, 30: 8245–8250.PubMedCrossRefGoogle Scholar
  9. [9]
    Tokumoto YM, Apperly JA, Gao FB, Raff MC. Posttranscriptional regulation of p18 and p27 Cdk inhibitor proteins and the timing of oligodendrocyte differentiation. Dev Biol 2002, 245: 224–234.PubMedCrossRefGoogle Scholar
  10. [10]
    Durand B, Gao FB, Raff M. Accumulation of the cyclin-dependent kinase inhibitor p27/Kip1 and the timing of oligodendrocyte differentiation. EMBO J 1997, 16: 306–317.PubMedCrossRefGoogle Scholar
  11. [11]
    Dugas JC, Ibrahim A, Barres BA. A crucial role for p57(Kip2) in the intracellular timer that controls oligodendrocyte differentiation. J Neurosci 2007, 27: 6185–6196.PubMedCrossRefGoogle Scholar
  12. [12]
    Casaccia-Bonnefil P, Hardy RJ, Teng KK, Levine JM, Koff A, Chao MV. Loss of p27Kip1 function results in increased proliferative capacity of oligodendrocyte progenitors but unaltered timing of differentiation. Development 1999, 126: 4027–4037.PubMedGoogle Scholar
  13. [13]
    Kondo T, Raff M. Basic helix-loop-helix proteins and the timing of oligodendrocyte differentiation. Development 2000, 127: 2989–2998.PubMedGoogle Scholar
  14. [14]
    Wang S, Sdrulla A, Johnson JE, Yokota Y, Barres BA. A role for the helix-loop-helix protein Id2 in the control of oligodendrocyte development. Neuron 2001, 29: 603–614.PubMedCrossRefGoogle Scholar
  15. [15]
    Kondo T, Raff M. The id4 HLH protein and the timing of oligodendrocyte differentiation. EMBO J 2000, 19: 1998–2007.PubMedCrossRefGoogle Scholar
  16. [16]
    Stolt CC, Schlierf A, Lommes P, Hillgartner S, Werner T, Kosian T, et al. SoxD proteins influence multiple stages of oligodendrocyte development and modulate SoxE protein function. Dev Cell 2006, 11: 697–709.PubMedCrossRefGoogle Scholar
  17. [17]
    Stolt CC, Rehberg S, Ader M, Lommes P, Riethmacher D, Schachner M, et al. Terminal differentiation of myelin-forming oligodendrocytes depends on the transcription factor Sox10. Genes Dev 2002, 16: 165–170.PubMedCrossRefGoogle Scholar
  18. [18]
    Wang SZ, Dulin J, Wu H, Hurlock E, Lee SE, Jansson K, et al. An oligodendrocyte-specific zinc-finger transcription regulator cooperates with Olig2 to promote oligodendrocyte differentiation. Development 2006, 133: 3389–3398.PubMedCrossRefGoogle Scholar
  19. [19]
    Weng Q, Chen Y, Wang H, Xu X, Yang B, He Q, et al. Dualmode modulation of Smad signaling by Smad-interacting protein Sip1 is required for myelination in the central nervous system. Neuron 2012, 73: 713–728.PubMedCrossRefGoogle Scholar
  20. [20]
    Emery B, Agalliu D, Cahoy JD, Watkins TA, Dugas JC, Mulinyawe SB, et al. Myelin gene regulatory factor is a critical transcriptional regulator required for CNS myelination. Cell 2009, 138: 172–185.PubMedCrossRefGoogle Scholar
  21. [21]
    Howng SY, Avila RL, Emery B, Traka M, Lin W, Watkins T, et al. ZFP191 is required by oligodendrocytes for CNS myelination. Genes Dev 2010, 24: 301–311.PubMedCrossRefGoogle Scholar
  22. [22]
    Qi Y, Cai J, Wu Y, Wu R, Lee J, Fu H, et al. Control of oligodendrocyte differentiation by the Nkx2.2 homeodomain transcription factor. Development 2001, 128: 2723–2733.PubMedGoogle Scholar
  23. [23]
    Liu A, Li J, Marin-Husstege M, Kageyama R, Fan Y, Gelinas C, et al. A molecular insight of Hes5-dependent inhibition of myelin gene expression: old partners and new players. EMBO J 2006, 25: 4833–4842.PubMedCrossRefGoogle Scholar
  24. [24]
    Stolt CC, Lommes P, Sock E, Chaboissier MC, Schedl A, Wegner M. The Sox9 transcription factor determines glial fate choice in the developing spinal cord. Genes Dev 2003, 17: 1677–1689.PubMedCrossRefGoogle Scholar
  25. [25]
    Stolt CC, Lommes P, Friedrich RP, Wegner M. Transcription factors Sox8 and Sox10 perform non-equivalent roles during oligodendrocyte development despite functional redundancy. Development 2004, 131: 2349–2358.PubMedCrossRefGoogle Scholar
  26. [26]
    Finzsch M, Stolt CC, Lommes P, Wegner M. Sox9 and Sox10 influence survival and migration of oligodendrocyte precursors in the spinal cord by regulating PDGF receptor alpha expression. Development 2008, 135: 637–646.PubMedCrossRefGoogle Scholar
  27. [27]
    Cai J, Zhu Q, Zheng K, Li H, Qi Y, Cao Q, et al. Co-localization of Nkx6.2 and Nkx2.2 homeodomain proteins in differentiated myelinating oligodendrocytes. Glia 2010, 58: 458–468.PubMedGoogle Scholar
  28. [28]
    Papizan JB, Singer RA, Tschen SI, Dhawan S, Friel JM, Hipkens SB, et al. Nkx2.2 repressor complex regulates islet beta-cell specification and prevents beta-to-alpha-cell reprogramming. Genes Dev 2011, 25: 2291–2305.PubMedCrossRefGoogle Scholar
  29. [29]
    Zhou Q, Choi G, Anderson DJ. The bHLH transcription factor olig2 promotes oligodendrocyte differentiation in collaboration with Nkx2.2. Neuron 2001, 31: 791–807.PubMedCrossRefGoogle Scholar
  30. [30]
    Zhou Q, Wang S, Anderson DJ. Identification of a novel family of oligodendrocyte lineage-specific basic helix-loop-helix transcription factors. Neuron 2000, 25: 331–343.PubMedCrossRefGoogle Scholar
  31. [31]
    Zhou Q, Anderson DJ. The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 2002, 109: 61–73.PubMedCrossRefGoogle Scholar
  32. [32]
    Lu QR, Sun T, Zhu Z, Ma N, Garcia M, Stiles CD, et al. Common developmental requirement for olig function indicates a motor neuron/oligodendrocyte connection. Cell 2002, 109: 75–86.PubMedCrossRefGoogle Scholar
  33. [33]
    Li H, Lu Y, Smith HK, Richardson WD. Olig1 and Sox10 interact synergistically to drive myelin basic protein transcription in oligodendrocytes. J Neurosci 2007, 27: 14375–14382.PubMedCrossRefGoogle Scholar
  34. [34]
    Kim HM, Hwang DH, Choi JY, Park CH, Suh-Kim H, Kim SU, et al. Differential and cooperative actions of Olig1 and Olig2 transcription factors on immature proliferating cells after contusive spinal cord injury. Glia 2011, 59: 1094–1106.PubMedCrossRefGoogle Scholar
  35. [35]
    Xin M, Yue T, Ma Z, Wu FF, Gow A, Lu QR. Myelinogenesis and axonal recognition by oligodendrocytes in brain are uncoupled in Olig1-null mice. J Neurosci 2005, 25: 1354–1365.PubMedCrossRefGoogle Scholar
  36. [36]
    Niu J, Mei F, Wang L, Liu S, Tian Y, Mo W, et al. Phosphorylated olig1 localizes to the cytosol of oligodendrocytes and promotes membrane expansion and maturation. Glia 2012, 60: 1427–1436.PubMedCrossRefGoogle Scholar
  37. [37]
    Ligon KL, Fancy SP, Franklin RJ, Rowitch DH. Olig gene function in CNS development and disease. Glia 2006, 54: 1–10.PubMedCrossRefGoogle Scholar
  38. [38]
    Sugimori M, Nagao M, Parras CM, Nakatani H, Lebel M, Guillemot F, et al. Ascl1 is required for oligodendrocyte development in the spinal cord. Development 2008, 135: 1271–1281.PubMedCrossRefGoogle Scholar
  39. [39]
    Ueno T, Ito J, Hoshikawa S, Ohori Y, Fujiwara S, Yamamoto S, et al. The identification of transcriptional targets of Ascl1 in oligodendrocyte development. Glia 2012, 60: 1495–1505.PubMedCrossRefGoogle Scholar
  40. [40]
    Liu J, Sandoval J, Doh ST, Cai L, Lopez-Rodas G, Casaccia P. Epigenetic modifiers are necessary but not sufficient for reprogramming non-myelinating cells into myelin gene-expressing cells. PLoS One 2010, 5(9): e13023.PubMedCrossRefGoogle Scholar
  41. [41]
    Ye F, Chen Y, Hoang T, Montgomery RL, Zhao XH, Bu H, et al. HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the beta-catenin-TCF interaction. Nat Neurosci 2009, 12: 829–838.PubMedCrossRefGoogle Scholar
  42. [42]
    Shen S, Li J, Casaccia-Bonnefil P. Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developing rat brain. J Cell Biol 2005, 169: 577–589.PubMedCrossRefGoogle Scholar
  43. [43]
    Zheng K, Li H, Huang H, Qiu M. MicroRNAs and glial cell development. Neuroscientist 2012, 18: 114–118.PubMedCrossRefGoogle Scholar
  44. [44]
    Barca-Mayo O, Lu QR. Fine-tuning oligodendrocyte development by microRNAs. Front Neurosci 2012, 6: 13.PubMedCrossRefGoogle Scholar
  45. [45]
    Dugas JC, Cuellar TL, Scholze A, Ason B, Ibrahim A, Emery B, et al. Dicer1 and miR-219 Are required for normal oligodendrocyte differentiation and myelination. Neuron 2010, 65: 597–611.PubMedCrossRefGoogle Scholar
  46. [46]
    Zhao X, He X, Han X, Yu Y, Ye F, Chen Y, et al. MicroRNA-mediated control of oligodendrocyte differentiation. Neuron 2010, 65: 612–626.PubMedCrossRefGoogle Scholar
  47. [47]
    Raff MC, Lillien LE, Richardson WD, Burne JF, Noble MD. Platelet-derived growth factor from astrocytes drives the clock that times oligodendrocyte development in culture. Nature 1988, 333: 562–565.PubMedCrossRefGoogle Scholar
  48. [48]
    Hart IK, Richardson WD, Bolsover SR, Raff MC. PDGF and intracellular signaling in the timing of oligodendrocyte differentiation. J Cell Biol 1989, 109: 3411–3417.PubMedCrossRefGoogle Scholar
  49. [49]
    Calver AR, Hall AC, Yu WP, Walsh FS, Heath JK, Betsholtz C, et al. Oligodendrocyte population dynamics and the role of PDGF in vivo. Neuron 1998, 20: 869–882.PubMedCrossRefGoogle Scholar
  50. [50]
    Fu H, Qi Y, Tan M, Cai J, Takebayashi H, Nakafuku M, et al. Dual origin of spinal oligodendrocyte progenitors and evidence for the cooperative role of Olig2 and Nkx2.2 in the control of oligodendrocyte differentiation. Development 2002, 129: 681–693.PubMedGoogle Scholar
  51. [51]
    Bennett AM, Tang TL, Sugimoto S, Walsh CT, Neel BG. Protein-tyrosine-phosphatase SHPTP2 couples platelet-derived growth factor receptor beta to Ras. Proc Natl Acad Sci U S A 1994, 91: 7335–7339.PubMedCrossRefGoogle Scholar
  52. [52]
    Zhu Y, Park J, Hu X, Zheng K, Li H, Cao Q, et al. Control of oligodendrocyte generation and proliferation by Shp2 protein tyrosine phosphatase. Glia 2010, 58: 1407–1414.PubMedGoogle Scholar
  53. [53]
    Fyffe-Maricich SL, Karlo JC, Landreth GE, Miller RH. The ERK2 mitogen-activated protein kinase regulates the timing of oligodendrocyte differentiation. J Neurosci 2011, 31: 843–850.PubMedCrossRefGoogle Scholar
  54. [54]
    Billon N, Tokumoto Y, Forrest D, Raff M. Role of thyroid hormone receptors in timing oligodendrocyte differentiation. Dev Biol 2001, 235: 110–120.PubMedCrossRefGoogle Scholar
  55. [55]
    Ibarrola N, Mayer-Proschel M, Rodriguez-Pena A, Noble M. Evidence for the existence of at least two timing mechanisms that contribute to oligodendrocyte generation in vitro. Dev Biol 1996, 180: 1–21.PubMedCrossRefGoogle Scholar
  56. [56]
    Billon N, Jolicoeur C, Tokumoto Y, Vennstrom B, Raff M. Normal timing of oligodendrocyte development depends on thyroid hormone receptor alpha 1 (TRalpha1). EMBO J 2002, 21: 6452–6460.PubMedCrossRefGoogle Scholar
  57. [57]
    Baas D, Legrand C, Samarut J, Flamant F. Persistence of oligodendrocyte precursor cells and altered myelination in optic nerve associated to retina degeneration in mice devoid of all thyroid hormone receptors. Proc Natl Acad Sci U S A 2002, 99: 2907–2911.PubMedCrossRefGoogle Scholar
  58. [58]
    Wang S, Sdrulla AD, diSibio G, Bush G, Nofziger D, Hicks C, et al. Notch receptor activation inhibits oligodendrocyte differentiation. Neuron 1998, 21: 63–75.PubMedCrossRefGoogle Scholar
  59. [59]
    Givogri MI, Costa RM, Schonmann V, Silva AJ, Campagnoni AT, Bongarzone ER. Central nervous system myelination in mice with deficient expression of Notch1 receptor. J Neurosci Res 2002, 67: 309–320.PubMedCrossRefGoogle Scholar
  60. [60]
    Genoud S, Lappe-Siefke C, Goebbels S, Radtke F, Aguet M, Scherer SS, et al. Notch1 control of oligodendrocyte differentiation in the spinal cord. J Cell Biol 2002, 158: 709–718.PubMedCrossRefGoogle Scholar
  61. [61]
    Zhang Y, Argaw AT, Gurfein BT, Zameer A, Snyder BJ, Ge C, et al. Notch1 signaling plays a role in regulating precursor differentiation during CNS remyelination. Proc Natl Acad Sci U S A 2009, 106: 19162–19167.PubMedCrossRefGoogle Scholar
  62. [62]
    Fancy SP, Baranzini SE, Zhao C, Yuk DI, Irvine KA, Kaing S, et al. Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes Dev 2009, 23: 1571–1585.PubMedCrossRefGoogle Scholar
  63. [63]
    Fu H, Kesari S, Cai J. Tcf7l2 is tightly controlled during myelin formation. Cell Mol Neurobiol 2012, 32: 345–352.PubMedCrossRefGoogle Scholar
  64. [64]
    Feigenson K, Reid M, See J, Crenshaw EB 3rd, Grinspan JB. Wnt signaling is sufficient to perturb oligodendrocyte maturation. Mol Cell Neurosci 2009, 42: 255–265.PubMedCrossRefGoogle Scholar
  65. [65]
    Chen Y, Wu H, Wang S, Koito H, Li J, Ye F, et al. The oligodendrocyte-specific G protein-coupled receptor GPR17 is a cell-intrinsic timer of myelination. Nat Neurosci 2009, 12: 1398–1406.PubMedCrossRefGoogle Scholar
  66. [66]
    Lecca D, Trincavelli ML, Gelosa P, Sironi L, Ciana P, Fumagalli M, et al. The recently identified P2Y-like receptor GPR17 is a sensor of brain damage and a new target for brain repair. PLoS One 2008, 3: e3579.PubMedCrossRefGoogle Scholar
  67. [67]
    Jepson S, Vought B, Gross CH, Gan L, Austen D, Frantz JD, et al. LINGO-1, a transmembrane signaling protein, inhibits oligodendrocyte differentiation and myelination through intercellular self-interactions. J Biol Chem 2012, 287: 22184–22195.PubMedCrossRefGoogle Scholar
  68. [68]
    Mi S, Miller RH, Lee X, Scott ML, Shulag-Morskaya S, Shao Z, et al. LINGO-1 negatively regulates myelination by oligodendrocytes. Nat Neurosci 2005, 8: 745–751.PubMedCrossRefGoogle Scholar
  69. [69]
    Mi S, Hu B, Hahm K, Luo Y, Kam Hui ES, Yuan Q, et al. LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MoG-induced experimental autoimmune encephalomyelitis. Nat Med 2007, 13: 1228–1233.PubMedCrossRefGoogle Scholar
  70. [70]
    Cheng X, Wang Y, He Q, Qiu M, Whittemore SR, Cao Q. Bone morphogenetic protein signaling and olig1/2 interact to regulate the differentiation and maturation of adult oligodendrocyte precursor cells. Stem Cells 2007, 25: 3204–3214.PubMedCrossRefGoogle Scholar
  71. [71]
    Samanta J, Kessler JA. Interactions between ID and OLIG proteins mediate the inhibitory effects of BMP4 on oligodendroglial differentiation. Development 2004, 131: 4131–4142.PubMedCrossRefGoogle Scholar
  72. [72]
    Samanta J, Burke GM, McGuire T, Pisarek AJ, Mukhopadhyay A, Mishina Y, et al. BMPR1a signaling determines numbers of oligodendrocytes and calbindin-expressing interneurons in the cortex. J Neurosci 2007, 27: 7397–7407.PubMedCrossRefGoogle Scholar
  73. [73]
    See J, Mamontov P, Ahn K, Wine-Lee L, Crenshaw EB, 3rd, Grinspan JB. BMP signaling mutant mice exhibit glial cell maturation defects. Mol Cell Neurosci 2007, 35: 171–182.PubMedCrossRefGoogle Scholar
  74. [74]
    Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 2008, 28: 264–278.PubMedCrossRefGoogle Scholar
  75. [75]
    Levine JM, Reynolds R. Activation and proliferation of endogenous oligodendrocyte precursor cells during ethidium bromide-induced demyelination. Exp Neurol 1999, 160: 333–347.PubMedCrossRefGoogle Scholar
  76. [76]
    Chang A, Nishiyama A, Peterson J, Prineas J, Trapp BD. NG2-positive oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions. J Neurosci 2000, 20: 6404–6412.PubMedGoogle Scholar
  77. [77]
    Scolding N, Franklin R, Stevens S, Heldin CH, Compston A, Newcombe J. Oligodendrocyte progenitors are present in the normal adult human CNS and in the lesions of multiple sclerosis. Brain 1998, 121 (Pt 12): 2221–2228.PubMedCrossRefGoogle Scholar
  78. [78]
    Franklin RJ. Why does remyelination fail in multiple sclerosis? Nat Rev Neurosci 2002, 3: 705–714.PubMedCrossRefGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hao Huang
    • 1
  • Xiao-Feng Zhao
    • 1
  • Kang Zheng
    • 1
  • Mengsheng Qiu
    • 1
    • 2
  1. 1.Institute of Developmental and Regenerative Biology, College of Life SciencesHangzhou Normal UniversityHangzhouChina
  2. 2.Department of Anatomical Sciences and NeurobiologyUniversity of LouisvilleLouisvilleUSA

Personalised recommendations