Neuroscience Bulletin

, Volume 28, Issue 1, pp 14–24 | Cite as

Caspase-3 activation as a bifurcation point between plasticity and cell death

  • Shikha Snigdha
  • Erica D. Smith
  • G. Aleph Prieto
  • Carl W. Cotman
Review

Abstract

Death-mediating proteases such as caspases and caspase-3 in particular, have been implicated in neurodegenerative processes, aging and Alzheimer’s disease. However, emerging evidence suggests that in addition to their classical role in cell death, caspases play a key role in modulating synaptic function. It is remarkable that active caspases-3, which can trigger widespread damage and degeneration, aggregates in structures as delicate as synapses and persists in neurons without causing acute cell death. Here, we evaluate this dichotomy, and discuss the hypothesis that caspase-3 may be a bifurcation point in cellular signaling, able to orient the neuronal response to stress down either pathological/apoptotic pathways or towards physiological cellular remodeling. We propose that temporal, spatial and other regulators of caspase activity are key determinants of the ultimate effect of caspase-3 activation in neurons. This concept has implications for differential roles of caspase-3 activation across the lifespan. Specifically, we propose that limited caspase-3 activation is critical for synaptic function in the healthy adult brain while chronic activation is involved in degenerative processes in the aging brain.

Keywords

caspase-3 neurodegeneration cognition memory synaptic function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Du Y, Bales KR, Dodel RC, Hamilton-Byrd E, Horn JW, Czilli DL, et al. Activation of a caspase 3-related cysteine protease is required for glutamate-mediated apoptosis of cultured cerebellar granule neurons. Proc Natl Acad Sci U S A 1997, 94: 11657–11662.PubMedCrossRefGoogle Scholar
  2. [2]
    Gillardon F, Kiprianova I, Sandkuhler J, Hossmann KA, Spranger M. Inhibition of caspases prevents cell death of hippocampal CA1 neurons, but not impairment of hippocampal long-term potentiation following global ischemia. Neuroscience 1999, 93: 1219–1222.PubMedCrossRefGoogle Scholar
  3. [3]
    Earnshaw WC, Samejima K, Svingen PA, Basi GS, Kottke T, Mesner PW, et al. Caspase-mediated cleavage of DNA topoisomerase I at unconventional sites during apoptosis. J Biol Chem 1999, 274: 4335–4340.PubMedCrossRefGoogle Scholar
  4. [4]
    Nicholson DW. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ 1999, 6: 1028–1042.PubMedCrossRefGoogle Scholar
  5. [5]
    Fischer U, Janicke RU, Schulze-Osthoff K. Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ 2003, 10: 76–100.PubMedCrossRefGoogle Scholar
  6. [6]
    Hengartner MO. The biochemistry of apoptosis. Nature 2000, 407: 770–776.PubMedCrossRefGoogle Scholar
  7. [7]
    Kumar S. Caspase function in programmed cell death. Cell Death Differ 2007, 14: 32–43.PubMedCrossRefGoogle Scholar
  8. [8]
    Marks N, Berg MJ. Recent advances on neuronal caspases in development and neurodegeneration. Neurochem Int 1999, 35: 195–220.PubMedCrossRefGoogle Scholar
  9. [9]
    Salvesen GS, Dixit VM. Caspase activation: the induced-proximity model. Proc Natl Acad Sci U S A 1999, 96: 10964–10967.PubMedCrossRefGoogle Scholar
  10. [10]
    Shi Y. Caspase activation: revisiting the induced proximity model. Cell 2004, 117: 855–858.PubMedCrossRefGoogle Scholar
  11. [11]
    de Bilbao F, Guarin E, Nef P, Vallet P, Giannakopoulos P, Dubois-Dauphin M. Postnatal distribution of cpp32/caspase 3 mRNA in the mouse central nervous system: an in situ hybridization study. J Comp Neurol 1999, 409: 339–357.PubMedCrossRefGoogle Scholar
  12. [12]
    Yakovlev AG, Ota K, Wang G, Movsesyan V, Bao WL, Yoshihara K, et al. Differential expression of apoptotic protease-activating factor-1 and caspase-3 genes and susceptibility to apoptosis during brain development and after traumatic brain injury. J Neurosci 2001, 21: 7439–7446.PubMedGoogle Scholar
  13. [13]
    Dash PK, Blum S, Moore AN. Caspase activity plays an essential role in long-term memory. Neuroreport 2000, 11: 2811–2816.PubMedCrossRefGoogle Scholar
  14. [14]
    Li Z, Jo J, Jia JM, Lo SC, Whitcomb DJ, Jiao S, et al. Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization. Cell 2010, 141: 859–871.PubMedCrossRefGoogle Scholar
  15. [15]
    Bachelder RE, Ribick MJ, Marchetti A, Falcioni R, Soddu S, Davis KR, et al. p53 inhibits alpha 6 beta 4 integrin survival signaling by promoting the caspase 3-dependent cleavage of AKT/PKB. J Cell Biol 1999, 147: 1063–1072.PubMedCrossRefGoogle Scholar
  16. [16]
    Belmokhtar CA, Hillion J, Segal-Bendirdjian E. Staurosporine induces apoptosis through both caspase-dependent and caspaseindependent mechanisms. Oncogene 2001, 20: 3354–3362.PubMedCrossRefGoogle Scholar
  17. [17]
    Jiao S, Li Z. Nonapoptotic function of BAD and BAX in long-term depression of synaptic transmission. Neuron 2011, 70: 758–772.PubMedCrossRefGoogle Scholar
  18. [18]
    Huesmann GR, Clayton DF. Dynamic role of postsynaptic caspase-3 and BIRC4 in zebra finch song-response habituation. Neuron 2006, 52: 1061–1072.PubMedCrossRefGoogle Scholar
  19. [19]
    Jo J, Whitcomb DJ, Olsen KM, Kerrigan TL, Lo SC, Bru-Mercier G, et al. Abeta(1-42) inhibition of LTP is mediated by a signaling pathway involving caspase-3, Akt1 and GSK-3beta. Nat Neurosci 2011, 14: 545–547.PubMedCrossRefGoogle Scholar
  20. [20]
    Stepanichev MY, Kudryashova IV, Yakovlev AA, Onufriev MV, Khaspekov LG, Lyzhin AA, et al. Central administration of a caspase inhibitor impairs shuttle-box performance in rats. Neuroscience 2005, 136: 579–591.PubMedCrossRefGoogle Scholar
  21. [21]
    D’Amelio M, Cavallucci V, Middei S, Marchetti C, Pacioni S, Ferri A, et al. Caspase-3 triggers early synaptic dysfunction in a mouse model of Alzheimer’s disease. Nat Neurosci 2011, 14: 69–76.PubMedCrossRefGoogle Scholar
  22. [22]
    Lesuisse C, Martin LJ. Immature and mature cortical neurons engage different apoptotic mechanisms involving caspase-3 and the mitogen-activated protein kinase pathway. J Cereb Blood Flow Metab 2002, 22: 935–950.PubMedCrossRefGoogle Scholar
  23. [23]
    Lynch AM, Lynch MA. The age-related increase in IL-1 type I receptor in rat hippocampus is coupled with an increase in caspase-3 activation. Eur J Neurosci 2002, 15: 1779–1788.PubMedCrossRefGoogle Scholar
  24. [24]
    Martin DS, Lonergan PE, Boland B, Fogarty MP, Brady M, Horrobin DF, et al. Apoptotic changes in the aged brain are triggered by interleukin-1beta-induced activation of p38 and reversed by treatment with eicosapentaenoic acid. J Biol Chem 2002, 277: 34239–34246.PubMedCrossRefGoogle Scholar
  25. [25]
    Snigdha S, Berchtold N, Astarita G, Saing T, Piomelli D, Cotman CW. Dietary and behavioral interventions protect against age related activation of caspase cascades in the canine brain. PLoS One 2011, 6: e24652.PubMedCrossRefGoogle Scholar
  26. [26]
    Su JH, Zhao M, Anderson AJ, Srinivasan A, Cotman CW. Activated caspase-3 expression in Alzheimer’s and aged control brain: correlation with Alzheimer pathology. Brain Res 2001, 898: 350–357.PubMedCrossRefGoogle Scholar
  27. [27]
    Jackson TC, Rani A, Kumar A, Foster TC. Regional hippocampal differences in AKT survival signaling across the lifespan: implications for CA1 vulnerability with aging. Cell Death Differ 2009, 16: 439–448.PubMedCrossRefGoogle Scholar
  28. [28]
    Nie K, Yu JC, Fu Y, Cheng HY, Chen FY, Qu Y, et al. Age-related decrease in constructive activation of Akt/PKB in SAMP10 hippocampus. Biochem Biophys Res Commun 2009, 378: 103–107.PubMedCrossRefGoogle Scholar
  29. [29]
    Andjelkovic M, Alessi DR, Meier R, Fernandez A, Lamb NJ, Frech M, et al. Role of translocation in the activation and function of protein kinase B. J Biol Chem 1997, 272: 31515–31524.PubMedCrossRefGoogle Scholar
  30. [30]
    Bellacosa A, Chan TO, Ahmed NN, Datta K, Malstrom S, Stokoe D, et al. Akt activation by growth factors is a multiple-step process: the role of the PH domain. Oncogene 1998, 17: 313–325.PubMedCrossRefGoogle Scholar
  31. [31]
    Song G, Ouyang G, Bao S. The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 2005, 9: 59–71.PubMedCrossRefGoogle Scholar
  32. [32]
    Pastor MD, García-Yébenes I, Fradejas N, Pérez-Ortiz JM, Mora-Lee S, Tranque P, et al. mTOR/S6 kinase pathway contributes to astrocyte survival during ischemia. J Biol Chem 2009, 284(33): 22067–22078.PubMedCrossRefGoogle Scholar
  33. [33]
    Condorelli F, Salomoni P, Cotteret S, Cesi V, Srinivasula SM, Alnemri ES, et al. Caspase cleavage enhances the apoptosis-inducing effects of BAD. Mol Cell Biol 2001, 21: 3025–3036.PubMedCrossRefGoogle Scholar
  34. [34]
    Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 1998, 282: 1318–1321.PubMedCrossRefGoogle Scholar
  35. [35]
    Kato M, Yuan H, Xu ZG, Lanting L, Li SL, Wang M, et al. Role of the Akt/FoxO3a pathway in TGF-beta1-mediated mesangial cell dysfunction: a novel mechanism related to diabetic kidney disease. J Am Soc Nephrol 2006, 17: 3325–3335.PubMedCrossRefGoogle Scholar
  36. [36]
    Tong L, Balazs R, Soiampornkul R, Thangnipon W, Cotman CW. Interleukin-1 beta impairs brain derived neurotrophic factor-induced signal transduction. Neurobiol Aging 2008, 29: 1380–1393.PubMedCrossRefGoogle Scholar
  37. [37]
    Tong L, Balazs R, Thornton PL, Cotman CW. Beta-amyloid peptide at sublethal concentrations down-regulates brain-derived neurotrophic factor functions in cultured cortical neurons. J Neurosci 2004, 24: 6799–6809.PubMedCrossRefGoogle Scholar
  38. [38]
    Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature 2001, 410: 37–40.PubMedCrossRefGoogle Scholar
  39. [39]
    Guyton KZ, Liu Y, Gorospe M, Xu Q, Holbrook NJ. Activation of mitogen-activated protein kinase by H2O2. Role in cell survival following oxidant injury. J Biol Chem 1996, 271: 4138–4142.Google Scholar
  40. [40]
    Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 1995, 270: 1326–1331.PubMedCrossRefGoogle Scholar
  41. [41]
    Yang JY, Michod D, Walicki J, Widmann C. Surviving the kiss of death. Biochem Pharmacol 2004, 68: 1027–1031.PubMedCrossRefGoogle Scholar
  42. [42]
    Allan LA, Morrice N, Brady S, Magee G, Pathak S, Clarke PR. Inhibition of caspase-9 through phosphorylation at Thr 125 by ERK MAPK. Nat Cell Biol 2003, 5: 647–654.PubMedCrossRefGoogle Scholar
  43. [43]
    Stanciu M, Wang Y, Kentor R, Burke N, Watkins S, Kress G, et al. Persistent activation of ERK contributes to glutamate-induced oxidative toxicity in a neuronal cell line and primary cortical neuron cultures. J Biol Chem 2000, 275: 12200–12206.PubMedCrossRefGoogle Scholar
  44. [44]
    Bredesen DE, Castro-Obregon S, Rao RV, del Rio G, Chen SF, Poksay KS, et al. Alternative, nonapoptotic programmed cell death — Mediation by arrestin 2, ERK2, AND Nur77. J Biol Chem 2004, 279: 17543–17553.PubMedCrossRefGoogle Scholar
  45. [45]
    Zhao M, Su J, Head E, Cotman CW. Accumulation of caspase cleaved amyloid precursor protein represents an early neurodegenerative event in aging and in Alzheimer’s disease. Neurobiol Dis 2003, 14: 391–403.PubMedCrossRefGoogle Scholar
  46. [46]
    de Calignon A, Spires-Jones TL, Hyman BT. Caspase activation precedes and leads to neurodegeneration in a marine model of Alzheimer’s disease. Med Sci (Paris) 2010, 26: 787–789.CrossRefGoogle Scholar
  47. [47]
    Shimohama S, Tanino H, Fujimoto S. Changes in caspase expression in Alzheimer’s disease: Comparison with development and aging. Biochem Biophys Res Commun 1999, 256: 381–384.PubMedCrossRefGoogle Scholar
  48. [48]
    Tesco G, Koh YH, Kang EL, Cameron AN, Das S, Sena-Esteves M, et al. Depletion of GGA3 stabilizes BACE and enhances betasecretase activity. Neuron 2007, 54: 721–737.PubMedCrossRefGoogle Scholar
  49. [49]
    Fasulo L, Ugolini G, Cattaneo A. Apoptotic effect of caspase-3 cleaved tau in hippocampal neurons and its potentiation by tau FTDP-mutation N279K. J Alzheimers Dis 2005, 7: 3–13.PubMedGoogle Scholar
  50. [50]
    Rissman RA, Poon WW, Blurton-Jones M, Oddo S, Torp R, Vitek MP, et al. Caspase-cleavage of tau is an early event in Alzheimer’s disease tangle pathology. J Clin Invest 2004, 114: 121–130.PubMedGoogle Scholar
  51. [51]
    Gamblin TC, Chen F, Zambrano A, Abraha A, Lagalwar S, Guillozet AL, et al. Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer’s disease. Proc Natl Acad Sci U S A 2003, 100: 10032–10037.PubMedCrossRefGoogle Scholar
  52. [52]
    Arnold SE, Louneva N, Cohen JW, Han LY, Talbot K, Wilson RS, et al. Caspase-3 is enriched in postsynaptic densities and increased in Alzheimer’s disease. Am J Pathol 2008, 173: 1488–1495.PubMedCrossRefGoogle Scholar
  53. [53]
    Selkoe DJ, Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Sabatini BL. Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 2007, 27: 2866–2875.PubMedCrossRefGoogle Scholar
  54. [54]
    Terry RD, Masliah E, Salmon DP, Butters N, Deteresa R, Hill R, et al. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991, 30: 572–580.PubMedCrossRefGoogle Scholar
  55. [55]
    Turrigiano G. Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. Annu Rev Neurosci 2011, 34: 89–103.PubMedCrossRefGoogle Scholar
  56. [56]
    Shepherd JD, Bear MF. New views of Arc, a master regulator of synaptic plasticity. Nat Neurosci 2011, 14: 279–284.PubMedCrossRefGoogle Scholar
  57. [57]
    Turrigiano GG, Nelson SB. Thinking globally, acting locally: AMPA receptor turnover and synaptic strength. Neuron 1998, 21: 933–935.PubMedCrossRefGoogle Scholar
  58. [58]
    Mattson MP, Lu CB, Fu WM, Salvesen GS. Direct cleavage of AMPA receptor subunit GluR1 and suppression of AMPA currents by caspase-3: implications for synaptic plasticity and excitotoxic neuronal death. Neuromolecular Med 2002, 1: 69–79.PubMedCrossRefGoogle Scholar
  59. [59]
    Glazner GW, Chan SL, Lu C, Mattson MP. Caspase-mediated degradation of AMPA receptor subunits: a mechanism for preventing excitotoxic necrosis and ensuring apoptosis. J Neurosci 2000, 20: 3641–3649.PubMedGoogle Scholar
  60. [60]
    Liu SJ, Gasperini R, Foa L, Small DH. Amyloid-beta decreases cellsurface AMPA receptors by increasing intracellular calcium and phosphorylation of GluR2. J Alzheimers Dis 2010, 21: 655–666.PubMedGoogle Scholar
  61. [61]
    Hyman BT. Caspase activation without apoptosis: insight into Abeta initiation of neurodegeneration. Nat Neurosci 2011, 14: 5–6.PubMedCrossRefGoogle Scholar
  62. [62]
    Chang EH, Savage MJ, Flood DG, Thomas JM, Levy RB, Mahadomrongkul V, et al. AMPA receptor downscaling at the onset of Alzheimer’s disease pathology in double knockin mice. Proc Natl Acad Sci U S A 2006, 103: 3410–3415.PubMedCrossRefGoogle Scholar
  63. [63]
    Pratt KG, Zimmerman EC, Cook DG, Sullivan JM. Presenilin 1 regulates homeostatic synaptic scaling through Akt signaling. Nat Neurosci 2011, 14: 1112–1114.PubMedCrossRefGoogle Scholar
  64. [64]
    del Peso L, Gonzalez-Garcia M, Page C, Herrera R, Nunez G. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 1997, 278: 687–689.PubMedCrossRefGoogle Scholar
  65. [65]
    Fernando P, Brunette S, Megeney LA. Neural stem cell differentiation is dependent upon endogenous caspase 3 activity. FASEB J 2005, 19: 1671–1673.PubMedGoogle Scholar
  66. [66]
    Rohn TT, Cusack SM, Kessinger SR, Oxford JT. Caspase activation independent of cell death is required for proper cell dispersal and correct morphology in PC12 cells. Exp Cell Res 2004, 295(1): 215–225.PubMedCrossRefGoogle Scholar
  67. [67]
    Mattson MP, Partin J, Begley JG. Amyloid beta-peptide induces apoptosis-related events in synapses and dendrites. Brain Res 1998, 807: 167–176.PubMedCrossRefGoogle Scholar
  68. [68]
    Ivins KJ, Bui ET, Cotman CW. Beta-amyloid induces local neurite degeneration in cultured hippocampal neurons: evidence for neuritic apoptosis. Neurobiol Dis 1998, 5: 365–378.PubMedCrossRefGoogle Scholar
  69. [69]
    Kuo CT, Zhu S, Younger S, Jan LY, Jan YN. Identification of E2/E3 ubiquitinating enzymes and caspase activity regulating Drosophila sensory neuron dendrite pruning. Neuron 2006, 51: 283–290.PubMedCrossRefGoogle Scholar
  70. [70]
    Mattson MP, Duan W. “Apoptotic” biochemical cascades in synaptic compartments: roles in adaptive plasticity and neurodegenerative disorders. J Neurosci Res 1999, 58: 152–166.PubMedCrossRefGoogle Scholar
  71. [71]
    Williams DW, Kondo S, Krzyzanowska A, Hiromi Y, Truman JW. Local caspase activity directs engulfment of dendrites during pruning. Nat Neurosci 2006, 9: 1234–1236.PubMedCrossRefGoogle Scholar
  72. [72]
    Lu C, Fu W, Salvesen GS, Mattson MP. Direct cleavage of AMPA receptor subunit GluR1 and suppression of AMPA currents by caspase-3: implications for synaptic plasticity and excitotoxic neuronal death. Neuromolecular Med 2002, 1: 69–79.PubMedCrossRefGoogle Scholar
  73. [73]
    Sun C, Cai M, Gunasekera AH, Meadows RP, Wang H, Chen J, et al. NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP. Nature 1999, 401: 818–822.PubMedCrossRefGoogle Scholar
  74. [74]
    Wilson R, Goyal L, Ditzel M, Zachariou A, Baker DA, Agapite J, et al. The DIAP1 RING finger mediates ubiquitination of Dronc and is indispensable for regulating apoptosis. Nat Cell Biol 2002, 4: 445–450.PubMedCrossRefGoogle Scholar
  75. [75]
    Ditzel M, Broemer M, Tenev T, Bolduc C, Lee TV, Rigbolt KT, et al. Inactivation of effector caspases through nondegradative polyubiquitylation. Mol Cell 2008, 32: 540–553.PubMedCrossRefGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Shikha Snigdha
    • 1
  • Erica D. Smith
    • 1
  • G. Aleph Prieto
    • 1
  • Carl W. Cotman
    • 1
  1. 1.Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvine, IrvineUSA

Personalised recommendations