Skip to main content
Log in

Time-course of perceptual processing of “hole” and “no-hole” figures: An ERP study

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Closure or the presence of a “hole” is an emergent perceptual feature that can be extracted by the visual system early on. This feature has been shown to have perceptual advantages over openness or “no-hole”. in this study, we investigated when and how the human brain differentiates between “hole” and “no-hole” figures. Event-related potentials (ERPs) were recorded during a passive observation paradigm. Two pairs of simple figures (Experiment 1) and two sets of Greek letters (Experiment 2) were used as stimuli. The ERPs of “hole” and “no-hole” figures differed ∼90 ms after stimulus onset: “hole” figures elicited smaller P1 and N1 amplitudes than “no-hole” figures. These suggest that both P1 and N1 components are sensitive to the difference between “hole” and “no-hole” figures; perception of “hole” and “no-hole” figures might be differentiated early during visual processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen L. Topological structure in visual perception. Science 1982, 218: 699–700.

    Article  PubMed  CAS  Google Scholar 

  2. Chen L. Holes and wholes: a reply to Rubin and Kanwisher. Percept Psychophys 1990, 47: 47–53.

    Article  PubMed  CAS  Google Scholar 

  3. Chen L. The topological approach to perceptual organization. Vis Cogn 2005, 12: 553–701.

    Article  Google Scholar 

  4. Zhuo Y, Zhou TG, Rao HY, Wang JJ, Meng M, Chen M, et al. Contributions of the visual ventral pathway to long-range apparent motion. Science 2003, 299: 417–420.

    Article  PubMed  CAS  Google Scholar 

  5. Kimchi R. Primacy of wholistic processing and global/local paradigm: a critical review. Psychol Bull 1992, 112: 24–38.

    Article  PubMed  CAS  Google Scholar 

  6. Kimchi R. The role of wholistic/configural properties versus global properties in visual form perception. Perception 1994, 23: 489–504.

    Article  PubMed  CAS  Google Scholar 

  7. Kimchi R, Bloch B. Dominance of configural properties in visual form perception. Psychon Bull Rev 1998, 5: 135–139.

    Article  Google Scholar 

  8. Turati C, Simion F, Zanon L. Newborns’ perceptual categorization for closed and open geometric forms. infancy 2003, 4: 309–325.

    Article  Google Scholar 

  9. Donnelly N, Humphreys GW, Riddoch MJ. Parallel computation of primitive shape descriptions. J Exp Psychol Hum Percept Perform 1991, 17: 561–570.

    Article  PubMed  CAS  Google Scholar 

  10. Pomerantz JR, Sager LC, Stoever RJ. Perception of wholes and of their component parts: some configural superiority effects. J Exp Psychol Hum Percept Perform 1977, 3: 422–435.

    Article  PubMed  CAS  Google Scholar 

  11. Treisman A, Paterson R. Emergent features, attention, and object perception. J Exp Psychol Hum Percept Perform 1984, 10: 12–31.

    Article  PubMed  CAS  Google Scholar 

  12. Zhang J, Zhu W, Ding X, Zhou C, Hu X, Ma Y. Different masking effects on “hole” and “no-hole” figures. J Vis 2009, 9: 6.1–14.

    Article  Google Scholar 

  13. Bertamini M, Lawson R. Visual search for a circular region perceived as a figure versus as a hole: evidence of the importance of part structure. Percept Psychophys 2006, 68: 776–791.

    Article  PubMed  Google Scholar 

  14. Bertamini M. Who owns the contour of a visual hole? Perception 2006, 35: 883–894.

    Article  PubMed  Google Scholar 

  15. Komatsu H, ideura Y. Relationships between color, shape, and pattern selectivities of neurons in the inferior temporal cortex of the monkey. J Neurophysiol 1993, 70: 677–694.

    PubMed  CAS  Google Scholar 

  16. Rossion B, Joyce CA, Cottrell GW, Tarr MJ. Early lateralization and orientation tuning for face, word, and object processing in the visual cortex. Neuroimage 2003, 20: 1609–1624.

    Article  PubMed  Google Scholar 

  17. Thorpe S, Fize D, Marlot C. Speed of processing in the human visual system. Nature 1996, 381: 520–522.

    Article  PubMed  CAS  Google Scholar 

  18. VanRullen R, Thorpe SJ. The time course of visual processing: from early perception to decision-making. J Cogn Neurosci 2001, 13: 454–461.

    Article  PubMed  CAS  Google Scholar 

  19. Jeffreys DA. Evoked studies of face and object processing. Vis Cogn 1996, 3: 1–38.

    Article  Google Scholar 

  20. Rossion B, Gauthier i, Tarr MJ, Despland P, Bruyer R, Linotte S, et al. The N170 occipito-temporal component is delayed and enhanced to inverted faces but not to inverted objects: an electrophysiological account of face-specific processes in the human brain. Neuroreport 2000, 11: 69–74.

    Article  PubMed  CAS  Google Scholar 

  21. Large ME, Kiss i, McMullen PA. Electrophysiological correlates of object categorization: back to basics. Brain Res Cogn Brain Res 2004, 20: 415–426.

    Article  PubMed  Google Scholar 

  22. Tanaka J, Luu P, Weisbrod M, Kiefer M. Tracking the time course of object categorization using event-related potentials. Neuroreport 1999, 10: 829–835.

    Article  PubMed  CAS  Google Scholar 

  23. Pernet C, Basan S, Doyon B, Cardebat D, Demonet JF, Celsis P. Neural timing of visual implicit categorization. Brain Res Cogn Brain Res 2003, 17: 327–338.

    Article  PubMed  Google Scholar 

  24. Zhou K, Luo H, Zhou T, Zhuo Y, Chen L. Topological change disturbs object continuity in attentive tracking. Proc Natl Acad Sci U S A 2010, 107: 21920–21924.

    Article  PubMed  CAS  Google Scholar 

  25. Chen L, Zhang S, Srinivasan MV. Global perception in small brains: topological pattern recognition in honey bees. Proc Natl Acad Sci U S A 2003, 100: 6884–6889.

    Article  PubMed  CAS  Google Scholar 

  26. Zhang J, Zhu W, Ding X, Zhou C, Hu X, Ma Y. Configural processing of different topologically structured figures: an ERP study. Sci China C Life Sci 2009, 52: 1198–1204.

    Article  PubMed  Google Scholar 

  27. Thierry G, Martin CD, Downing P, Pegna AJ. Controlling for interstimulus perceptual variance abolishes N170 face selectivity. Nat Neurosci 2007, 10: 505–511.

    Article  PubMed  CAS  Google Scholar 

  28. Dering B, Martin CD, Thierry G. is the N170 peak of visual event-related brain potentials car-selective? Neuroreport 2009, 20: 902–906.

    Article  PubMed  Google Scholar 

  29. Elder J, Zucker S. The effect of contour closure on the rapid discrimination of two-dimensional shapes. Vision Res 1993, 33: 981–991.

    Article  PubMed  CAS  Google Scholar 

  30. Tarkiainen A, Cornelissen PL, Salmelin R. Dynamics of visual feature analysis and object-level processing in face versus letter-string perception. Brain 2002, 125: 1125–1136.

    Article  PubMed  CAS  Google Scholar 

  31. Johnson JS, olshausen BA. Timecourse of neural signatures of object recognition. J Vis 2003, 3: 499–512.

    Article  PubMed  Google Scholar 

  32. Curran T, Tanaka JW, Weiskopf DM. An electrophysiological comparison of visual categorization and recognition memory. Cogn Affect Behav Neurosci 2002, 2: 1–18.

    Article  PubMed  Google Scholar 

  33. Low A, Bentin S, Rockstroh B, Silberman Y, Gomolla A, Cohen R, et al. Semantic categorization in the human brain: spatiotemporal dynamics revealed by magnetoencephalography. Psychol Sci 2003, 14: 367–372.

    Article  PubMed  Google Scholar 

  34. Meng QL, Wang B, Liu N, Ma YY. Topological perception of different age people. Acta Biophys Sin 2006, 22: 87.

    Google Scholar 

  35. Bentin S, Allison T, Puce A, Perez E, McCarthy G. Electrophysiological studies of face perception in humans. J Cogn Neurosci 1996, 8: 551–565.

    Article  PubMed  Google Scholar 

  36. Eimer M. Effects of face inversion on the structural encoding and recognition of faces. Evidence from event-related brain potentials. Brain Res Cogn Brain Res 2000, 10: 145–158.

    Article  PubMed  CAS  Google Scholar 

  37. Itier RJ, Taylor MJ. N170 or N1? Spatiotemporal differences between object and face processing using ERPs. Cereb Cortex 2004, 14: 132–142.

    Article  PubMed  Google Scholar 

  38. Itier RJ, Taylor MJ. Effects of repetition and configural changes on the development of face recognition processes. Dev Sci 2004, 7: 469–487.

    Article  PubMed  Google Scholar 

  39. Itier RJ, Taylor MJ. Face recognition memory and configural processing: a developmental ERP study using upright, inverted, and contrast-reversed faces. J Cogn Neurosci 2004, 16: 487–502.

    Article  PubMed  Google Scholar 

  40. Linkenkaer-Hansen K, Palva JM, Sams M, Hietanen JK, Aronen HJ, ilmoniemi RJ. Face-selective processing in human extrastriate cortex around 120 ms after stimulus onset revealed by magneto- and electroencephalography. Neurosci Lett 1998, 253: 147–150.

    Article  PubMed  CAS  Google Scholar 

  41. Taylor MJ, Batty M, Itier RJ. The faces of development: a review of early face processing over childhood. J Cogn Neurosci 2004, 16: 1426–1442.

    Article  PubMed  CAS  Google Scholar 

  42. Boehm SG, Dering B, Thierry G. Category-sensitivity in the N170 range: a question of topography and inversion, not one of amplitude. Neuropsychologia 2011, 49: 2082–2089.

    Article  PubMed  Google Scholar 

  43. Itier RJ, Latinus M, Taylor MJ. Face, eye and object early processing: what is the face specificity? Neuroimage 2006, 29: 667–676.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weina Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, W., Zhang, J. & Zhou, C. Time-course of perceptual processing of “hole” and “no-hole” figures: An ERP study. Neurosci. Bull. 29, 47–57 (2013). https://doi.org/10.1007/s12264-012-1290-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-012-1290-y

Keywords

Navigation