Neuroscience Bulletin

, Volume 28, Issue 4, pp 351–374 | Cite as

Emerging approaches to probing ion channel structure and function

  • Wei-Guang Li
  • Tian-Le XuEmail author


Ion channels, as membrane proteins, are the sensors of the cell. They act as the first line of communication with the world beyond the plasma membrane and transduce changes in the external and internal environments into unique electrical signals to shape the responses of excitable cells. Because of their importance in cellular communication, ion channels have been intensively studied at the structural and functional levels. Here, we summarize the diverse approaches, including molecular and cellular, chemical, optical, biophysical, and computational, used to probe the structural and functional rearrangements that occur during channel activation (or sensitization), inactivation (or desensitization), and various forms of modulation. The emerging insights into the structure and function of ion channels by multidisciplinary approaches allow the development of new pharmacotherapies as well as new tools useful in controlling cellular activity.


ion channel structure and function mutagenesis covalent modification voltage-clamp fluorometry computational chemistry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bezanilla F. Ion channels: from conductance to structure. Neuron 2008, 60: 456–468.PubMedCrossRefGoogle Scholar
  2. [2]
    Neher E, Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 1976, 260: 799–802.PubMedCrossRefGoogle Scholar
  3. [3]
    Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 1981, 391: 85–100.PubMedCrossRefGoogle Scholar
  4. [4]
    Noda M, Takahashi H, Tanabe T, Toyosato M, Kikyotani S, Hirose T, et al. Primary structures of beta- and delta-subunit precursors of Torpedo californica acetylcholine receptor deduced from cDNA sequences. Nature 1983, 301: 251–255.PubMedCrossRefGoogle Scholar
  5. [5]
    Noda M, Shimizu S, Tanabe T, Takai T, Kayano T, Ikeda T, et al. Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 1984, 312: 121–127.PubMedCrossRefGoogle Scholar
  6. [6]
    Tempel BL, Papazian DM, Schwarz TL, Jan YN, Jan LY. Sequence of a probable potassium channel component encoded at Shaker locus of Drosophila. Science 1987, 237: 770–775.PubMedCrossRefGoogle Scholar
  7. [7]
    Tanabe T, Takeshima H, Mikami A, Flockerzi V, Takahashi H, Kangawa K, et al. Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 1987, 328: 313–318.PubMedCrossRefGoogle Scholar
  8. [8]
    Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. The sequence of the human genome. Science 2001, 291: 1304–1351.PubMedCrossRefGoogle Scholar
  9. [9]
    Guy HR, Conti F. Pursuing the structure and function of voltagegated channels. Trends Neurosci 1990, 13: 201–206.PubMedCrossRefGoogle Scholar
  10. [10]
    Sine SM, Engel AG. Recent advances in Cys-loop receptor structure and function. Nature 2006, 440: 448–455.PubMedCrossRefGoogle Scholar
  11. [11]
    Biel M, Michalakis S. Cyclic nucleotide-gated channels. Handb Exp Pharmacol 2009: 111–136.Google Scholar
  12. [12]
    Bosmans F, Martin-Eauclaire MF, Swartz KJ. Deconstructing voltage sensor function and pharmacology in sodium channels. Nature 2008, 456: 202–208.PubMedCrossRefGoogle Scholar
  13. [13]
    Magnus CJ, Lee PH, Atasoy D, Su HH, Looger LL, Sternson SM. Chemical and genetic engineering of selective ion channel-ligand interactions. Science 2011, 333: 1292–1296.PubMedCrossRefGoogle Scholar
  14. [14]
    Hille B. Ion channels of excitable membranes. 3rd edition. Sunderland: Sinauer Associates, Inc., 2001: 405–440.Google Scholar
  15. [15]
    Isacoff EY, Jan YN, Jan LY. Evidence for the formation of heteromultimeric potassium channels in Xenopus oocytes. Nature 1990, 345: 530–534.PubMedCrossRefGoogle Scholar
  16. [16]
    Liman ER, Tytgat J, Hess P. Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. Neuron 1992, 9: 861–871.PubMedCrossRefGoogle Scholar
  17. [17]
    McCormack K, Lin L, Iverson LE, Tanouye MA, Sigworth FJ. Tandem linkage of Shaker K+ channel subunits does not ensure the stoichiometry of expressed channels. Biophys J 1992, 63: 1406–1411.PubMedCrossRefGoogle Scholar
  18. [18]
    Tombola F, Ulbrich MH, Isacoff EY. The voltage-gated proton channel Hv1 has two pores, each controlled by one voltage sensor. Neuron 2008, 58: 546–556.PubMedCrossRefGoogle Scholar
  19. [19]
    Browne LE, Cao L, Broomhead HE, Bragg L, Wilkinson WJ, North RA. P2X receptor channels show threefold symmetry in ionic charge selectivity and unitary conductance. Nat Neurosci 2011, 14: 17–18.PubMedCrossRefGoogle Scholar
  20. [20]
    Yang J, Jan YN, Jan LY. Determination of the subunit stoichiometry of an inwardly rectifying potassium channel. Neuron 1995, 15: 1441–1447.PubMedCrossRefGoogle Scholar
  21. [21]
    Im WB, Pregenzer JF, Binder JA, Dillon GH, Alberts GL. Chloride channel expression with the tandem construct of alpha 6-beta 2 GABAA receptor subunit requires a monomeric subunit of alpha 6 or gamma 2. J Biol Chem 1995, 270: 26063–26066.PubMedCrossRefGoogle Scholar
  22. [22]
    Catterall WA. Ion channel voltage sensors: structure, function, and pathophysiology. Neuron 2010, 67: 915–928.PubMedCrossRefGoogle Scholar
  23. [23]
    Swartz KJ. Sensing voltage across lipid membranes. Nature 2008, 456: 891–897.PubMedCrossRefGoogle Scholar
  24. [24]
    Papazian DM, Shao XM, Seoh SA, Mock AF, Huang Y, Wainstock DH. Electrostatic interactions of S4 voltage sensor in Shaker K+ channel. Neuron 1995, 14: 1293–1301.PubMedCrossRefGoogle Scholar
  25. [25]
    Lu Z, Klem AM, Ramu Y. Ion conduction pore is conserved among potassium channels. Nature 2001, 413: 809–813.PubMedCrossRefGoogle Scholar
  26. [26]
    Lu Z, Klem AM, Ramu Y. Coupling between voltage sensors and activation gate in voltage-gated K+ channels. J Gen Physiol 2002, 120: 663–676.PubMedCrossRefGoogle Scholar
  27. [27]
    Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, et al. X-ray structure of a voltage-dependent K+ channel. Nature 2003, 423: 33–41.PubMedCrossRefGoogle Scholar
  28. [28]
    Chakrapani S, Cuello LG, Cortes DM, Perozo E. Structural dynamics of an isolated voltage-sensor domain in a lipid bilayer. Structure 2008, 16: 398–409.PubMedCrossRefGoogle Scholar
  29. [29]
    Alabi AA, Bahamonde MI, Jung HJ, Kim JI, Swartz KJ. Portability of paddle motif function and pharmacology in voltage sensors. Nature 2007, 450: 370–375.PubMedCrossRefGoogle Scholar
  30. [30]
    Eisele JL, Bertrand S, Galzi JL, Devillers-Thiery A, Changeux JP, Bertrand D. Chimaeric nicotinic-serotonergic receptor combines distinct ligand binding and channel specificities. Nature 1993, 366: 479–483.PubMedCrossRefGoogle Scholar
  31. [31]
    Grutter T, de Carvalho LP, Dufresne V, Taly A, Edelstein SJ, Changeux JP. Molecular tuning of fast gating in pentameric ligandgated ion channels. Proc Natl Acad Sci U S A 2005, 102: 18207–18212.PubMedCrossRefGoogle Scholar
  32. [32]
    Triller A, Cluzeaud F, Pfeiffer F, Betz H, Korn H. Distribution of glycine receptors at central synapses: an immunoelectron microscopy study. J Cell Biol 1985, 101: 683–688.PubMedCrossRefGoogle Scholar
  33. [33]
    Papazian DM, Timpe LC, Jan YN, Jan LY. Alteration of voltagedependence of Shaker potassium channel by mutations in the S4 sequence. Nature 1991, 349: 305–310.PubMedCrossRefGoogle Scholar
  34. [34]
    Stuhmer W, Conti F, Suzuki H, Wang XD, Noda M, Yahagi N, et al. Structural parts involved in activation and inactivation of the sodium channel. Nature 1989, 339: 597–603.PubMedCrossRefGoogle Scholar
  35. [35]
    Lopez GA, Jan YN, Jan LY. Hydrophobic substitution mutations in the S4 sequence alter voltage-dependent gating in Shaker K+ channels. Neuron 1991, 7: 327–336.PubMedCrossRefGoogle Scholar
  36. [36]
    Seoh SA, Sigg D, Papazian DM, Bezanilla F. Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel. Neuron 1996, 16: 1159–1167.PubMedCrossRefGoogle Scholar
  37. [37]
    Schofield CM, Trudell JR, Harrison NL. Alanine-scanning mutagenesis in the signature disulfide loop of the glycine receptor alpha 1 subunit: critical residues for activation and modulation. Biochemistry 2004, 43: 10058–10063.PubMedCrossRefGoogle Scholar
  38. [38]
    Ma LJ, Ohmert I, Vardanyan V. Allosteric features of KCNQ1 gating revealed by alanine scanning mutagenesis. Biophys J 2011, 100: 885–894.PubMedCrossRefGoogle Scholar
  39. [39]
    Panchenko VA, Glasser CR, Mayer ML. Structural similarities between glutamate receptor channels and K(+) channels examined by scanning mutagenesis. J Gen Physiol 2001, 117: 345–360.PubMedCrossRefGoogle Scholar
  40. [40]
    Guzman GR, Santiago J, Ricardo A, Marti-Arbona R, Rojas LV, Lasalde-Dominicci JA. Tryptophan scanning mutagenesis in the alphaM3 transmembrane domain of the Torpedo californica acetylcholine receptor: functional and structural implications. Biochemistry 2003, 42: 12243–12250.PubMedCrossRefGoogle Scholar
  41. [41]
    Otero-Cruz JD, Baez-Pagan CA, Caraballo-Gonzalez IM, Lasalde-Dominicci JA. Tryptophan-scanning mutagenesis in the alphaM3 transmembrane domain of the muscle-type acetylcholine receptor. A spring model revealed. J Biol Chem 2007, 282: 9162–9171.PubMedCrossRefGoogle Scholar
  42. [42]
    Ueno S, Lin A, Nikolaeva N, Trudell JR, Mihic SJ, Harris RA, et al. Tryptophan scanning mutagenesis in TM2 of the GABA(A) receptor alpha subunit: effects on channel gating and regulation by ethanol. Br J Pharmacol 2000, 131: 296–302.PubMedCrossRefGoogle Scholar
  43. [43]
    Jenkins A, Andreasen A, Trudell JR, Harrison NL. Tryptophan scanning mutagenesis in TM4 of the GABA(A) receptor alpha1 subunit: implications for modulation by inhaled anesthetics and ion channel structure. Neuropharmacology 2002, 43: 669–678.PubMedCrossRefGoogle Scholar
  44. [44]
    Ishii TM, Nakashima N, Ohmori H. Tryptophan-scanning mutagenesis in the S1 domain of mammalian HCN channel reveals residues critical for voltage-gated activation. J Physiol 2007, 579: 291–301.PubMedCrossRefGoogle Scholar
  45. [45]
    Collins A, Chuang H, Jan YN, Jan LY. Scanning mutagenesis of the putative transmembrane segments of Kir2.1, an inward rectifier potassium channel. Proc Natl Acad Sci U S A 1997, 94: 5456–5460.PubMedCrossRefGoogle Scholar
  46. [46]
    Dong XP, Wang X, Shen D, Chen S, Liu M, Wang Y, et al. Activating mutations of the TRPML1 channel revealed by prolinescanning mutagenesis. J Biol Chem 2009, 284: 32040–32052.PubMedCrossRefGoogle Scholar
  47. [47]
    Jasti J, Furukawa H, Gonzales EB, Gouaux E. Structure of acidsensing ion channel 1 at 1.9 A resolution and low pH. Nature 2007, 449: 316–323.PubMedCrossRefGoogle Scholar
  48. [48]
    Gonzales EB, Kawate T, Gouaux E. Pore architecture and ion sites in acid-sensing ion channels and P2X receptors. Nature 2009, 460: 599–604.PubMedCrossRefGoogle Scholar
  49. [49]
    Xu SZ, Sukumar P, Zeng F, Li J, Jairaman A, English A, et al. TRPC channel activation by extracellular thioredoxin. Nature 2008, 451: 69–72.PubMedCrossRefGoogle Scholar
  50. [50]
    Karlin A, Akabas MH. Substituted-cysteine accessibility method. Methods Enzymol 1998, 293: 123–145.PubMedCrossRefGoogle Scholar
  51. [51]
    Bogdanov M, Zhang W, Xie J, Dowhan W. Transmembrane protein topology mapping by the substituted cysteine accessibility method (SCAM(TM)): application to lipid-specific membrane protein topogenesis. Methods 2005, 36: 148–171.PubMedCrossRefGoogle Scholar
  52. [52]
    Liapakis G, Simpson MM, Javitch JA. The substituted-cysteine accessibility method (SCAM) to elucidate membrane protein structure. Curr Protoc Neurosci 2001, Chapter 4: Unit 4.15.Google Scholar
  53. [53]
    Beck C, Wollmuth LP, Seeburg PH, Sakmann B, Kuner T. NMDAR channel segments forming the extracellular vestibule inferred from the accessibility of substituted cysteines. Neuron 1999, 22: 559–570.PubMedCrossRefGoogle Scholar
  54. [54]
    Panicker S, Cruz H, Arrabit C, Slesinger PA. Evidence for a centrally located gate in the pore of a serotonin-gated ion channel. J Neurosci 2002, 22: 1629–1639.PubMedGoogle Scholar
  55. [55]
    Wilson G, Karlin A. Acetylcholine receptor channel structure in the resting, open, and desensitized states probed with the substituted-cysteine-accessibility method. Proc Natl Acad Sci U S A 2001, 98: 1241–1248.PubMedGoogle Scholar
  56. [56]
    Li M, Chang TH, Silberberg SD, Swartz KJ. Gating the pore of P2X receptor channels. Nat Neurosci 2008, 11: 883–887.PubMedCrossRefGoogle Scholar
  57. [57]
    Li M, Kawate T, Silberberg SD, Swartz KJ. Pore-opening mechanism in trimeric P2X receptor channels. Nat Commun 2010, 1: 44.PubMedGoogle Scholar
  58. [58]
    Allsopp RC, EI Ajouz S, Schmid R, Evans RJ. Cysteine scanning mutagenesis (residues Glu52-Gly96) of the human P2X1 receptor for ATP: mapping agonist binding and channel gating. J Biol Chem 2011, 286: 29207–29217.PubMedCrossRefGoogle Scholar
  59. [59]
    Starace DM, Bezanilla F. Histidine scanning mutagenesis of basic residues of the S4 segment of the shaker k+ channel. J Gen Physiol 2001, 117: 469–490.PubMedCrossRefGoogle Scholar
  60. [60]
    Imoto K, Busch C, Sakmann B, Mishina M, Konno T, Nakai J, et al. Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature 1988, 335: 645–648.PubMedCrossRefGoogle Scholar
  61. [61]
    Kelley SP, Dunlop JI, Kirkness EF, Lambert JJ, Peters JA. A cytoplasmic region determines single-channel conductance in 5-HT3 receptors. Nature 2003, 424: 321–324.PubMedCrossRefGoogle Scholar
  62. [62]
    Heinemann SH, Terlau H, Stuhmer W, Imoto K, Numa S. Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 1992, 356: 441–443.PubMedCrossRefGoogle Scholar
  63. [63]
    Yang J, Ellinor PT, Sather WA, Zhang JF, Tsien RW. Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels. Nature 1993, 366: 158–161.PubMedCrossRefGoogle Scholar
  64. [64]
    Keramidas A, Moorhouse AJ, Pierce KD, Schofield PR, Barry PH. Cation-selective mutations in the M2 domain of the inhibitory glycine receptor channel reveal determinants of ion-charge selectivity. J Gen Physiol 2002, 119: 393–410.PubMedCrossRefGoogle Scholar
  65. [65]
    Lu Z, MacKinnon R. Electrostatic tuning of Mg2+ affinity in an inward-rectifier K+ channel. Nature 1994, 371: 243–246.PubMedCrossRefGoogle Scholar
  66. [66]
    Khan A, Romantseva L, Lam A, Lipkind G, Fozzard HA. Role of outer ring carboxylates of the rat skeletal muscle sodium channel pore in proton block. J Physiol 2002, 543: 71–84.PubMedCrossRefGoogle Scholar
  67. [67]
    Schulte U, Fakler B. Gating of inward-rectifier K+ channels by intracellular pH. Eur J Biochem 2000, 267: 5837–5841.PubMedCrossRefGoogle Scholar
  68. [68]
    Aggarwal SK, MacKinnon R. Contribution of the S4 segment to gating charge in the Shaker K+ channel. Neuron 1996, 16: 1169–1177.PubMedCrossRefGoogle Scholar
  69. [69]
    Cymes GD, Ni Y, Grosman C. Probing ion-channel pores one proton at a time. Nature 2005, 438: 975–980.PubMedCrossRefGoogle Scholar
  70. [70]
    Cymes GD, Grosman C. Estimating the pKa values of basic and acidic side chains in ion channels using electrophysiological recordings: a robust approach to an elusive problem. Proteins 2011, 79: 3485–3493.PubMedCrossRefGoogle Scholar
  71. [71]
    Mehler EL, Fuxreiter M, Simon I, Garcia-Moreno EB. The role of hydrophobic microenvironments in modulating pKa shifts in proteins. Proteins 2002, 48: 283–292.PubMedCrossRefGoogle Scholar
  72. [72]
    Fitch CA, Karp DA, Lee KK, Stites WE, Lattman EE, Garcia-Moreno EB. Experimental pK(a) values of buried residues: analysis with continuum methods and role of water penetration. Biophys J 2002, 82: 3289–3304.PubMedCrossRefGoogle Scholar
  73. [73]
    Kim J, Mao J, Gunner MR. Are acidic and basic groups in buried proteins predicted to be ionized? J Mol Biol 2005, 348: 1283–1298.PubMedCrossRefGoogle Scholar
  74. [74]
    Cymes GD, Grosman C. Pore-opening mechanism of the nicotinic acetylcholine receptor evinced by proton transfer. Nat Struct Mol Biol 2008, 15: 389–396.PubMedCrossRefGoogle Scholar
  75. [75]
    Cymes GD, Grosman C. Tunable pKa values and the basis of opposite charge selectivities in nicotinic-type receptors. Nature 2011, 474: 526–530.PubMedCrossRefGoogle Scholar
  76. [76]
    Beene DL, Dougherty DA, Lester HA. Unnatural amino acid mutagenesis in mapping ion channel function. Curr Opin Neurobiol 2003, 13: 264–270.PubMedCrossRefGoogle Scholar
  77. [77]
    Nowak MW, Kearney PC, Sampson JR, Saks ME, Labarca CG, Silverman SK, et al. Nicotinic receptor binding site probed with unnatural amino acid incorporation in intact cells. Science 1995, 268: 439–442.PubMedCrossRefGoogle Scholar
  78. [78]
    Cornish VW, Schultz PG. A new tool for studying protein structure and function. Curr Opin Struct Biol 1994, 4: 601–607.CrossRefGoogle Scholar
  79. [79]
    Noren CJ, Anthony-Cahill SJ, Griffith MC, Schultz PG. A general method for site-specific incorporation of unnatural amino acids into proteins. Science 1989, 244: 182–188.PubMedCrossRefGoogle Scholar
  80. [80]
    Nowak MW, Gallivan JP, Silverman SK, Labarca CG, Dougherty DA, Lester HA. In vivo incorporation of unnatural amino acids into ion channels in Xenopus oocyte expression system. Methods Enzymol 1998, 293: 504–529.PubMedCrossRefGoogle Scholar
  81. [81]
    Zacharias N, Dougherty DA. Cation-pi interactions in ligand recognition and catalysis. Trends Pharmacol Sci 2002, 23: 281–287.PubMedCrossRefGoogle Scholar
  82. [82]
    Ma JC, Dougherty DA. The cation-pi interaction. Chem Rev 1997, 97: 1303–1324.PubMedCrossRefGoogle Scholar
  83. [83]
    Dougherty DA. Physical organic chemistry on the brain. J Org Chem 2008, 73: 3667–3673.PubMedCrossRefGoogle Scholar
  84. [84]
    Xiu X, Puskar NL, Shanata JA, Lester HA, Dougherty DA. Nicotine binding to brain receptors requires a strong cation-pi interaction. Nature 2009, 458: 534–537.PubMedCrossRefGoogle Scholar
  85. [85]
    Horovitz A. Double-mutant cycles: a powerful tool for analyzing protein structure and function. Fold Des 1996, 1: R121–126.PubMedCrossRefGoogle Scholar
  86. [86]
    Kash TL, Jenkins A, Kelley JC, Trudell JR, Harrison NL. Coupling of agonist binding to channel gating in the GABA(A) receptor. Nature 2003, 421: 272–275.PubMedCrossRefGoogle Scholar
  87. [87]
    Venkatachalan SP, Czajkowski C. A conserved salt bridge critical for GABA(A) receptor function and loop C dynamics. Proc Natl Acad Sci U S A 2008, 105: 13604–13609.PubMedCrossRefGoogle Scholar
  88. [88]
    Grabe M, Lai HC, Jain M, Jan YN, Jan LY. Structure prediction for the down state of a potassium channel voltage sensor. Nature 2007, 445: 550–553.PubMedCrossRefGoogle Scholar
  89. [89]
    Sadovsky E, Yifrach O. Principles underlying energetic coupling along an allosteric communication trajectory of a voltage-activated K+ channel. Proc Natl Acad Sci U S A 2007, 104: 19813–19818.PubMedCrossRefGoogle Scholar
  90. [90]
    Sun H, Shikano S, Xiong Q, Li M. Function recovery after chemobleaching (FRAC): evidence for activity silent membrane receptors on cell surface. Proc Natl Acad Sci U S A 2004, 101: 16964–16969.PubMedCrossRefGoogle Scholar
  91. [91]
    Sun H, Liu X, Xiong Q, Shikano S, Li M. Chronic inhibition of cardiac Kir2.1 and HERG potassium channels by celastrol with dual effects on both ion conductivity and protein trafficking. J Biol Chem 2006, 281: 5877–5884.PubMedCrossRefGoogle Scholar
  92. [92]
    Xiong Q, Sun H, Li M. Zinc pyrithione-mediated activation of voltage-gated KCNQ potassium channels rescues epileptogenic mutants. Nat Chem Biol 2007, 3: 287–296.PubMedCrossRefGoogle Scholar
  93. [93]
    Gilbert DF, Islam R, Lynagh T, Lynch JW, Webb TI. High Throughput techniques for discovering new glycine receptor modulators and their binding sites. Front Mol Neurosci 2009, 2: 17.PubMedCrossRefGoogle Scholar
  94. [94]
    Ma T, Thiagarajah JR, Yang H, Sonawane ND, Folli C, Galietta LJ, et al. Thiazolidinone CFTR inhibitor identified by high-throughput screening blocks cholera toxin-induced intestinal fluid secretion. J Clin Invest 2002, 110: 1651–1658.PubMedGoogle Scholar
  95. [95]
    Galietta LJ, Springsteel MF, Eda M, Niedzinski EJ, By K, Haddadin MJ, et al. Novel CFTR chloride channel activators identified by screening of combinatorial libraries based on flavone and benzoquinolizinium lead compounds. J Biol Chem 2001, 276: 19723–19728.PubMedCrossRefGoogle Scholar
  96. [96]
    Kruger W, Gilbert D, Hawthorne R, Hryciw DH, Frings S, Poronnik P, et al. A yellow fluorescent protein-based assay for high-throughput screening of glycine and GABAA receptor chloride channels. Neu rosci Lett 2005, 380: 340–345.CrossRefGoogle Scholar
  97. [97]
    Bagriantsev SN, Minor DL Jr. Small molecule ion channel match making: a natural fit for new ASIC ligands. Neuron 2010, 68: 1–3.PubMedCrossRefGoogle Scholar
  98. [98]
    Yu Y, Chen Z, Li WG, Cao H, Feng EG, Yu F, et al. A nonproton ligand sensor in the acid-sensing ion channel. Neuron 2010, 68: 61–72.PubMedCrossRefGoogle Scholar
  99. [99]
    Li WG, Yu Y, Zhang ZD, Cao H, Xu TL. ASIC3 channels integrate agmatine and multiple inflammatory signals through the nonproton ligand sensing domain. Mol Pain 2010, 6: 88.PubMedCrossRefGoogle Scholar
  100. [100]
    Li WG, Yu Y, Huang C, Cao H, Xu TL. Nonproton ligand sensing domain is required for paradoxical stimulation of acid-sensing ion channel 3 (ASIC3) channels by amiloride. J Biol Chem 2011, 286: 42635–42646.PubMedCrossRefGoogle Scholar
  101. [101]
    Li WG, Xu TL. ASIC3 channels in multimodal sensory perception. ACS Chem Neurosci 2011, 2: 26–27.PubMedCrossRefGoogle Scholar
  102. [102]
    Bohlen CJ, Chesler AT, Sharif-Naeini R, Medzihradszky KF, Zhou S, King D, et al. A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain. Nature 2011, 479: 410–414.PubMedCrossRefGoogle Scholar
  103. [103]
    Olivera BM, Teichert RW. Neuroscience: chemical ecology of pain. Nature 2011, 479: 306–307.PubMedCrossRefGoogle Scholar
  104. [104]
    Ahmed HE, Geppert H, Stumpfe D, Lounkine E, Bajorath J. Methods for computer-aided chemical biology. Part 4: selectivity searching for ion channel ligands and mapping of molecular fragments as selectivity markers. Chem Biol Drug Des 2009, 73: 273–282.PubMedCrossRefGoogle Scholar
  105. [105]
    Macpherson LJ, Dubin AE, Evans MJ, Marr F, Schultz PG, Cravatt BF, et al. Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 2007, 445: 541–545.PubMedCrossRefGoogle Scholar
  106. [106]
    Siemens J, Zhou S, Piskorowski R, Nikai T, Lumpkin EA, Basbaum AI, et al. Spider toxins activate the capsaicin receptor to produce inflammatory pain. Nature 2006, 444: 208–212.PubMedCrossRefGoogle Scholar
  107. [107]
    Bohlen CJ, Priel A, Zhou S, King D, Siemens J, Julius D. A bivalent tarantula toxin activates the capsaicin receptor, TRPV1, by targeting the outer pore domain. Cell 2010, 141: 834–845.PubMedCrossRefGoogle Scholar
  108. [108]
    Holford M, Auer S, Laqua M, Ibanez-Tallon I. Manipulating neuronal circuits with endogenous and recombinant cell-surface tethered modulators. Front Mol Neurosci 2009, 2: 21.PubMedCrossRefGoogle Scholar
  109. [109]
    Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 1998, 280: 69–77.PubMedCrossRefGoogle Scholar
  110. [110]
    MacKinnon R. Potassium channels and the atomic basis of selective ion conduction (Nobel Lecture). Angew Chem Int Ed Engl 2004, 43: 4265–4277.PubMedCrossRefGoogle Scholar
  111. [111]
    MacKinnon R. Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature 1991, 350: 232–235.PubMedCrossRefGoogle Scholar
  112. [112]
    Armstrong CM. Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons. J Gen Physiol 1971, 58: 413–437.PubMedCrossRefGoogle Scholar
  113. [113]
    Long SB, Campbell EB, Mackinnon R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 2005, 309: 897–903.PubMedCrossRefGoogle Scholar
  114. [114]
    Long SB, Tao X, Campbell EB, MacKinnon R. Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 2007, 450: 376–382.PubMedCrossRefGoogle Scholar
  115. [115]
    Kawate T, Michel JC, Birdsong WT, Gouaux E. Crystal structure of the ATP-gated P2X(4) ion channel in the closed state. Nature 2009, 460: 592–598.PubMedCrossRefGoogle Scholar
  116. [116]
    Sobolevsky AI, Rosconi MP, Gouaux E. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 2009, 462: 745–756.PubMedCrossRefGoogle Scholar
  117. [117]
    Hibbs RE, Gouaux E. Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature 2011, 474: 54–60.PubMedCrossRefGoogle Scholar
  118. [118]
    Hu F, Luo W, Hong M. Mechanisms of proton conduction and gating in influenza M2 proton channels from solid-state NMR. Science 2010, 330: 505–508.PubMedCrossRefGoogle Scholar
  119. [119]
    Wang L, Sigworth FJ. Structure of the BK potassium channel in a lipid membrane from electron cryomicroscopy. Nature 2009, 461: 292–295.PubMedCrossRefGoogle Scholar
  120. [120]
    Shinozaki Y, Sumitomo K, Tsuda M, Koizumi S, Inoue K, Torimitsu K. Direct observation of ATP-iduced conformational changes in single P2X4 receptors. PLoS Biol 2009, 7: e103.CrossRefGoogle Scholar
  121. [121]
    Yokokawa M, Carnally SM, Henderson RM, Takeyasu K, Edwardson JM. Acid-sensing ion channel (ASIC) 1a undergoes a height transition in response to acidification. FEBS Lett 2010, 584: 3107–3110.PubMedCrossRefGoogle Scholar
  122. [122]
    Gandhi CS, Isacoff EY. Shedding light on membrane proteins. Trends Neurosci 2005, 28: 472–479.PubMedCrossRefGoogle Scholar
  123. [123]
    Zheng J. Patch fluorometry: shedding new light on ion channels. Physiology (Bethesda) 2006, 21: 6–12.CrossRefGoogle Scholar
  124. [124]
    Szobota S, Gorostiza P, Del Bene F, Wyart C, Fortin DL, Kolstad KD, et al. Remote control of neuronal activity with a light-gated glutamate receptor. Neuron 2007, 54: 535–545.PubMedCrossRefGoogle Scholar
  125. [125]
    Janovjak H, Szobota S, Wyart C, Trauner D, Isacoff EY. A lightgated, potassium-selective glutamate receptor for the optical inhibition of neuronal firing. Nat Neurosci 2010, 13: 1027–1032.PubMedCrossRefGoogle Scholar
  126. [126]
    Brunner J. New photolabeling and crosslinking methods. Annu Rev Biochem 1993, 62: 483–514.PubMedCrossRefGoogle Scholar
  127. [127]
    Oswald R, Changeux JP. Ultraviolet light-induced labeling by noncompetitive blockers of the acetylcholine receptor from Torpedo marmorata. Proc Natl Acad Sci U S A 1981, 78: 3925–3929.PubMedCrossRefGoogle Scholar
  128. [128]
    Li GD, Chiara DC, Sawyer GW, Husain SS, Olsen RW, Cohen JB. Identification of a GABAA receptor anesthetic binding site at subunit interfaces by photolabeling with an etomidate analog. J Neurosci 2006, 26: 11599–11605.PubMedCrossRefGoogle Scholar
  129. [129]
    Changeux JP, Edelstein SJ. Nicotinic acetylcholine receptors. New York: Odile Jacob Publishing Corporation, 2005: 51–82.Google Scholar
  130. [130]
    Wei Z, White D, Wang J, Musse AA, Merrill AR. Tilted, extended, and lying in wait: the membrane-bound topology of residues Lys 381-Ser-405 of the colicin E1 channel domain. Biochemistry 2007, 46: 6074–6085.PubMedCrossRefGoogle Scholar
  131. [131]
    Koehorst RB, Spruijt RB, Hemminga MA. Site-directed fluorescence labeling of a membrane protein with BADAN: probing protein topology and local environment. Biophys J 2008, 94: 3945–3955.PubMedCrossRefGoogle Scholar
  132. [132]
    Sasaki J, Phillips BJ, Chen X, Van Eps N, Tsai AL, Hubbell WL, et al. Different dark conformations function in color-sensitive photosignaling by the sensory rhodopsin I-HtrI complex. Biophys J 2007, 92: 4045–4053.PubMedCrossRefGoogle Scholar
  133. [133]
    Yang N, Horn R. Evidence for voltage-dependent S4 movement in sodium channels. Neuron 1995, 15: 213–218.PubMedCrossRefGoogle Scholar
  134. [134]
    Larsson HP, Baker OS, Dhillon DS, Isacoff EY. Transmembrane movement of the shaker K+ channel S4. Neuron 1996, 16: 387–397.PubMedCrossRefGoogle Scholar
  135. [135]
    Yang N, George AL Jr., Horn R. Molecular basis of charge movement in voltage-gated sodium channels. Neuron 1996, 16: 113–122.PubMedCrossRefGoogle Scholar
  136. [136]
    Mannuzzu LM, Moronne MM, Isacoff EY. Direct physical measure of conformational rearrangement underlying potassium channel gating. Science 1996, 271: 213–216.PubMedCrossRefGoogle Scholar
  137. [137]
    Zheng J, Zagotta WN. Patch-clamp fluorometry recording of conformational rearrangements of ion channels. Sci STKE 2003, 2003: PL7.PubMedCrossRefGoogle Scholar
  138. [138]
    Yang F, Moss LG, Phillips GN Jr. The molecular structure of green fluorescent protein. Nat Biotechnol 1996, 14: 1246–1251.PubMedCrossRefGoogle Scholar
  139. [139]
    Lakowicz JR. Fluorescence spectroscopic investigations of the dynamic properties of proteins, membranes and nucleic acids. J Biochem Biophys Methods 1980, 2: 91–119.PubMedCrossRefGoogle Scholar
  140. [140]
    Shapovalov G, Lester HA. Gating transitions in bacterial ion channels measured at 3 microns resolution. J Gen Physiol 2004, 124: 151–161.PubMedCrossRefGoogle Scholar
  141. [141]
    Gandhi CS, Loots E, Isacoff EY. Reconstructing voltage sensorpore interaction from a fluorescence scan of a voltage-gated K+ channel. Neuron 2000, 27: 585–595.PubMedCrossRefGoogle Scholar
  142. [142]
    Ulbrich MH, Isacoff EY. Subunit counting in membrane-bound proteins. Nat Methods 2007, 4: 319–321.PubMedGoogle Scholar
  143. [143]
    Cha A, Bezanilla F. Characterizing voltage-dependent conformational changes in the Shaker K+ channel with fluorescence. Neuron 1997, 19: 1127–1140.PubMedCrossRefGoogle Scholar
  144. [144]
    Baker OS, Larsson HP, Mannuzzu LM, Isacoff EY. Three transmembrane conformations and sequence-dependent displacement of the S4 domain in shaker K+ channel gating. Neuron 1998, 20: 1283–1294.PubMedCrossRefGoogle Scholar
  145. [145]
    Mannuzzu LM, Isacoff EY. Independence and cooperativity in rearrangements of a potassium channel voltage sensor revealed by single subunit fluorescence. J Gen Physiol 2000, 115: 257–268.PubMedCrossRefGoogle Scholar
  146. [146]
    Grabe M, Lecar H, Jan YN, Jan LY. A quantitative assessment of models for voltage-dependent gating of ion channels. Proc Natl Acad Sci U S A 2004, 101: 17640–17645.PubMedCrossRefGoogle Scholar
  147. [147]
    Pathak M, Kurtz L, Tombola F, Isacoff E. The cooperative voltage sensor motion that gates a potassium channel. J Gen Physiol 2005, 125: 57–69.PubMedCrossRefGoogle Scholar
  148. [148]
    Mannikko R, Elinder F, Larsson HP. Voltage-sensing mechanism is conserved among ion channels gated by opposite voltages. Nature 2002, 419: 837–841.PubMedCrossRefGoogle Scholar
  149. [149]
    Vemana S, Pandey S, Larsson HP. S4 movement in a mammalian HCN channel. J Gen Physiol 2004, 123: 21–32.PubMedCrossRefGoogle Scholar
  150. [150]
    Chanda B, Bezanilla F. Tracking voltage-dependent conformational changes in skeletal muscle sodium channel during activation. J Gen Physiol 2002, 120: 629–645.PubMedCrossRefGoogle Scholar
  151. [151]
    Dahan DS, Dibas MI, Petersson EJ, Auyeung VC, Chanda B, Bezanilla F, et al. A fluorophore attached to nicotinic acetylcholine receptor beta M2 detects productive binding of agonist to the alpha delta site. Proc Natl Acad Sci U S A 2004, 101: 10195–0200.PubMedCrossRefGoogle Scholar
  152. [152]
    Chang Y, Weiss DS. Site-specific fluorescence reveals distinct structural changes with GABA receptor activation and antagonism. Nat Neurosci 2002, 5: 1163–1168.PubMedCrossRefGoogle Scholar
  153. [153]
    Pless SA, Lynch JW. Illuminating the structure and function of Cysloop receptors. Clin Exp Pharmacol Physiol 2008, 35: 1137–1142.PubMedCrossRefGoogle Scholar
  154. [154]
    Stockand JD, Shapiro MS. Method in Molecular Biology, vol. 337: Ion Channels: Methods and Protocols. Totowa: Humana Press Inc. 2006: 65–77.Google Scholar
  155. [155]
    Riven I, Kalmanzon E, Segev L, Reuveny E. Conformational rearrangements associated with the gating of the G protein-coupled potassium channel revealed by FRET microscopy. Neuron 2003, 38: 225–235.PubMedCrossRefGoogle Scholar
  156. [156]
    Trudeau MC, Zagotta WN. Dynamics of Ca2+-calmodulin-dependent inhibition of rod cyclic nucleotide-gated channels measured by patch-clamp fluorometry. J Gen Physiol 2004, 124: 211–223.PubMedCrossRefGoogle Scholar
  157. [157]
    Zheng J, Zagotta WN. Gating rearrangements in cyclic nucleotidegated channels revealed by patch-clamp fluorometry. Neuron 2000, 28: 369–374.PubMedCrossRefGoogle Scholar
  158. [158]
    Fisher JA, Girdler G, Khakh BS. Time-resolved measurement of state-specific P2X2 ion channel cytosolic gating motions. J Neurosci 2004, 24: 10475–10487.PubMedCrossRefGoogle Scholar
  159. [159]
    Staruschenko A, Medina JL, Patel P, Shapiro MS, Booth RE, Stockand JD. Fluorescence resonance energy transfer analysis of subunit stoichiometry of the epithelial Na+ channel. J Biol Chem 2004, 279: 27729–27734.PubMedCrossRefGoogle Scholar
  160. [160]
    Amiri H, Schultz G, Schaefer M. FRET-based analysis of TRPC subunit stoichiometry. Cell Calcium 2003, 33: 463–470.PubMedCrossRefGoogle Scholar
  161. [161]
    Zheng J, Zagotta WN. Stoichiometry and assembly of olfactory cyclic nucleotide-gated channels. Neuron 2004, 42: 411–421.PubMedCrossRefGoogle Scholar
  162. [162]
    Cha A, Snyder GE, Selvin PR, Bezanilla F. Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy. Nature 1999, 402: 809–813.PubMedCrossRefGoogle Scholar
  163. [163]
    Glauner KS, Mannuzzu LM, Gandhi CS, Isacoff EY. Spectroscopic mapping of voltage sensor movement in the Shaker potassium channel. Nature 1999, 402: 813–817.PubMedCrossRefGoogle Scholar
  164. [164]
    Kuner T, Augustine GJ. A genetically encoded ratiometric indicator for chloride: capturing chloride transients in cultured hippocampal neurons. Neuron 2000, 27: 447–459.PubMedCrossRefGoogle Scholar
  165. [165]
    Pond BB, Berglund K, Kuner T, Feng G, Augustine GJ, Schwartz-Bloom RD. The chloride transporter Na(+)-K(+)-Cl- cotransporter isoform-1 contributes to intracellular chloride increases after in vitro ischemia. J Neurosci 2006, 26: 1396–1406.PubMedCrossRefGoogle Scholar
  166. [166]
    Demuro A, Parker I. Imaging single-channel calcium microdomains. Cell Calcium 2006, 40: 413–422.PubMedCrossRefGoogle Scholar
  167. [167]
    Demuro A, Parker I. Optical single-channel recording: imaging Ca2+ flux through individual ion channels with high temporal and spatial resolution. J Biomed Opt 2005, 10: 11002.PubMedCrossRefGoogle Scholar
  168. [168]
    Yu Y, Ulbrich MH, Li MH, Buraei Z, Chen XZ, Ong AC, et al. Structural and molecular basis of the assembly of the TRPP2/PKD1 complex. Proc Natl Acad Sci U S A 2009, 106: 11558–11563.PubMedCrossRefGoogle Scholar
  169. [169]
    Ji W, Xu P, Li Z, Lu J, Liu L, Zhan Y, et al. Functional stoichiometry of the unitary calcium-release-activated calcium channel. Proc Natl Acad Sci U S A 2008, 105: 13668–13673.PubMedCrossRefGoogle Scholar
  170. [170]
    Noskov SY, Berneche S, Roux B. Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature 2004, 431: 830–834.PubMedCrossRefGoogle Scholar
  171. [171]
    Yu Y, Li WG, Chen Z, Cao H, Yang H, Jiang H, et al. Atomic level characterization of the nonproton ligand-sensing domain of ASIC3 channels. J Biol Chem 2011, 286: 24996–25006.PubMedCrossRefGoogle Scholar
  172. [172]
    Wang Q, Halpert JR. Combined three-dimensional quantitative structure-activity relationship analysis of cytochrome P450 2B6 substrates and protein homology modeling. Drug Metab Dispos 2002, 30: 86–95.PubMedCrossRefGoogle Scholar
  173. [173]
    Laskowski R, MacArthur M, Moss D, Thornton J. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 1993, 26: 283–291.CrossRefGoogle Scholar
  174. [174]
    Berendsen HJC, van der Spoel D, van Drunen R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput Phys Commun 1995, 91: 43–56.CrossRefGoogle Scholar
  175. [175]
    Lindahl E, Hess B, van der Spoel D. Gromacs 3.0: A package for molecular simulation and trajectory analysis. J Mol Model 2001, 7: 306–317.Google Scholar
  176. [176]
    Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 2004, 47: 1739–1749.PubMedCrossRefGoogle Scholar
  177. [177]
    Yang H, Yu Y, Li WG, Yu F, Cao H, Xu TL, et al. Inherent dynamics of the acid-sensing ion channel 1 correlates with the gating mechanism. PLoS Biol 2009, 7: e1000151.PubMedCrossRefGoogle Scholar
  178. [178]
    Brooks B, Karplus M. Normal modes for specific motions of macromolecules: application to the hinge-bending mode of lysozyme. Proc Natl Acad Sci U S A 1985, 82: 4995–4999.PubMedCrossRefGoogle Scholar
  179. [179]
    Tirion MM. Large amplitude elastic motions in proteins from a single-parameter, atomic analysis. Phys Rev Lett 1996, 77: 1905–1908.PubMedCrossRefGoogle Scholar
  180. [180]
    Gaillard T, Martin E, San Sebastian E, Cossio FP, Lopez X, Dejaegere A, et al. Comparative normal mode analysis of LFA-1 integrin Idomains. J Mol Biol 2007, 374: 231–249.PubMedCrossRefGoogle Scholar
  181. [181]
    Valadie H, Lacapcre JJ, Sanejouand YH, Etchebest C. Dynamical properties of the MscL of Escherichia coli: a normal mode analysis. J Mol Biol 2003, 332: 657–674.PubMedCrossRefGoogle Scholar
  182. [182]
    Miloshevsky GV, Jordan PC. Open-state conformation of the KcsA K+ channel: Monte Carlo normal mode following simulations. Structure 2007, 15: 1654–1662.PubMedCrossRefGoogle Scholar
  183. [183]
    Shen Y, Kong Y, Ma J. Intrinsic flexibility and gating mechanism of the potassium channel KcsA. Proc Natl Acad Sci U S A 2002, 99: 1949–1953.PubMedCrossRefGoogle Scholar
  184. [184]
    Samson AO, Levitt M. Inhibition mechanism of the acetylcholine receptor by alpha-neurotoxins as revealed by normal-mode dynamics. Biochemistry 2008, 47: 4065–4070.PubMedCrossRefGoogle Scholar
  185. [185]
    Cheng X, Lu B, Grant B, Law RJ, McCammon JA. Channel opening motion of alpha7 nicotinic acetylcholine receptor as suggested by normal mode analysis. J Mol Biol 2006, 355: 310–324.PubMedCrossRefGoogle Scholar
  186. [186]
    Taly A, Delarue M, Grutter T, Nilges M, Le Novere N, Corringer PJ, et al. Normal mode analysis suggests a quaternary twist model for the nicotinic receptor gating mechanism. Biophys J 2005, 88: 3954–3965.PubMedCrossRefGoogle Scholar
  187. [187]
    Liu X, Xu Y, Li H, Wang X, Jiang H, Barrantes FJ. Mechanics of channel gating of the nicotinic acetylcholine receptor. PLoS Comput Biol 2008, 4: e19.PubMedCrossRefGoogle Scholar
  188. [188]
    Yang H, Yu Y, Li WG, Xu TL, Jiang H. Conformational sampling on acid-sensing ion channel 1 (ASIC1): implication for a symmetric conformation. Cell Res 2009, 19: 1035–1037.PubMedCrossRefGoogle Scholar
  189. [189]
    Bahar I, Lezon TR, Bakan A, Shrivastava IH. Normal mode analysis of biomolecular structures: functional mechanisms of membrane proteins. Chem Rev 2010, 110: 1463–1497.PubMedCrossRefGoogle Scholar
  190. [190]
    Lape R, Colquhoun D, Sivilotti LG. On the nature of partial agonism in the nicotinic receptor superfamily. Nature 2008, 454: 722–727.PubMedGoogle Scholar
  191. [191]
    Nozaki C, Vergnano AM, Filliol D, Ouagazzal AM, Le Goff A, Carvalho S, et al. Zinc alleviates pain through high-affinity binding to the NMDA receptor NR2A subunit. Nat Neurosci 2011, 14: 1017–1022.PubMedCrossRefGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Neuroscience Division, Department of Biochemistry and Molecular Cell Biology, Institute of Medical SciencesShanghai Jiao Tong University School of MedicineShanghaiChina

Personalised recommendations