Skip to main content

Advertisement

Log in

Vulnerability of premyelinating oligodendrocytes to white-matter damage in neonatal brain injury

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Premature birth is a significant economic and public health burden, and its incidence is rising. Periventricular leukomalacia (PVL) is the predominant form of brain injury in premature infants and the leading cause of cerebral palsy. PVL is characterized by selective white-matter damage with prominent oligodendroglial injury. The maturation-dependent vulnerability of developing and premyelinating oligodendrocytes to excitotoxic, oxidative, and inflammatory forms of injury is a major factor in the pathogenesis of PVL. Recent studies using mouse models of PVL reveal that synapses between axons and developing oligodendrocytes are quickly and profoundly damaged in immature white matter. Axon-glia synapses are highly vulnerable to white-matter injury in the developing brain, and the loss of synapses between axons and premyelinating oligodendrocytes occurs before any cellular loss in the immature white matter. Microglial activation and astrogliosis play important roles in triggering white-matter injury. Impairment of white-matter development and function in the neonatal period contributes critically to functional and behavioral deficits. Preservation of the integrity of the white matter is likely key in the treatment of PVL and subsequent neurological consequences and disabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hack M, Wilson-Costello D, Friedman H, Taylor GH, Schluchter M, Fanaroff AA. Neurodevelopment and predictors of outcomes of children with birth weights of less than 1000 g: 1992–1995. Arch Pediatr Adolesc Med 2000, 154: 725–731.

    Article  PubMed  CAS  Google Scholar 

  2. Silbereis JC, Huang EJ, Back SA, Rowitch DH. Towards improved animal models of neonatal white matter injury associated with cerebral palsy. Dis Model Mech 2010, 3: 678–688.

    Article  PubMed  Google Scholar 

  3. Titomanlio L, Kavelaars A, Dalous J, Mani S, El Ghouzzi V, Heijnen C, et al. Stem cell therapy for neonatal brain injury: perspectives and challenges. Ann Neurol 2011, 70: 698–712.

    Article  PubMed  Google Scholar 

  4. Volpe JJ. Neurology of the Newborn, 4th ed. Philadelphia: WB Saunders, 2001: 217–276.

    Google Scholar 

  5. Volpe JJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 2009, 8: 110–124.

    Article  PubMed  Google Scholar 

  6. Banker BQ, Larroche JC. Periventricular leukomalacia of infancy. A form of neonatal anoxic encephalopathy. Arch Neurol 1962, 7: 386–410.

    Article  PubMed  CAS  Google Scholar 

  7. Leviton A, Gilles FH. Acquired perinatal leukoencephalopathy. Ann Neurol 1984, 16: 1–8.

    Article  PubMed  CAS  Google Scholar 

  8. Gilles FH, Averill DR Jr, Kerr CS. Neonatal endotoxin encephalopathy. Ann Neurol 1977, 2: 49–56.

    Article  PubMed  CAS  Google Scholar 

  9. Deng W, Pleasure J, Pleasure D. Progress in periventricular leukomalacia. Arch Neurol 2008, 65: 1291–1295.

    Article  PubMed  Google Scholar 

  10. Pleasure D, Soulika A, Singh SK, Gallo V, Bannerman P. Inflammation in white matter: clinical and pathophysiological aspects. Ment Retard Dev Disabil Res Rev 2006, 12: 141–146.

    Article  PubMed  Google Scholar 

  11. Deng W. Neurobiology of injury to the developing brain. Nat Rev Neurol 2010, 6: 328–336.

    Article  PubMed  Google Scholar 

  12. Back SA, Luo NL, Borenstein NS, Levine JM, Volpe JJ, Kinney HC. Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J Neurosci 2001, 21: 1302–1312.

    PubMed  CAS  Google Scholar 

  13. Kinney HC, Back SA. Human oligodendroglial development: relationship to periventricular leukomalacia. Semin Pediatr Neurol 1998, 5: 180–189.

    Article  PubMed  CAS  Google Scholar 

  14. Levine JM, Reynolds R, Fawcett JW. The oligodendrocyte precursor cell in health and disease. Trends Neurosci 2001, 24: 39–47.

    Article  PubMed  CAS  Google Scholar 

  15. Pfeiffer SE, Warrington AE, Bansal R. The oligodendrocyte and its many cellular processes. Trends Cell Biol 1993, 3: 191–197.

    Article  PubMed  CAS  Google Scholar 

  16. Raff MC, Miller RH, Noble M. A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature 1983, 303: 390–396.

    Article  PubMed  CAS  Google Scholar 

  17. Deng W, Poretz RD. Oligodendroglia in developmental neurotoxicity. Neurotoxicology 2003, 24: 161–178.

    Article  PubMed  CAS  Google Scholar 

  18. Oka A, Belliveau MJ, Rosenberg PA, Volpe JJ. Vulnerability of oligodendroglia to glutamate: pharmacology, mechanisms, and prevention. J Neurosci 1993, 13: 1441–1453.

    PubMed  CAS  Google Scholar 

  19. DeSilva TM, Kabakov AY, Goldhoff PE, Volpe JJ, Rosenberg PA. Regulation of glutamate transport in developing rat oligodendrocytes. J Neurosci 2009, 29: 7898–7908.

    Article  PubMed  CAS  Google Scholar 

  20. Back SA, Craig A, Kayton RJ, Luo NL, Meshul CK, Allcock N, et al. Hypoxia-ischemia preferentially triggers glutamate depletion from oligodendroglia and axons in perinatal cerebral white matter. J Cereb Blood Flow Metab 2007, 27: 334–347.

    Article  PubMed  CAS  Google Scholar 

  21. Desilva TM, Kinney HC, Borenstein NS, Trachtenberg FL, Irwin N, Volpe JJ, et al. The glutamate transporter EAAT2 is transiently expressed in developing human cerebral white matter. J Comp Neurol 2007, 501: 879–890.

    Article  PubMed  CAS  Google Scholar 

  22. Shen Y, Liu XB, Pleasure DE, Deng W. Axon-glia synapses are highly vulnerable to white matter injury in the developing brain. J Neurosci Res 2012, 90: 105–121.

    Article  PubMed  CAS  Google Scholar 

  23. Shen Y, Plane JM, Deng W. Mouse models of periventricular leukomalacia. J Vis Exp 2010. doi: 10. 3791/1951.

    Google Scholar 

  24. Lehnardt S, Henneke P, Lien E, Kasper DL, Volpe JJ, Bechmann I, et al. A mechanism for neurodegeneration induced by group B streptococci through activation of the TLR2/MyD88 pathway in microglia. J Immunol 2006, 177: 583–592.

    PubMed  CAS  Google Scholar 

  25. Lehnardt S, Lachance C, Patrizi S, Lefebvre S, Follett PL, Jensen FE, et al. The toll-like receptor TLR4 is necessary for lipopolysaccharide-induced oligodendrocyte injury in the CNS. J Neurosci 2002, 22: 2478–2486.

    PubMed  CAS  Google Scholar 

  26. Billiards SS, Haynes RL, Folkerth RD, Trachtenberg FL, Liu LG, Volpe JJ, et al. Development of microglia in the cerebral white matter of the human fetus and infant. J Comp Neurol 2006, 497: 199–208.

    Article  PubMed  Google Scholar 

  27. Pitt D, Nagelmeier IE, Wilson HC, Raine CS. Glutamate uptake by oligodendrocytes: Implications for excitotoxicity in multiple sclerosis. Neurology 2003, 61: 1113–1120.

    Article  PubMed  CAS  Google Scholar 

  28. Wender R, Brown AM, Fern R, Swanson RA, Farrell K, Ransom BR. Astrocytic glycogen influences axon function and survival during glucose deprivation in central white matter. J Neurosci 2000, 20: 6804–6810.

    PubMed  CAS  Google Scholar 

  29. Dingledine R, Borges K, Bowie D, Traynelis SF. The glutamate receptor ion channels. Pharmacol Rev 1999, 51: 7–61.

    PubMed  CAS  Google Scholar 

  30. Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 1994, 330: 613–622.

    Article  PubMed  CAS  Google Scholar 

  31. Itoh T, Beesley J, Itoh A, Cohen AS, Kavanaugh B, Coulter DA, et al. AMPA glutamate receptor-mediated calcium signaling is transiently enhanced during development of oligodendrocytes. J Neurochem 2002, 81: 390–402.

    Article  PubMed  CAS  Google Scholar 

  32. Matute C, Sanchez-Gomez MV, Martinez-Millan L, Miledi R. Glutamate receptor-mediated toxicity in optic nerve oligodendrocytes. Proc Natl Acad Sci U S A 1997, 94: 8830–8835.

    Article  PubMed  CAS  Google Scholar 

  33. McDonald JW, Althomsons SP, Hyrc KL, Choi DW, Goldberg MP. Oligodendrocytes from forebrain are highly vulnerable to AMPA/kainate receptor-mediated excitotoxicity. Nat Med 1998, 4: 291–297.

    Article  PubMed  CAS  Google Scholar 

  34. Yoshioka A, Bacskai B, Pleasure D. Pathophysiology of oligodendroglial excitotoxicity. J Neurosci Res 1996, 46: 427–437.

    Article  PubMed  CAS  Google Scholar 

  35. Fern R, Moller T. Rapid ischemic cell death in immature oligodendrocytes: a fatal glutamate release feedback loop. J Neurosci 2000, 20: 34–42.

    PubMed  CAS  Google Scholar 

  36. Follett PL, Deng W, Dai W, Talos DM, Massillon LJ, Rosenberg PA, et al. Glutamate receptor-mediated oligodendrocyte toxicity in periventricular leukomalacia: a protective role for topiramate. J Neurosci 2004, 24: 4412–4420.

    Article  PubMed  CAS  Google Scholar 

  37. Follett PL, Rosenberg PA, Volpe JJ, Jensen FE. NBQX attenuates excitotoxic injury in developing white matter. J Neurosci 2000, 20: 9235–9241.

    PubMed  CAS  Google Scholar 

  38. Deng W, Neve RL, Rosenberg PA, Volpe JJ, Jensen FE. Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor subunit composition and cAMP-response elementbinding protein regulate oligodendrocyte excitotoxicity. J Biol Chem 2006, 281: 36004–36011.

    Article  PubMed  CAS  Google Scholar 

  39. Deng W, Rosenberg PA, Volpe JJ, Jensen FE. Calcium-permeable AMPA/kainate receptors mediate toxicity and preconditioning by oxygen-glucose deprivation in oligodendrocyte precursors. Proc Natl Acad Sci U S A 2003, 100: 6801–6806.

    Article  PubMed  CAS  Google Scholar 

  40. Deng W, Wang H, Rosenberg PA, Volpe JJ, Jensen FE. Role of metabotropic glutamate receptors in oligodendrocyte excitotoxicity and oxidative stress. Proc Natl Acad Sci U S A 2004, 101: 7751–7756.

    Article  PubMed  CAS  Google Scholar 

  41. Karadottir R, Cavelier P, Bergersen LH, Attwell D. NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature 2005, 438: 1162–1166.

    Article  PubMed  CAS  Google Scholar 

  42. Micu I, Jiang Q, Coderre E, Ridsdale A, Zhang L, Woulfe J, et al. NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia. Nature 2006, 439: 988–992.

    PubMed  CAS  Google Scholar 

  43. Salter MG, Fern R. NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury. Nature 2005, 438: 1167–1171.

    Article  PubMed  CAS  Google Scholar 

  44. Haynes RL, Baud O, Li J, Kinney HC, Volpe JJ, Folkerth DR. Oxidative and nitrative injury in periventricular leukomalacia: a review. Brain Pathol 2005, 15: 225–233.

    Article  PubMed  CAS  Google Scholar 

  45. Haynes RL, Folkerth RD, Keefe RJ, Sung I, Swzeda LI, Rosenberg PA, et al. Nitrosative and oxidative injury to premyelinating oligodendrocytes in periventricular leukomalacia. J Neuropathol Exp Neurol 2003, 62: 441–450.

    PubMed  Google Scholar 

  46. Griffiths M, Neal JW, Gasque P. Innate immunity and protective neuroinflammation: new emphasis on the role of neuroimmune regulatory proteins. Int Rev Neurobiol 2007, 82: 29–55.

    Article  PubMed  CAS  Google Scholar 

  47. Glezer I, Zekki H, Scavone C, Rivest S. Modulation of the innate immune response by NMDA receptors has neuropathological consequences. J Neurosci 2003, 23: 11094–11103.

    PubMed  CAS  Google Scholar 

  48. Lechpammer M, Manning SM, Samonte F, Nelligan J, Sabo E, Talos DM, et al. Minocycline treatment following hypoxic/ischaemic injury attenuates white matter injury in a rodent model of periventricular leucomalacia. Neuropathol Appl Neurobiol 2008, 34: 379–393.

    Article  PubMed  CAS  Google Scholar 

  49. Liu W, Shen Y, Plane JM, Pleasure DE, Deng W. Neuroprotective potential of erythropoietin and its derivative carbamylated erythropoietin in periventricular leukomalacia. Exp Neurol 2011, 230: 227–239.

    Article  PubMed  CAS  Google Scholar 

  50. Fields RD. Myelination: an overlooked mechanism of synaptic plasticity? Neuroscientist 2005, 11: 528–531.

    Article  PubMed  Google Scholar 

  51. Anjari M, Srinivasan L, Allsop JM, Hajnal JV, Rutherford MA, Edwards AD, et al. Diffusion tensor imaging with tract-based spatial statistics reveals local white matter abnormalities in preterm infants. Neuroimage 2007, 35: 1021–1027.

    Article  PubMed  Google Scholar 

  52. Arzoumanian Y, Mirmiran M, Barnes PD, Woolley K, Ariagno RL, Moseley ME, et al. Diffusion tensor brain imaging findings at term-equivalent age may predict neurologic abnormalities in low birth weight preterm infants. AJNR Am J Neuroradiol 2003, 24: 1646–1653.

    PubMed  CAS  Google Scholar 

  53. Inder TE, Huppi PS, Warfield S, Kikinis R, Zientara GP, Barnes PD, et al. Periventricular white matter injury in the premature infant is followed by reduced cerebral cortical gray matter volume at term. Ann Neurol 1999, 46: 755–760.

    Article  PubMed  CAS  Google Scholar 

  54. Inder TE, Wells SJ, Mogridge NB, Spencer C, Volpe JJ. Defining the nature of the cerebral abnormalities in the premature infant: a qualitative magnetic resonance imaging study. J Pediatr 2003, 143: 171–179.

    Article  PubMed  Google Scholar 

  55. Peterson BS, Vohr B, Staib LH, Cannistraci CJ, Dolberg A, Schneider KC, et al. Regional brain volume abnormalities and long-term cognitive outcome in preterm infants. JAMA 2000, 284: 1939–1947.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbin Deng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, XB., Shen, Y., Plane, J.M. et al. Vulnerability of premyelinating oligodendrocytes to white-matter damage in neonatal brain injury. Neurosci. Bull. 29, 229–238 (2013). https://doi.org/10.1007/s12264-013-1311-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-013-1311-5

Keywords

Navigation