Skip to main content
Log in

Low-frequency fluctuation in continuous real-time feedback of finger force: a new paradigm for sustained attention

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Objective

Behavioral studies have suggested a low-frequency (0.05 Hz) fluctuation of sustained attention on the basis of the intra-individual variability of reaction-time. Conventional task designs for functional magnetic resonance imaging (fMRI) studies are not appropriate for frequency analysis. The present study aimed to propose a new paradigm, real-time finger force feedback (RT-FFF), to study the brain mechanisms of sustained attention and neurofeedback.

Methods

We compared the low-frequency fluctuations in both behavioral and fMRI data from 38 healthy adults (19 males; mean age, 22.3 years). Two fMRI sessions, in RT-FFF and sham finger force feedback (S-FFF) states, were acquired (TR 2 s, Siemens Trio 3-Tesla scanner, 8 min each, counter-balanced). Behavioral data of finger force were obtained simultaneously at a sampling rate of 250 Hz.

Results

Frequency analysis of the behavioral data showed lower amplitude in the lowfrequency band (0.004–0.104 Hz) but higher amplitude in the high-frequency band (27.02–125 Hz) in the RT-FFF than the S-FFF states. The mean finger force was not significantly different between the two states. fMRI data analysis showed higher fractional amplitude of low-frequency fluctuation (fALFF) in the S-FFF than in the RT-FFF state in the visual cortex, but higher fALFF in RT-FFF than S-FFF in the middle frontal gyrus, the superior frontal gyrus, and the default mode network.

Conclusion

The behavioral results suggest that the proposed paradigm may provide a new approach to studies of sustained attention. The fMRI results suggest that a distributed network including visual, motor, attentional, and default mode networks may be involved in sustained attention and/or real-time feedback. This paradigm may be helpful for future studies on deficits of attention, such as attention deficit hyperactivity disorder and mild traumatic brain injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thompson M, Thompson L. The Neurofeedback Book: An intro duction to Basic Concepts in Applied Psychophysiology. Wheat Ridge, Co: Association for Applied Psychophysiology & Biofeedback, 2003.

    Google Scholar 

  2. Yucha CB, Montgomery D. Evidence-based practice in biofeedback and neurofeedback. Wheat Ridge, Co: Association for Applied Psychophysiology & Biofeedback, 2008.

    Google Scholar 

  3. Kriz G, Hermsdorfer J, Marquardt C, Mai N. Feedback-based training of grip force control in patients with brain damage. Arch Phys Med Rehabil 1995, 76(7): 653–659.

    Article  PubMed  CAS  Google Scholar 

  4. Seo NJ, Fischer HW, Bogey RA, Rymer WZ, Kamper DG. Use of visual force feedback to improve digit force direction during pinch grip in persons with stroke: A pilot study. Arch Phys Med Rehabil 2011, 92(1): 24–30.

    Article  PubMed  Google Scholar 

  5. Naik SK, Patten C, Lodha N, Coombes SA, Cauraugh JH. Force control deficits in chronic stroke: grip formation and release phases. Exp Brain Res 2011: 1–15.

  6. Vaillancourt DE, Slifkin AB, Newell KM. Visual control of isometric force in Parkinson’s disease. Neuropsychologia 2001, 39(13): 1410–1418.

    Article  PubMed  CAS  Google Scholar 

  7. de Oliveira MA, Rodrigues AM, da Silva Caballero RM, de Souza Petersen RD, Shim JK. Strength and isometric torque control in individuals with Parkinson’s disease. Exp Brain Res 2008, 184(3): 445–450.

    Article  PubMed  Google Scholar 

  8. Frankemolle AMM, Wu J, Noecker AM, Voelcker-Rehage C, Ho JC, Vitek JL, et al. Reversing cognitive-motor impairments in Parkinson’s disease patients using a computational modelling approach to deep brain stimulation programming. Brain 2010, 133(3): 746.

    Article  PubMed  Google Scholar 

  9. Ehrsson HH, Fagergren E, Forssberg H. Differential fronto-parietal activation depending on force used in a precision grip task: an fMRI study. J Neurophysiol 2001, 85(6): 2613–2623.

    PubMed  CAS  Google Scholar 

  10. Ehrsson HH, Fagergren A, Jonsson T, Westling G, Johansson RS, Forssberg H. Cortical activity in precision-versus power-grip tasks: an fMRI study. J Neurophysiol 2000, 83(1): 528–536.

    PubMed  CAS  Google Scholar 

  11. Kuhtz-Buschbeck JP, Gilster R, Wolff S, Ulmer S, Siebner H, Jansen O. Brain activity is similar during precision and power gripping with light force: an fMRI study. Neuroimage 2008, 40(4): 1469–1481.

    Article  PubMed  CAS  Google Scholar 

  12. Keisker B, Hepp-Reymond MC, Blickenstorfer A, Kollias SS. Differential representation of dynamic and static power grip force in the sensorimotor network. Eur J Neurosci 2010, 31(8): 1483–1491.

    Article  PubMed  Google Scholar 

  13. Sterr A, Shen S, Kranczioch C, Szameitat AJ, Hou W, Sorger B. fMRI effects of task demand and feedback accuracy on grip force tracking. Neurosci Lett 2009, 457(2): 61–65.

    Article  PubMed  CAS  Google Scholar 

  14. Coombes SA, Corcos DM, Vaillancourt DE. Spatiotemporal tuning of brain activity and force performance. Neuroimage 2011, 54(3): 2226–2236.

    Article  PubMed  Google Scholar 

  15. Blank R, Heizer W, von Voss H. Externally guided control of static grip forces by visual feedback-age and task effects in 3–6-year old children and in adults. Neurosci Lett 1999, 271(1): 41–44.

    Article  PubMed  CAS  Google Scholar 

  16. Ward N, Frackowiak R. Age-related changes in the neural correlates of motor performance. Brain 2003, 126(4): 873.

    Article  PubMed  CAS  Google Scholar 

  17. Halder P, Sterr A, Brem S, Bucher K, Kollias S, Brandeis D. Electrophysiological evidence for cortical plasticity with movement repetition. Eur J Neurosci 2005, 21(8): 2271–2277.

    Article  PubMed  Google Scholar 

  18. Halder P, Brem S, Bucher K, Boujraf S, Summers P, Dietrich T, et al. Electrophysiological and hemodynamic evidence for late maturation of hand power grip and force control under visual feedback. Hum Brain Mapp 2007, 28(1): 69–84.

    Article  PubMed  Google Scholar 

  19. Kuhtz-Buschbeck JP, Ehrsson HH, Forssberg H. Human brain activity in the control of fine static precision grip forces: an fMRI study. Eur J Neurosci 2001, 14(2): 382–390.

    Article  PubMed  CAS  Google Scholar 

  20. Haller S, Chapuis D, Gassert R, Burdet E, Klarhofer M. Supplementary motor area and anterior intraparietal area integrate finegraded timing and force control during precision grip. Eur J Neurosci 2009, 30 (12): 2401–2406.

    Article  Google Scholar 

  21. Wasson P, Prodoehl J, Coombes SA, Corcos DM, Vaillancourt DE. Predicting grip force amplitude involves circuits in the anterior basal ganglia. Neuroimage 2010, 49(4): 3230–3238.

    Article  PubMed  Google Scholar 

  22. Grafton ST, Tunik E. Human basal ganglia and the dynamic control of force during on-line corrections. J Neurosci 2011, 31(5): 1600–1605.

    Article  PubMed  CAS  Google Scholar 

  23. Coombes SA, Corcos DM, Sprute L, Vaillancourt DE. Selective regions of the visuomotor system are related to gain-induced changes in force error. J Neurophysiol 2010, 103(4): 2114–2123.

    Article  PubMed  Google Scholar 

  24. Castellanos FX, Sonuga-Barke EJ, Scheres A, Di Martino A, Hyde C, Walters JR. Varieties of attention-deficit/hyperactivity disorderrelated intra-individual variability. Biol Psychiatry 2005, 57(11): 1416–1423.

    Article  PubMed  Google Scholar 

  25. Sonuga-Barke EJS, Castellanos FX. Spontaneous attentional fluctuations in impaired states and pathological conditions: a neurobiological hypothesis. Neurosci Biobehav Rev 2007, 31(7): 977–986.

    Article  PubMed  Google Scholar 

  26. Di Martino A, Ghaffari M, Curchack J, Reiss P, Hyde C, Vannucci M, et al. Decomposing intra-subject variability in children with attention-deficit/hyperactivity disorder. Biol Psychiatry 2008, 64(7): 607–614.

    Article  PubMed  Google Scholar 

  27. Bonnelle V, Leech R, Kinnunen KM, Ham TE, Beckmann CF, De Boissezon X, et al. Default mode network connectivity predicts sustained attention deficits after traumatic brain injury. J Neurosci 2011, 31(38): 13442–13451.

    Article  PubMed  CAS  Google Scholar 

  28. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 1995, 34(4): 537–541.

    Article  PubMed  CAS  Google Scholar 

  29. van Duinen H, Renken R, Maurits N, Zijdewind I. Effects of motor fatigue on human brain activity, an fMRI study. Neuroimage 2007, 35(4): 1438–1449.

    Article  PubMed  Google Scholar 

  30. Yan CG, Zang YF. DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front Syst Neurosci 2010, 4: 13.

    Google Scholar 

  31. Song XW, Dong ZY, Long XY, Li SF, Zuo XN, Zhu CZ, et al. REST: A toolkit for resting-state functional magnetic resonance imaging data processing. PLoS One 2011, 6(9): e25031.

    Article  PubMed  CAS  Google Scholar 

  32. Ashburner J, Friston KJ. Unified segmentation. Neuroimage 2005, 26(3): 839–851.

    Article  PubMed  Google Scholar 

  33. Zou QH, Zhu CZ, Yang Y, Zuo XN, Long XY, Cao QJ, et al. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J Neurosci Methods 2008, 172(1): 137–141.

    Article  PubMed  Google Scholar 

  34. Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, et al. Toward discovery science of human brain function. Proc Natl Acad Sci U S A 2010, 107(10): 4734–4739.

    Article  PubMed  CAS  Google Scholar 

  35. Hoptman MJ, Zuo XN, Butler PD, Javitt DC, D’Angelo D, Mauro CJ, et al. Amplitude of low-frequency oscillations in schizophrenia: a resting state fMRI study. Schizophr Res 2010, 117(1): 13–20.

    Article  PubMed  Google Scholar 

  36. Zuo XN, Di Martino A, Kelly C, Shehzad ZE, Gee DG, Klein DF, et al. The oscillating brain: complex and reliable. Neuroimage 2010, 49(2): 1432–1445.

    Article  PubMed  Google Scholar 

  37. Han Y, Wang J, Zhao Z, Min B, Lu J, Li K, et al. Frequency-dependent changes in the amplitude of low-frequency fluctuations in amnestic mild cognitive impairment: a resting-state fMRI study. Neuroimage 2011, 55(1): 287–295.

    Article  PubMed  Google Scholar 

  38. Kunisato Y, Okamoto Y, Okada G, Aoyama S, Demoto Y, Munakata A, et al. Modulation of default-mode network activity by acute tryptophan depletion is associated with mood change: a resting state functional magnetic resonance imaging study. Neurosci Res 2011, 69(2): 129–134.

    Article  PubMed  CAS  Google Scholar 

  39. Zang YF, He Y, Zhu CZ, Cao QJ, Sui MQ, Liang M, et al. Altered baseline brain activity in children with ADHD revealed by restingstate functional MRI. Brain Dev 2007, 29(2): 83–91.

    Article  PubMed  Google Scholar 

  40. Castellanos FX. Proceed, with caution: SPECT cerebral blood flow studies of children and adolescents with attention deficit hyperactivity disorder. J Nucl Med 2002, 43(12): 1630–1633.

    PubMed  Google Scholar 

  41. Leopold DA, Murayama Y, Logothetis NK. Very slow activity fluctuations in monkey visual cortex: implications for functional brain imaging. Cereb Cortex 2003, 13(4): 422.

    Article  PubMed  Google Scholar 

  42. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A 2001, 98(2): 676–682.

    Article  PubMed  CAS  Google Scholar 

  43. Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 2003, 100(1): 253–258.

    Article  PubMed  CAS  Google Scholar 

  44. Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH, et al. Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. AJNR Am J Neuroradiol 2001, 22(7): 1326–1333.

    PubMed  CAS  Google Scholar 

  45. Bhattacharyya PK, Lowe MJ. Cardiac-induced physiologic noise in tissue is a direct observation of cardiac-induced fluctuations. Magn Reson Imaging 2004, 22(1): 9–13.

    Article  PubMed  Google Scholar 

  46. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002, 15(1): 273–289.

    Article  PubMed  CAS  Google Scholar 

  47. Van Dijk KRA, Sabuncu MR, Buckner RL. The influence of head motion on intrinsic functional connectivity MRI. Neuroimage 2012, 59(1): 431–438.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Feng Zang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, ZY., Liu, DQ., Wang, J. et al. Low-frequency fluctuation in continuous real-time feedback of finger force: a new paradigm for sustained attention. Neurosci. Bull. 28, 456–467 (2012). https://doi.org/10.1007/s12264-012-1254-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-012-1254-2

Keywords

Navigation