Neuroscience Bulletin

, Volume 28, Issue 4, pp 333–341 | Cite as

Chromophore-assisted laser inactivation in neural development



Chromophore-assisted laser inactivation (CALI) is a technique that uses photochemically-generated reactive oxygen species to acutely inactivate target proteins in living cells. Neural development includes highly dynamic cellular processes such as asymmetric cell division, migration, axon and dendrite outgrowth and synaptogenesis. Although many key molecules of neural development have been identified since the past decades, their spatiotemporal contributions to these cellular events are not well understood. CALI provides an appealing tool for elucidating the precise functions of these molecules during neural development. In this review, we summarize the principles of CALI, a recent microscopic setup to perform CALI experiments, and the application of CALI to the study of growth-cone motility and neuroblast asymmetric division.


chromophore-assisted laser inactivation growth cone neuroblast asymmetric cell division 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Hoffman-Kim D, Diefenbach TJ, Eustace BK, Jay DG. Chromophore-assisted laser inactivation. Methods Cell Biol 2007, 82: 335–354.PubMedCrossRefGoogle Scholar
  2. [2]
    Jacobson K, Rajfur Z, Vitriol E, Hahn K. Chromophore-assisted laser inactivation in cell biology. Trends Cell Biol 2008, 18: 443–450.PubMedCrossRefGoogle Scholar
  3. [3]
    Beck S, Sakurai T, Eustace BK, Beste G, Schier R, Rudert F, et al. Fluorophore-assisted light inactivation: a high-throughput tool for direct target validation of proteins. Proteomics 2002, 2: 247–255.PubMedCrossRefGoogle Scholar
  4. [4]
    Buchstaller A, Jay DG. Micro-scale chromophore-assisted laser inactivation of nerve growth cone proteins. Microsc Res Tech 2000, 48: 97–106.PubMedCrossRefGoogle Scholar
  5. [5]
    Diamond P, Mallavarapu A, Schnipper J, Booth J, Park L, O’Connor TP, et al. Fasciclin I and II have distinct roles in the development of grasshopper pioneer neurons. Neuron 1993, 11: 409–421.PubMedCrossRefGoogle Scholar
  6. [6]
    Jay DG, Keshishian H. Laser inactivation of fasciclin I disrupts axon adhesion of grasshopper pioneer neurons. Nature 1990, 348: 548–550.PubMedCrossRefGoogle Scholar
  7. [7]
    Tour O, Meijer RM, Zacharias DA, Adams SR, Tsien RY. Genetically targeted chromophore-assisted light inactivation. Nat Biotechnol 2003, 21: 1505–1508.PubMedCrossRefGoogle Scholar
  8. [8]
    Rajfur Z, Roy P, Otey C, Romer L, Jacobson K. Dissecting the link between stress fibres and focal adhesions by CALI with EGFP fusion proteins. Nat Cell Biol 2002, 4: 286–293.PubMedCrossRefGoogle Scholar
  9. [9]
    Bulina ME, Lukyanov KA, Britanova OV, Onichtchouk D, Lukyanov S, Chudakov DM. Chromophore-assisted light inactivation (CALI) using the phototoxic fluorescent protein KillerRed. Nat Protoc 2006, 1: 947–953.PubMedCrossRefGoogle Scholar
  10. [10]
    Bulina ME, Chudakov DM, Britanova OV, Yanushevich YG, Staroverov DB, Chepurnykh TV, et al. A genetically encoded photosensitizer. Nat Biotechnol 2006, 24: 95–99.PubMedCrossRefGoogle Scholar
  11. [11]
    Vitriol EA, Uetrecht AC, Shen F, Jacobson K, Bear JE. Enhanced EGFP-chromophore-assisted laser inactivation using deficient cells rescued with functional EGFP-fusion proteins. Proc Natl Acad Sci U S A 2007, 104: 6702–6707.PubMedCrossRefGoogle Scholar
  12. [12]
    Tanabe T, Oyamada M, Fujita K, Dai P, Tanaka H, Takamatsu T. Multiphoton excitation-evoked chromophore-assisted laser inactivation using green fluorescent protein. Nat Methods 2005, 2 (7): 503–505.CrossRefGoogle Scholar
  13. [13]
    Pletnev S, Gurskaya NG, Pletneva NV, Lukyanov KA, Chudakov DM, Martynov VI, et al. Structural basis for phototoxicity of the genetically encoded photosensitizer KillerRed. J Biol Chem 2009, 284: 32028–32039.PubMedCrossRefGoogle Scholar
  14. [14]
    Carpentier P, Violot S, Blanchoin L, Bourgeois D. Structural basis for the phototoxicity of the fluorescent protein KillerRed. FEBS Lett 2009, 583: 2839–2842.PubMedCrossRefGoogle Scholar
  15. [15]
    Jay DG, Sakurai T. Chromophore-assisted laser inactivation (CALI) to elucidate cellular mechanisms of cancer. Biochim Biophys Acta 1999, 1424: M39–48.PubMedGoogle Scholar
  16. [16]
    Jay DG. Selective destruction of protein function by chromophore-assisted laser inactivation. Proc Natl Acad Sci U S A 1988, 85: 5454–5458.PubMedCrossRefGoogle Scholar
  17. [17]
    Ou G, Stuurman N, D’Ambrosio M, Vale RD. Polarized myosin produces unequal-size daughters during asymmetric cell division. Science 2010, 330: 677–680.PubMedCrossRefGoogle Scholar
  18. [18]
    Schmucker D, Su AL, Beermann A, Jackle H, Jay DG. Chromophore-assisted laser inactivation of patched protein switches cell fate in the larval visual system of Drosophila. Proc Natl Acad Sci U S A 1994, 91: 2664–2668.PubMedCrossRefGoogle Scholar
  19. [19]
    Monier B, Pelissier-Monier A, Brand AH, Sanson B. An actomyosin-based barrier inhibits cell mixing at compartmental boundaries in Drosophila embryos. Nat Cell Biol 2010, 12: 60–65; sup: 61–69.PubMedCrossRefGoogle Scholar
  20. [20]
    Vitriol EA, Zheng JQ. Growth cone travel in space and time: the cellular ensemble of cytoskeleton, adhesion, and membrane. Neuron 2012, 73: 1068–1081.PubMedCrossRefGoogle Scholar
  21. [21]
    Takei K, Shin RM, Inoue T, Kato K, Mikoshiba K. Regulation of nerve growth mediated by inositol 1,4,5-trisphosphate receptors in growth cones. Science 1998, 282: 1705–1708.PubMedCrossRefGoogle Scholar
  22. [22]
    Takei K, Chan TA, Wang FS, Deng H, Rutishauser U, Jay DG. The neural cell adhesion molecules L1 and NCAM-180 act in different steps of neurite outgrowth. J Neurosci 1999, 19: 9469–9479.PubMedGoogle Scholar
  23. [23]
    Chang HY, Takei K, Sydor AM, Born T, Rusnak F, Jay DG. Asymmetric retraction of growth cone filopodia following focal inactivation of calcineurin. Nature 1995, 376: 686–690.PubMedCrossRefGoogle Scholar
  24. [24]
    Hoffman-Kim D, Kerner JA, Chen A, Xu A, Wang TF, Jay DG. pp60(c-src) is a negative regulator of laminin-1-mediated neurite outgrowth in chick sensory neurons. Mol Cell Neurosci 2002, 21: 81–93.PubMedCrossRefGoogle Scholar
  25. [25]
    Castelo L, Jay DG. Radixin is involved in lamellipodial stability during nerve growth cone motility. Mol Biol Cell 1999, 10: 1511–1520.PubMedGoogle Scholar
  26. [26]
    Sydor AM, Su AL, Wang FS, Xu A, Jay DG. Talin and vinculin play distinct roles in filopodial motility in the neuronal growth cone. J Cell Biol 1996, 134: 1197–1207.PubMedCrossRefGoogle Scholar
  27. [27]
    Diefenbach TJ, Latham VM, Yimlamai D, Liu CA, Herman IM, Jay DG. Myosin 1c and myosin IIB serve opposing roles in lamellipodial dynamics of the neuronal growth cone. J Cell Biol 2002, 158: 1207–1217.PubMedCrossRefGoogle Scholar
  28. [28]
    Wang FS, Wolenski JS, Cheney RE, Mooseker MS, Jay DG. Function of myosin-V in filopodial extension of neuronal growth cones. Science 1996, 273: 660–663.PubMedCrossRefGoogle Scholar
  29. [29]
    Liu CW, Lee G, Jay DG. Tau is required for neurite outgrowth and growth cone motility of chick sensory neurons. Cell Motil Cytoskeleton 1999, 43: 232–242.PubMedCrossRefGoogle Scholar
  30. [30]
    Mack TG, Koester MP, Pollerberg GE. The microtubule-associated protein MAP1B is involved in local stabilization of turning growth cones. Mol Cell Neurosci 2000, 15: 51–65.PubMedCrossRefGoogle Scholar
  31. [31]
    Higurashi M, Iketani M, Takei K, Yamashita N, Aoki R, Kawahara N, et al. Localized role of CRMP1 and CRMP2 in neurite outgrowth and growth cone steering. Dev Neurobiol 2012. doi: 10.1002/dneu.22017.Google Scholar
  32. [32]
    Nadar VC, Lin S, Baas PW. Microtubule redistribution in growth cones elicited by focal inactivation of kinesin-5. J Neurosci 2012, 32: 5783–5794.PubMedCrossRefGoogle Scholar
  33. [33]
    Abe TK, Honda T, Takei K, Mikoshiba K, Hoffman-Kim D, Jay DG, et al. Dynactin is essential for growth cone advance. Biochem Biophys Res Commun 2008, 372: 418–422.PubMedCrossRefGoogle Scholar
  34. [34]
    Qi YB, Garren EJ, Shu X, Tsien RY, Jin Y. Photo-inducible cell ablation in Caenorhabditis elegans using the genetically encoded singlet oxygen generating protein miniSOG. Proc Natl Acad Sci U S A 2012, 109: 7499–7504.PubMedCrossRefGoogle Scholar
  35. [35]
    Wu YI, Frey D, Lungu OI, Jaehrig A, Schlichting I, Kuhlman B, et al. A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 2009, 461: 104–108.PubMedCrossRefGoogle Scholar
  36. [36]
    Levskaya A, Weiner OD, Lim WA, Voigt CA. Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 2009, 461: 997–1001.PubMedCrossRefGoogle Scholar
  37. [37]
    Takemoto K, Matsuda T, McDougall M, Klaubert DH, Hasegawa A, Los GV, et al. Chromophore-assisted light inactivation of HaloTag fusion proteins labeled with eosin in living cells. ACS Chem Biol 2011, 6: 401–406.PubMedCrossRefGoogle Scholar
  38. [38]
    Muller BK, Jay DG, Bonhoeffer F. Chromophore-assisted laser inactivation of a repulsive axonal guidance molecule. Curr Biol 1996, 6: 1497–1502.PubMedCrossRefGoogle Scholar
  39. [39]
    Sakurai T, Wong E, Drescher U, Tanaka H, Jay DG. Ephrin-A5 restricts topographically specific arborization in the chick retinotectal projection in vivo. Proc Natl Acad Sci U S A 2002, 99: 10795–10800.PubMedCrossRefGoogle Scholar
  40. [40]
    Wong EV, David S, Jacob MH, Jay DG. Inactivation of myelin-associated glycoprotein enhances optic nerve regeneration. J Neurosci 2003, 23: 3112–3117.PubMedGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.National Laboratory of Biomacromolecules, Institute of BiophysicsChinese Academy of SciencesBeijingChina
  2. 2.The Howard Hughes Medical Institute and the Department of Cellular and Molecular PharmacologyUniversity of California, San FranciscoSan FranciscoUSA

Personalised recommendations