Neuroscience Bulletin

, Volume 28, Issue 4, pp 423–434 | Cite as

Optogenetics in neuroscience: what we gain from studies in mammals

Review

Abstract

Optogenetics is a newly-introduced technology in the life sciences and is gaining increasing attention. It refers to the combination of optical technologies and genetic methods to control the activity of specific cell groups in living tissue, during which high-resolution spatial and temporal manipulation of cells is achieved. Optogenetics has been applied to numerous regions, including cerebral cortex, hippocampus, ventral tegmental area, nucleus accumbens, striatum, spinal cord, and retina, and has revealed new directions of research in neuroscience and the treatment of related diseases. Since optogenetic tools are controllable at high spatial and temporal resolution, we discuss its applications in these regions in detail and the recent understanding of higher brain functions, such as reward-seeking, learning and memory, and sleep. Further, the possibilities of improved utility of this newly-emerging technology are discussed. We intend to provide a paradigm of the latest advances in neuroscience using optogenetics.

Keywords

optogenetics channnelrhodopsin halorhodopsin mammals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Fork RL. Laser stimulation of nerve cells in Aplysia. Science 1971, 171: 907–908.PubMedCrossRefGoogle Scholar
  2. [2]
    Farber IC, Grinvald A. Identification of presynaptic neurons by laser photostimulation. Science 1983, 222: 1025–1027.PubMedCrossRefGoogle Scholar
  3. [3]
    Schmucker D, Su AL, Beermann A, Jackle H, Jay DG. Chromophore-assisted laser inactivation of patched protein switches cell fate in the larval visual system of Drosophila. Proc Natl Acad Sci U S A 1994, 91: 2664–2668.PubMedCrossRefGoogle Scholar
  4. [4]
    Zemelman BV, Lee GA, Ng M, Miesenbock G. Selective photostimulation of genetically chARGed neurons. Neuron 2002, 33: 15–22.PubMedCrossRefGoogle Scholar
  5. [5]
    Lima SQ, Miesenbock G. Remote control of behavior through genetically targeted photostimulation of neurons. Cell 2005, 121: 141–152.PubMedCrossRefGoogle Scholar
  6. [6]
    Chambers JJ, Kramer RH. Light-activated ion channels for remote control of neural activity. Methods Cell Biol 2008, 90: 217–232.PubMedCrossRefGoogle Scholar
  7. [7]
    Banghart M, Borges K, Isacoff E, Trauner D, Kramer RH. Lightactivated ion channels for remote control of neuronal firing. Nat Neurosci 2004, 7: 1381–1386.PubMedCrossRefGoogle Scholar
  8. [8]
    Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Millisecondtimescale, genetically targeted optical control of neural activity. Nat Neurosci 2005, 8: 1263–1268.PubMedCrossRefGoogle Scholar
  9. [9]
    Fenno L, Yizhar O, Deisseroth K. The development and application of optogenetics. Ann Rev Neurosci 2011, 34: 389–412.PubMedCrossRefGoogle Scholar
  10. [10]
    Gradinaru V, Thompson KR, Zhang F, Mogri M, Kay K, Schneider MB, et al. Targeting and readout strategies for fast optical neural control in vitro and in vivo. J Neurosci 2007, 27: 14231–14238.PubMedCrossRefGoogle Scholar
  11. [11]
    Wang H, Sugiyama Y, Hikima T, Sugano E, Tomita H, Takahashi T, et al. Molecular determinants differentiating photocurrent properties of two channelrhodopsins from chlamydomonas. J Biol Chem 2009, 284: 5685–5696.PubMedCrossRefGoogle Scholar
  12. [12]
    Gradinaru V, Zhang F, Ramakrishnan C, Mattis J, Prakash R, Diester I, et al. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 2010, 141: 154–165.PubMedCrossRefGoogle Scholar
  13. [13]
    Airan RD, Thompson KR, Fenno LE, Bernstein H, Deisseroth K. Temporally precise in vivo control of intracellular signalling. Nature 2009, 458: 1025–1029.PubMedCrossRefGoogle Scholar
  14. [14]
    Zhang F, Gradinaru V, Adamantidis AR, Durand R, Airan RD, de Lecea L, et al. Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat Protoc 2010, 5: 439–456.PubMedCrossRefGoogle Scholar
  15. [15]
    Diester I, Kaufman MT, Mogri M, Pashaie R, Goo W, Yizhar O, et al. An optogenetic toolbox designed for primates. Nat Neurosci 2011, 14: 387–397.PubMedCrossRefGoogle Scholar
  16. [16]
    Arenkiel BR, Peca J, Davison IG, Feliciano C, Deisseroth K, Augustine GJ, et al. In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron 2007, 54: 205–218.PubMedCrossRefGoogle Scholar
  17. [17]
    Lima SQ, Hromadka T, Znamenskiy P, Zador AM. PINP: a new method of tagging neuronal populations for identification during in vivo electrophysiological recording. PLoS One 2009, 4: e6099.PubMedCrossRefGoogle Scholar
  18. [18]
    Royer S, Zemelman BV, Barbic M, Losonczy A, Buzsaki G, Magee JC. Multi-array silicon probes with integrated optical fibers: lightassisted perturbation and recording of local neural circuits in the behaving animal. Eur J Neurosci 2010, 31: 2279–2291.PubMedCrossRefGoogle Scholar
  19. [19]
    Andrasfalvy BK, Zemelman BV, Tang J, Vaziri A. Two-photon single-cell optogenetic control of neuronal activity by sculpted light. Proc Natl Acad Sci U S A 2010, 107: 11981–11986.PubMedCrossRefGoogle Scholar
  20. [20]
    Cardin JA, Carlen M, Meletis K, Knoblich U, Zhang F, Deisseroth K, et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 2009, 459: 663–667.PubMedCrossRefGoogle Scholar
  21. [21]
    Sohal VS, Zhang F, Yizhar O, Deisseroth K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 2009, 459: 698–702.PubMedCrossRefGoogle Scholar
  22. [22]
    Huber D, Petreanu L, Ghitani N, Ranade S, Hromadka T, Mainen Z, et al. Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice. Nature 2008, 451: 61–64.PubMedCrossRefGoogle Scholar
  23. [23]
    Letzkus JJ, Wolff SB, Meyer EM, Tovote P, Courtin J, Herry C, et al. A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature 2011, 480: 331–335.PubMedCrossRefGoogle Scholar
  24. [24]
    Cruikshank SJ, Urabe H, Nurmikko AV, Connors BW. Pathwayspecific feedforward circuits between thalamus and neocortex revealed by selective optical stimulation of axons. Neuron 2010, 65: 230–245.PubMedCrossRefGoogle Scholar
  25. [25]
    Poulet JF, Fernandez LM, Crochet S, Petersen CC. Thalamic control of cortical states. Nat Neurosci 2012, 15: 370–372.PubMedCrossRefGoogle Scholar
  26. [26]
    Goold CP, Nicoll RA. Single-cell optogenetic excitation drives homeostatic synaptic depression. Neuron 2010, 68: 512–528.PubMedCrossRefGoogle Scholar
  27. [27]
    Kohl MM, Shipton OA, Deacon RM, Rawlins JN, Deisseroth K, Paulsen O. Hemisphere-specific optogenetic stimulation reveals left-right asymmetry of hippocampal plasticity. Nat Neurosci 2011, 14: 1413–1415.PubMedCrossRefGoogle Scholar
  28. [28]
    Tsai HC, Zhang F, Adamantidis A, Stuber GD, Bonci A, de Lecea L, et al. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 2009, 324: 1080–1084.PubMedCrossRefGoogle Scholar
  29. [29]
    Adamantidis AR, Tsai HC, Boutrel B, Zhang F, Stuber GD, Budygin EA, et al. Optogenetic interrogation of dopaminergic modulation of the multiple phases of reward-seeking behavior. J Neurosci 2011, 31: 10829–10835.PubMedCrossRefGoogle Scholar
  30. [30]
    Witten IB, Lin SC, Brodsky M, Prakash R, Diester I, Anikeeva P, et al. Cholinergic interneurons control local circuit activity and cocaine conditioning. Science 2010, 330: 1677–1681.PubMedCrossRefGoogle Scholar
  31. [31]
    Xia Y, Driscoll JR, Wilbrecht L, Margolis EB, Fields HL, Hjelmstad GO. Nucleus accumbens medium spiny neurons target non-dopaminergic neurons in the ventral tegmental area. J Neurosci 2011, 31: 7811–7816.PubMedCrossRefGoogle Scholar
  32. [32]
    Kravitz AV, Freeze BS, Parker PR, Kay K, Thwin MT, Deisseroth K, et al. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 2010, 466: 622–626.PubMedCrossRefGoogle Scholar
  33. [33]
    Tonnesen J, Parish CL, Sorensen AT, Andersson A, Lundberg C, Deisseroth K, et al. Functional integration of grafted neural stem cell-derived dopaminergic neurons monitored by optogenetics in an in vitro Parkinson model. PLoS One 2011, 6: e17560.PubMedCrossRefGoogle Scholar
  34. [34]
    Ciocchi S, Herry C, Grenier F, Wolff SB, Letzkus JJ, Vlachos I, et al. Encoding of conditioned fear in central amygdala inhibitory circuits. Nature 2010, 468: 277–282.PubMedCrossRefGoogle Scholar
  35. [35]
    Knobloch HS, Charlet A, Hoffmann LC, Eliava M, Khrulev S, Cetin AH, et al. Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron 2012, 73: 553–566.PubMedCrossRefGoogle Scholar
  36. [36]
    Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 2007, 450: 420–424.PubMedCrossRefGoogle Scholar
  37. [37]
    Tsunematsu T, Kilduff TS, Boyden ES, Takahashi S, Tominaga M, Yamanaka A. Acute optogenetic silencing of orexin/hypocretin neurons induces slow-wave sleep in mice. J Neurosci 2011, 31: 10529–10539.PubMedCrossRefGoogle Scholar
  38. [38]
    Carter ME, Yizhar O, Chikahisa S, Nguyen H, Adamantidis A, Nishino S, et al. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci 2010, 13: 1526–1533.PubMedCrossRefGoogle Scholar
  39. [39]
    Abbott SB, Stornetta RL, Fortuna MG, Depuy SD, West GH, Harris TE, et al. Photostimulation of retrotrapezoid nucleus phox2b-expressing neurons in vivo produces long-lasting activation of breathing in rats. J Neurosci 2009, 29: 5806–5819.PubMedCrossRefGoogle Scholar
  40. [40]
    Kanbar R, Stornetta RL, Cash DR, Lewis SJ, Guyenet PG. Photostimulation of Phox2b medullary neurons activates cardiorespiratory function in conscious rats. Am J Respir Crit Care Med 2010, 182: 1184–1194.PubMedCrossRefGoogle Scholar
  41. [41]
    Lagali PS, Balya D, Awatramani GB, Munch TA, Kim DS, Busskamp V, et al. Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat Neurosci 2008, 11: 667–675.PubMedCrossRefGoogle Scholar
  42. [42]
    Busskamp V, Duebel J, Balya D, Fradot M, Viney TJ, Siegert S, et al. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 2010, 329: 413–417.PubMedCrossRefGoogle Scholar
  43. [43]
    Carlen M, Meletis K, Siegle JH, Cardin JA, Futai K, Vierling-Claassen D, et al. A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior. Mol Psychiatry 2012, 17: 537–548.PubMedCrossRefGoogle Scholar
  44. [44]
    Covington HE 3rd, Lobo MK, Maze I, Vialou V, Hyman JM, Zaman S, et al. Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex. J Neurosci 2010, 30: 16082–16090.PubMedCrossRefGoogle Scholar
  45. [45]
    Choi GB, Stettler DD, Kallman BR, Bhaskar ST, Fleischmann A, Axel R. Driving opposing behaviors with ensembles of piriform neurons. Cell 2011, 146: 1004–1015.PubMedCrossRefGoogle Scholar
  46. [46]
    Halassa MM, Siegle JH, Ritt JT, Ting JT, Feng G, Moore CI. Selective optical drive of thalamic reticular nucleus generates thalamic bursts and cortical spindles. Nat Neurosci 2011, 14: 1118–1120.PubMedCrossRefGoogle Scholar
  47. [47]
    Gu Z, Yakel JL. Timing-dependent septal cholinergic induction of dynamic hippocampal synaptic plasticity. Neuron 2011, 71: 155–165.PubMedCrossRefGoogle Scholar
  48. [48]
    Goshen I, Brodsky M, Prakash R, Wallace J, Gradinaru V, Ramakrishnan C, et al. Dynamics of retrieval strategies for remote memories. Cell 2011, 147: 678–689.PubMedCrossRefGoogle Scholar
  49. [49]
    Tonnesen J, Sorensen AT, Deisseroth K, Lundberg C, Kokaia M. Optogenetic control of epileptiform activity. Proc Natl Acad Sci U S A 2009, 106: 12162–12167.PubMedCrossRefGoogle Scholar
  50. [50]
    Stuber GD, Hnasko TS, Britt JP, Edwards RH, Bonci A. Dopaminergic terminals in the nucleus accumbens but not the dorsal striatum corelease glutamate. J Neurosci 2010, 30: 8229–8233.PubMedCrossRefGoogle Scholar
  51. [51]
    Brown MT, Bellone C, Mameli M, Labouebe G, Bocklisch C, Balland B, et al. Drug-driven AMPA receptor redistribution mimicked by selective dopamine neuron stimulation. PLoS One 2010, 5: e15870.PubMedCrossRefGoogle Scholar
  52. [52]
    Kim KM, Baratta MV, Yang A, Lee D, Boyden ES, Fiorillo CD. Optogenetic mimicry of the transient activation of dopamine neurons by natural reward is sufficient for operant reinforcement. PLoS One 2012, 7: e33612.PubMedCrossRefGoogle Scholar
  53. [53]
    Witten IB, Steinberg EE, Lee SY, Davidson TJ, Zalocusky KA, Brodsky M, et al. Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement. Neuron 2011, 72: 721–733.PubMedCrossRefGoogle Scholar
  54. [54]
    van Zessen R, Phillips JL, Budygin EA, Stuber GD. Activation of VTA GABA neurons disrupts reward consumption. Neuron 2012, 73: 1184–1194.PubMedCrossRefGoogle Scholar
  55. [55]
    Tan KR, Yvon C, Turiault M, Mirzabekov JJ, Doehner J, Labouebe G, et al. GABA neurons of the VTA drive conditioned place aversion. Neuron 2012, 73: 1173–1183.PubMedCrossRefGoogle Scholar
  56. [56]
    Lobo MK, Covington HE 3rd, Chaudhury D, Friedman AK, Sun H, Damez-Werno D, et al. Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 2010, 330: 385–390.PubMedCrossRefGoogle Scholar
  57. [57]
    Pascoli V, Turiault M, Luscher C. Reversal of cocaine-evoked synaptic potentiation resets drug-induced adaptive behaviour. Nature 2012, 481: 71–75.CrossRefGoogle Scholar
  58. [58]
    Domingos AI, Vaynshteyn J, Voss HU, Ren X, Gradinaru V, Zang F, et al. Leptin regulates the reward value of nutrient. Nat Neurosci 2011, 14: 1562–1568.PubMedCrossRefGoogle Scholar
  59. [59]
    Chuhma N, Tanaka KF, Hen R, Rayport S. Functional connectome of the striatal medium spiny neuron. J Neurosci 2011, 31: 1183–1192.PubMedCrossRefGoogle Scholar
  60. [60]
    Bass CE, Grinevich VP, Vance ZB, Sullivan RP, Bonin KD, Budygin EA. Optogenetic control of striatal dopamine release in rats. J Neurochem 2010, 114: 1344–1352.PubMedGoogle Scholar
  61. [61]
    Johansen JP, Hamanaka H, Monfils MH, Behnia R, Deisseroth K, Blair HT, et al. Optical activation of lateral amygdala pyramidal cells instructs associative fear learning. Proc Natl Acad Sci U S A 2010, 107: 12692–12697.PubMedCrossRefGoogle Scholar
  62. [62]
    Haubensak W, Kunwar PS, Cai H, Ciocchi S, Wall NR, Ponnusamy R, et al. Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature 2010, 468: 270–276.PubMedCrossRefGoogle Scholar
  63. [63]
    Tye KM, Prakash R, Kim SY, Fenno LE, Grosenick L, Zarabi H, et al. Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 2011, 471: 358–362.PubMedCrossRefGoogle Scholar
  64. [64]
    Stuber GD, Sparta DR, Stamatakis AM, van Leeuwen WA, Hardjoprajitno JE, Cho S, et al. Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature 2011, 475: 377–380.PubMedCrossRefGoogle Scholar
  65. [65]
    Carter ME, Adamantidis A, Ohtsu H, Deisseroth K, de Lecea L. Sleep homeostasis modulates hypocretin-mediated sleep-to-wake transitions. J Neurosci 2009, 29: 10939–10949.PubMedCrossRefGoogle Scholar
  66. [66]
    Rolls A, Colas D, Adamantidis A, Carter M, Lanre-Amos T, Heller HC, et al. Optogenetic disruption of sleep continuity impairs memory consolidation. Proc Nat Acad Sci U S A 2011, 108: 13305–13310.CrossRefGoogle Scholar
  67. [67]
    Lin D, Boyle MP, Dollar P, Lee H, Lein ES, Perona P, et al. Functional identification of an aggression locus in the mouse hypothalamus. Nature 2011, 470: 221–226.PubMedCrossRefGoogle Scholar
  68. [68]
    Pagliardini S, Janczewski WA, Tan W, Dickson CT, Deisseroth K, Feldman JL. Active expiration induced by excitation of ventral medulla in adult anesthetized rats. J Neurosci 2011, 31: 2895–2905.PubMedCrossRefGoogle Scholar
  69. [69]
    Abbott SB, Stornetta RL, Socolovsky CS, West GH, Guyenet PG. Photostimulation of channelrhodopsin-2 expressing ventrolateral medullary neurons increases sympathetic nerve activity and blood pressure in rats. J Physiol 2009, 587: 5613–5631.PubMedCrossRefGoogle Scholar
  70. [70]
    Gourine AV, Kasymov V, Marina N, Tang F, Figueiredo MF, Lane S, et al. Astrocytes control breathing through pH-dependent release of ATP. Science 2010, 329: 571–575.PubMedCrossRefGoogle Scholar
  71. [71]
    Alilain WJ, Li X, Horn KP, Dhingra R, Dick TE, Herlitze S, et al. Light-induced rescue of breathing after spinal cord injury. J Neurosci 2008, 28: 11862–11870.PubMedCrossRefGoogle Scholar
  72. [72]
    Bi A, Cui J, Ma YP, Olshevskaya E, Pu M, Dizhoor AM, et al. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 2006, 50: 23–33.PubMedCrossRefGoogle Scholar
  73. [73]
    Zhang Y, Ivanova E, Bi A, Pan ZH. Ectopic expression of multiple microbial rhodopsins restores ON and OFF light responses in retinas with photoreceptor degeneration. J Neurosci 2009, 29: 9186–9196.PubMedCrossRefGoogle Scholar
  74. [74]
    Tomita H, Sugano E, Isago H, Hiroi T, Wang Z, Ohta E, et al. Channelrhodopsin-2 gene transduced into retinal ganglion cells restores functional vision in genetically blind rats. Exp Eye Res 2010, 90: 429–436.PubMedCrossRefGoogle Scholar
  75. [75]
    Farah N, Reutsky I, Shoham S. Patterned optical activation of retinal ganglion cells. Conf Proc IEEE Eng Med Biol Soc 2007, 2007: 6368–6370.PubMedGoogle Scholar
  76. [76]
    Tomita H, Sugano E, Fukazawa Y, Isago H, Sugiyama Y, Hiroi T, et al. Visual properties of transgenic rats harboring the channelrhodopsin-2 gene regulated by the thy-1.2 promoter. PLoS One 2009, 4: e7679.PubMedCrossRefGoogle Scholar
  77. [77]
    Hegemann P, Moglich A. Channelrhodopsin engineering and exploration of new optogenetic tools. Nat Methods 2011, 8: 39–42.PubMedCrossRefGoogle Scholar
  78. [78]
    Desai M, Kahn I, Knoblich U, Bernstein J, Atallah H, Yang A, et al. Mapping brain networks in awake mice using combined optical neural control and fMRI. J Neurophysiol 2011, 105: 1393–1405.PubMedCrossRefGoogle Scholar
  79. [79]
    Lee JH, Durand R, Gradinaru V, Zhang F, Goshen I, Kim DS, et al. Global and local fMRI signals driven by neurons defined optogenetically by type and wiring. Nature 2010, 465: 788–792.PubMedCrossRefGoogle Scholar
  80. [80]
    Busskamp V, Roska B. Optogenetic approaches to restoring visual function in retinitis pigmentosa. Curr Opin Neurobiol 2011, 21: 942–946.PubMedCrossRefGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of PhysiologyThird Military Medical UniversityChongqingChina

Personalised recommendations