Skip to main content

Curcumin protects nigral dopaminergic neurons by iron-chelation in the 6-hydroxydopamine rat model of Parkinson’s disease

Abstract

Objective

Curcumin is a plant polyphenolic compound and a major component of spice turmeric (Curcuma longa). It has been reported to possess free radical-scavenging, iron-chelating, and anti-inflammatory properties in different tissues. Our previous study showed that curcumin protects MES23.5 dopaminergic cells from 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in vitro. The present study aimed to explore this neuroprotective effect in the 6-OHDAlesioned rat model of Parkinson’s disease in vivo.

Methods

Rats were given intragastric curcumin for 24 days. 6-OHDA lesioning was conducted on day 4 of curcumin treatment. Dopamine content was assessed by high-performance liquid chromatography with electrochemical detection, tyrosine hydroxylase (TH)-containing neurons by immunohistochemistry, and iron-containing cells by Perls’ iron staining.

Results

The dopamine content in the striatum and the number of TH-immunoreactive neurons decreased after 6-OHDA treatment. Curcumin pretreatment reversed these changes. Further studies demonstrated that 6-OHDA treatment increased the number of iron-staining cells, which was dramatically decreased by curcumin pretreatment.

Conclusion

The protective effects of curcumin against 6-OHDA may be attributable to the ironchelating activity of curcumin to suppress the iron-induced degeneration of nigral dopaminergic neurons.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Youdim MB, Ben-Shachar D, Riederer P. The role of monoamine oxidase, iron-melanin interaction, and intracellular calcium in Parkinson’s disease. J Neural Transm Suppl 1990, 32: 239–248.

    PubMed  CAS  Google Scholar 

  2. [2]

    Jiang H, Song N, Wang J, Ren LY, Xie JX. Peripheral iron dextran induced degeneration of dopaminergic neurons in rat substantia nigra. Neurochem Int 2007, 51: 32–36.

    PubMed  Article  CAS  Google Scholar 

  3. [3]

    Ke Y, Ming Qian Z. Iron misregulation in the brain: a primary cause of neurodegenerative disorders. Lancet Neurol 2003, 2: 246–253.

    PubMed  Article  CAS  Google Scholar 

  4. [4]

    Youdim MB, Stephenson G, Ben Shachar D. Ironing iron out in Parkinson’s disease and other neurodegenerative diseases with iron chelators: a lesson from 6-hydroxydopamine and iron chelators, desferal and VK-28. Ann N Y Acad Sci 2004, 1012: 306–325.

    PubMed  Article  CAS  Google Scholar 

  5. [5]

    Onyango IG. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Neurochem Res 2008, 33: 589–597.

    PubMed  Article  CAS  Google Scholar 

  6. [6]

    Sarafanov AG, Todorov TI, Kajdacsy-Balla A, Gray MA, Macias V, Centeno JA. Analysis of iron, zinc, selenium and cadmium in paraffin-embedded prostate tissue specimens using inductively coupled plasma mass-spectrometry. J Trace Elem Med Biol 2008, 22: 305–314.

    PubMed  Article  CAS  Google Scholar 

  7. [7]

    Meissner W, Hill MP, Tison F, Gross CE, Bezard E. Neuroprotective strategies for Parkinson’s disease: conceptual limits of animal models and clinical trials. Trends Pharmacol Sci 2004, 25: 249–253.

    PubMed  Article  CAS  Google Scholar 

  8. [8]

    Slikkker W, Youdim M, Palmer GC, Hall E, Williams C, Trembly B. The future of neuroprotection. Ann N Y Acad Sci 1999, 890: 529–533.

    PubMed  Article  CAS  Google Scholar 

  9. [9]

    Hanasaki Y, Ogawa S, Fukui S. The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Free Radic Biol Med 1994, 16: 845–850.

    PubMed  Article  CAS  Google Scholar 

  10. [10]

    Morel I, Lescoat G, Cogrel P, Sergent O, Pasdeloup N, Brissot P, et al. Antioxidant and iron-chelating activities of the flavonoids catechin, quercetin and diosmetin on iron-loaded rat hepatocyte cultures. Biochem Pharmacol 1993, 45: 13–19.

    PubMed  Article  CAS  Google Scholar 

  11. [11]

    Santel T, Pflug G, Hemdan NY, Schafer A, Hollenbach M, Buchold M, et al. Curcumin inhibits glyoxalase 1: a possible link to its antiinflammatory and anti-tumor activity. PLoS One 2008, 3: e3508.

    PubMed  Article  Google Scholar 

  12. [12]

    Masuda T, Hidaka K, Shinohara A, Maekawa T, Takeda Y, Yamaguchi H. Chemical studies on antioxidant mechanism of curcuminoid: analysis of radical reaction products from curcumin. J Agric Food Chem 1999, 47: 71–77.

    PubMed  Article  CAS  Google Scholar 

  13. [13]

    Daniel S, Limson JL, Dairam A, Watkins GM, Daya S. Through metal binding, curcumin protects against lead- and cadmiuminduced lipid peroxidation in rat brain homogenates and against lead-induced tissue damage in rat brain. J Inorg Biochem 2004, 98: 266–275.

    PubMed  Article  CAS  Google Scholar 

  14. [14]

    Chen J, Tang XQ, Zhi JL, Cui Y, Yu HM, Tang EH, et al. Curcumin protects PC12 cells against 1-methyl-4-phenylpyridinium ioninduced apoptosis by bcl-2-mitochondria-ROS-iNOS pathway. Apoptosis 2006, 11: 943–953.

    PubMed  Article  CAS  Google Scholar 

  15. [15]

    Wang J, Du XX, Jiang H, Xie JX. Curcumin attenuates 6-hydroxydopamine-induced cytotoxicity by anti-oxidation and nuclear factor-kappa B modulation in MES23.5 cells. Biochem Pharmacol 2009, 78: 178–183.

    PubMed  Article  CAS  Google Scholar 

  16. [16]

    Jiang H, Song N, Xu H, Zhang S, Wang J, Xie J. Up-regulation of divalent metal transporter 1 in 6-hydroxydopamine intoxication is IRE/IRP dependent. Cell Res 2010, 20: 345–356.

    PubMed  Article  CAS  Google Scholar 

  17. [17]

    Ma ZG, Wang J, Jiang H, Liu TW, Xie JX. Myricetin reduces 6-hydroxydopamine-induced dopamine neuron degeneration in rats. Neuroreport 2007, 18: 1181–1185.

    PubMed  Article  CAS  Google Scholar 

  18. [18]

    Dexter DT, Statton SA, Whitmore C, Freinbichler W, Weinberger P, Tipton KF, et al. Clinically available iron chelators induce neuroprotection in the 6-OHDA model of Parkinson’s disease after peripheral administration. J Neural Transm 2011, 118: 223–231.

    PubMed  Article  CAS  Google Scholar 

  19. [19]

    Ak T, Gulcin I. Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact 2008, 174: 27–37.

    PubMed  Article  CAS  Google Scholar 

  20. [20]

    Messner DJ, Sivam G, Kowdley KV. Curcumin reduces the toxic effects of iron loading in rat liver epithelial cells. Liver Int 2009, 29: 63–72.

    PubMed  Article  CAS  Google Scholar 

  21. [21]

    Earl CD, Reum T, Xie JX, Sautter J, Kupsch A, Oertel WH, et al. Foetal nigral cell suspension grafts influence dopamine release in the non-grafted side in the 6-hydroxydopamine rat model of Parkinson’s disease: in vivo voltammetric data. Exp Brain Res 1996, 109: 179–184.

    PubMed  Article  CAS  Google Scholar 

  22. [22]

    Wang J, Xu HM, Yang HD, Du XX, Jiang H, Xie JX. Rg1 reduces nigral iron levels of MPTP-treated C57BL6 mice by regulating certain iron transport proteins. Neurochem Int 2009, 54: 43–48.

    PubMed  Article  CAS  Google Scholar 

  23. [23]

    Blum D, Torch S, Lambeng N, Nissou M, Benabid AL, Sadoul R, et al. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Prog Neurobiol 2001, 65: 135–172.

    PubMed  Article  CAS  Google Scholar 

  24. [24]

    Salazar J, Mena N, Hunot S, Prigent A, Alvarez-Fischer D, Arredondo M, et al. Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson’s disease. Proc Natl Acad Sci U S A 2008, 105: 18578–18583.

    PubMed  Article  CAS  Google Scholar 

  25. [25]

    Jiang H, Luan Z, Wang J, Xie J. Neuroprotective effects of iron chelator Desferal on dopaminergic neurons in the substantia nigra of rats with iron-overload. Neurochem Int 2006, 49: 605–609.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jun-Xia Xie.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Du, XX., Xu, HM., Jiang, H. et al. Curcumin protects nigral dopaminergic neurons by iron-chelation in the 6-hydroxydopamine rat model of Parkinson’s disease. Neurosci. Bull. 28, 253–258 (2012). https://doi.org/10.1007/s12264-012-1238-2

Download citation

Keywords

  • 6-hydroxydopamine
  • curcumin
  • Parkinson’s disease
  • dopaminergic neurons
  • iron