Skip to main content

Nitric oxide in neurodegeneration: potential benefits of non-steroidal anti-inflammatories

一氧化氮在神经退行性疾病中的作用 : 非类固醇性抗炎药的治疗前景

Abstract

The cellular messenger nitric oxide (NO) has been linked to neurodegenerative disorders due to the increased expression of the enzymes that catalyze its synthesis in postmortem tissues derived from sufferers of these diseases. Nitrated proteins have also been detected in these samples, revealing that NO is biologically active in regions damaged during neurodegeneration. Modulation of NO levels has been reported not only in the neurons of the central nervous system, but also in the glial cells (microglia and astroglia) activated during the neuroinflammatory response. Neuroinflammation has been found in some neurodegenerative conditions, and inhibition of these neuroinflammatory signals has been shown to delay the progress of such disorders. Thus NO and the pathways triggering its release are emerging as an important research focus in the search for strategies to prevent, halt or cure neurodegenerative diseases.

摘要

一氧化氮(nitric oxide, NO)是一类胞内信使。研究表明, 神经退行性病人脑组织中催化合成NO的酶的表达水平显著提高, 提示NO与神经退行性疾病密切相关。此外, 在这些组织中还检测到硝化的蛋白, 提示NO在这些组织中具有生物活性。在神经免疫应答中, 神经元和胶质细胞(包括小胶质细胞和星形胶质细胞)内都发生了NO 水平的改变。很多神经退行性疾病都伴随有神经炎症, 抑制神经炎症的信号通路能延迟这些疾病的发展。因此, NO及其释放通路已逐渐成为神经退行性疾病研究领域的热点, 对它们的理解能帮助我们找到合适的方案来预防、减缓或者治愈这些疾病。

This is a preview of subscription content, access via your institution.

References

  1. Barbosa RM, Lourenço CF, Santos RM, Pomerleau F, Huettl P, Gerhardt GA, et al. In vivo real-time measurement of nitric oxide in anesthetized rat brain. Methods Enzymol 2008, 441: 351–367.

    PubMed  CAS  Google Scholar 

  2. Hon YY, Sun H, Dejam A, Gladwin MT. Characterization of erythrocytic uptake and release and disposition pathways of nitrite, nitrate, methemoglobin, and iron-nitrosyl hemoglobin in the human circulation. Drug Metab Dispos 2010, 38(10): 1707–1713.

    PubMed  CAS  Google Scholar 

  3. Nathan C. Inducible nitric oxide synthase: what difference does it make? J Clin Invest 1997, 100(10): 2417–2423.

    PubMed  CAS  Google Scholar 

  4. Springall DR, Riveros-Moreno V, Buttery L, Suburo A, Bishop AE, Merrett M, et al. Immunological detection of nitric oxide synthase(s) in human tissues using heterologous antibodies suggesting different isoforms. Histochemistry 1992, 98(4): 259–266.

    PubMed  CAS  Google Scholar 

  5. Nakane M, Schmidt HH, Pollock JS, Forstermann U, Murad F. Cloned human brain nitric oxide synthase is highly expressed in skeletal muscle. FEBS Lett 1993, 316(2): 175–180.

    PubMed  CAS  Google Scholar 

  6. Kobzik L, Reid MB, Bredt DS, Stamler JS. Nitric oxide in skeletal muscle. Nature 1994, 372: 546–548.

    PubMed  CAS  Google Scholar 

  7. Islam MS, Matsumoto M, Tsuchida K, Oka T, Kanouchi H, Suzuki S. Immunohistochemical localization of nitric oxide synthase (NOS) in mouse mammary gland during reproductive cycle. J Vet Med Sci 2009, 71(7): 945–949.

    PubMed  CAS  Google Scholar 

  8. Park S, Harrison-Bernard LM. Augmented renal vascular nNOS and renin protein expression in angiotensin type 1 receptor null mice. J Histochem Cytochem 2008, 56(4): 401–414.

    PubMed  CAS  Google Scholar 

  9. Kim SO, Song SH, Hwang EC, Park KS, Kwon DD, Ahn KY, et al. The expression of AQP1 and eNOS in menopausal rat urinary bladder. Int Neurourol J 2010, 14(2): 78–85.

    PubMed  Google Scholar 

  10. Endo D, Yamamoto Y, Yamaguchi-Yamada M, Nakamuta N, Taniguchi K. Localization of eNOS in the olfactory epithelium of the rat. J Vet Med Sci 2011, 73(4): 423–430.

    PubMed  Google Scholar 

  11. Park CS, Krishna G, Ahn MS, Kang JH, Chung WG, Kim DJ, et al. Differential and constitutive expression of neuronal, inducible, and endothelial nitric oxide synthase mRNAs and proteins in pathologically normal human tissues. Nitric Oxide 2000, 4(5): 459–471.

    PubMed  CAS  Google Scholar 

  12. Saha RN, Pahan K. Signals for the induction of nitric oxide synthase in astrocytes. Neurochem Int 2006, 49(2): 154–163.

    PubMed  CAS  Google Scholar 

  13. Ayajiki K, Kindermann M, Hecker M, Fleming I, Busse R. Intracellular pH and tyrosine phosphorylation but not calcium determine shear stress-induced nitric oxide production in native endothelial cells. Circ Res 1996, 78: 750–758.

    PubMed  CAS  Google Scholar 

  14. Daniel H, Hemart N, Jaillard D, Crepel F. Long-term depression requires nitric oxide and guanosine 3′:5′ cyclic monophosphate production in rat cerebellar Purkinje cells. Eur J Neurosci 1993, 5(8): 1079–1082.

    PubMed  CAS  Google Scholar 

  15. Scott TR, Bennett MR. The effect of nitric oxide on the efficacy of synaptic transmission through the chick ciliary ganglion. Br J Pharmacol 1993, 110(2): 627–632.

    PubMed  CAS  Google Scholar 

  16. Schuman EM, Meffert MK, Schulman H, Madison DV. An ADPribosyltransferase as a potential target for nitric oxide action in hippocampal long-term potentiation. Proc Natl Acad Sci U S A 1994, 91(25): 11958–11962.

    PubMed  CAS  Google Scholar 

  17. Jian K, Chen M, Cao X, Zhu XH, Fung ML, Gao TM. Nitric oxide modulation of voltage-gated calcium current by S-nitrosylation and cGMP pathway in cultured rat hippocampal neurons. Biochem Biophys Res Commun 2007, 359(3): 481–485.

    PubMed  CAS  Google Scholar 

  18. Pyriochou A, Papapetropoulos A. Soluble guanylate cyclase: more secrets revealed. Cell Signal 2005, 17(4): 407–413.

    PubMed  CAS  Google Scholar 

  19. Mannick JB, Schonhoff C, Papeta N, Ghafourifar P, Szibor M, Fang K, et al. S-Nitrosylation of mitochondrial caspases. J Cell Biol 2001, 154(6): 1111–1116.

    PubMed  CAS  Google Scholar 

  20. Prast H, Philippu A. Nitric oxide as modulator of neuronal function. Prog Neurobiol 2001, 64(1): 51–68.

    PubMed  CAS  Google Scholar 

  21. Wilson GW, Garthwaite J. Hyperpolarization-activated ion channels as targets for nitric oxide signalling in deep cerebellar nuclei. Eur J Neurosci 2010, 31(11): 1935–1945.

    PubMed  Google Scholar 

  22. Ciani E, Virgili M, Contestabile A. Akt pathway mediates a cGMPdependent survival role of nitric oxide in cerebellar granule neurones. J Neurochem 2002, 81(2): 218–228.

    PubMed  CAS  Google Scholar 

  23. Martin LJ, Adams NA, Pan Y, Price A, Wong M. The mitochondrial permeability transition pore regulates nitric oxide-mediated apoptosis of neurons induced by target deprivation. J Neurosci 2011, 31(1): 359–370.

    PubMed  CAS  Google Scholar 

  24. Lin DT, Fretier P, Jiang C, Vincent SR. Nitric oxide signaling via cGMP-stimulated phosphodiesterase in striatal neurons. Synapse 2010, 64(6): 460–466.

    PubMed  CAS  Google Scholar 

  25. Wen J, Ribeiro R, Zhang Y. Specific PKC isoforms regulate LPSstimulated iNOS induction in murine microglial cells. J Neuroin-flammation 2011, 8: 38.

    CAS  Google Scholar 

  26. Zhang M, Zhou J, Marshall B, Xin H, Atherton SS. Lack of iNOS facilitates MCMV spread in the retina. Invest Ophthalmol Vis Sci 2007, 48(1): 285–292.

    PubMed  Google Scholar 

  27. Ono K, Suzuki H, Sawada M. Delayed neural damage is induced by iNOS-expressing microglia in a brain injury model. Neurosci Lett 2010, 473(2): 146–150.

    PubMed  CAS  Google Scholar 

  28. Prüss H, Prass K, Ghaeni L, Milosevic M, Muselmann C, Freyer D, et al. Inducible nitric oxide synthase does not mediate brain damage after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab 2008, 28(3): 526–539.

    PubMed  Google Scholar 

  29. Thippeswamy T, Jain RK, Mumtaz N, Morris R. Inhibition of neuronal nitric oxide synthase results in neurodegenerative changes in the axotomised dorsal root ganglion neurons: evidence for a neuroprotective role of nitric oxide in vivo. Neurosci Res 2001, 40(1): 37–44.

    PubMed  CAS  Google Scholar 

  30. Thippeswamy T, McKay JS, Morris R. Bax and caspases are inhibited by endogenous nitric oxide in dorsal root ganglion neurons in vitro. Eur J Neurosci 2001, 14(8): 1229–1236.

    PubMed  CAS  Google Scholar 

  31. Kim PK, Kwon YG, Chung HT, Kim YM. Regulation of caspases by nitric oxide. Ann N Y Acad Sci 2002, 962: 42–52.

    PubMed  CAS  Google Scholar 

  32. Gross SS, Wolin MS. Nitric oxide: pathophysiological mechanisms. Annu Rev Physiol 1995, 57: 737–769.

    PubMed  CAS  Google Scholar 

  33. Dawson VL, Dawson TM. Nitric oxide in neurodegeneration. Prog Brain Res 1998, 118: 215–229.

    PubMed  CAS  Google Scholar 

  34. Figueroa S, Oset-Gasque MJ, Arce C, Martinez-Honduvilla CJ, Gonzalez MP. Mitochondrial involvement in nitric oxide-induced cellular death in cortical neurons in culture. J Neurosci Res 2006, 83(3): 441–449.

    PubMed  CAS  Google Scholar 

  35. Gutierrez-Martin Y, Martin-Romero FJ, Henao F, Gutierrez-Merino C. Alteration of cytosolic free calcium homeostasis by SIN-1: high sensitivity of L type Ca2+ channels to extracellular oxidative/nitrosative stress in cerebellar granule cells. J Neurochem 2005, 92(4): 973–989.

    PubMed  CAS  Google Scholar 

  36. Oldreive CE, Gaynor S, Doherty GH. Developmental changes in the response of murine cerebellar granule cells to nitric oxide. Neurochem Inter 2008, 52: 1394–1401.

    CAS  Google Scholar 

  37. Oldreive CE, Gaynor S, Doherty GH. Effects of nitric oxide on the survival and neuritogenesis of cerebellar Purkinje neurons. J Mol Neurosci 2011. DOI 10.1007/s12031-011-9590-7.

  38. Behl C, Davis JB, Klier FG, Schubert D. Amyloid beta peptide induces necrosis rather than apoptosis. Brain Res 1994, 645(1–2): 253–264.

    PubMed  CAS  Google Scholar 

  39. McBride AG, Borutaité V, Brown GC. Superoxide dismutase and hydrogen peroxide cause rapid nitric oxide breakdown, peroxynitrite production and subsequent cell death. Biochim Biophys Acta 1999, 1454(3): 275–288.

    PubMed  CAS  Google Scholar 

  40. Brown GC, Borutaite V. Nitric oxide inhibition of mitochondrial respiration and its role in cell death. Free Radic Biol Med 2002, 33(11): 1440–1450.

    PubMed  CAS  Google Scholar 

  41. Bal-Price A, Brown GC. Nitric oxide-induced necrosis and apoptosis in PC12 cells mediated by mitochondria. J Neurochem 2000, 75(4): 1455–1464.

    PubMed  CAS  Google Scholar 

  42. Almeida A, Almeida J, Bolaños JP, Moncada S. Different responses of astrocytes and neurons to nitric oxide: the role of glycolytically generated ATP in astrocyte protection. Proc Natl Acad Sci U S A 2001, 98(26): 15294–15299.

    PubMed  CAS  Google Scholar 

  43. Ishitani R, Chuang DM. Glyceraldehyde-3-phosphate dehydrogenase antisense oligodeoxynucleotides protect against cytosine arabinonucleosideinduced apoptosis in cultured cerebellar neurons. Proc Natl Acad Sci U S A 1996, 93(18): 9937–9941.

    PubMed  CAS  Google Scholar 

  44. Sawa A, Khan AA, Hester LD, Snyder SH. Glyceraldehyde-3-phosphate dehydrogenase: nuclear translocation participates in neuronal and nonneuronal cell death. Proc Natl Acad Sci U S A 1997, 94(21): 11669–11674.

    PubMed  CAS  Google Scholar 

  45. Hara MR, Thomas B, Cascio MB, Bae BI, Hester LD, Dawson VL, et al. Neuroprotection by pharmacologic blockade of the GAPDH death cascade. Proc Natl Acad Sci U S A 2006, 103(10): 3887–3889.

    PubMed  CAS  Google Scholar 

  46. He J, Kang H, Yan F, Chen C. The endoplasmic reticulum-related events in S-nitrosoglutathione-induced neurotoxicity in cerebellar granule cells. Brain Res 2004, 1015(1–2): 25–33.

    PubMed  CAS  Google Scholar 

  47. Borutaite V, Morkuniene R, Brown GC. Nitric oxide donors, nitrosothiols and mitochondrial respiration inhibitors induce caspase activation by different mechanisms. FEBS Lett 2000, 467(2–3):155–159.

    PubMed  CAS  Google Scholar 

  48. Bonthius DJ, Luong T, Bonthius NE, Hostager BS, Karacay B. Nitric oxide utilizes NF-kappaB to signal its neuroprotective effect against alcohol toxicity. Neuropharmacology 2009, 56(3): 716–731.

    PubMed  CAS  Google Scholar 

  49. Gao F, Gao E, Yue TL, Ohlstein EH, Lopez BL, Christopher TA, et al. Nitric oxide mediates the antiapoptotic effect of insulin in myocardial ischemia-reperfusion: the roles of PI3-kinase, Akt, and endothelial nitric oxide synthase phosphorylation. Circulation 2002, 105(12): 1497–1502.

    PubMed  CAS  Google Scholar 

  50. Murphy PR, Limoges M, Dodd F, Boudreau RT, Too CK. Fibroblast growth factor-2 stimulates endothelial nitric oxide synthase expression and inhibits apoptosis by a nitric oxide-dependent pathway in Nb2 lymphoma cells. Endocrinology 2001, 142(1): 81–88.

    PubMed  CAS  Google Scholar 

  51. Reynolds MR, Berry RW, Binder LI. Nitration in neurodegeneration: deciphering the ‘Hows’ ‘nYs’. Biochemistry 2007, 46(25): 7325–7336.

    PubMed  CAS  Google Scholar 

  52. Ghafourifar P, Schenk U, Klein SD, Richter C. Mitochondrial nitric-oxide synthase stimulation causes cytochrome c release from isolated mitochondria. Evidence for intramitochondrial peroxynitrite formation. J Biol Chem 1999, 274(44): 31185–31188.

    CAS  Google Scholar 

  53. Cidad P, Almeida A, Bolaños JP. Inhibition of mitochondrial respiration by nitric oxide rapidly stimulates cytoprotective GLUT3-mediated glucose uptake through 5’-AMP-activated protein kinase. Biochem J 2004, 384: 629–636.

    PubMed  CAS  Google Scholar 

  54. Fehrenbach H, Zimmermann G, Starke E, Bratu VA, Conrad D, Yildirim AO, et al. Nitrogen dioxide induces apoptosis and proliferation but not emphysema in rat lungs. Thorax 2007, 62(5): 438–446.

    PubMed  Google Scholar 

  55. Dawson VL, Dawson TM, London ED, Bredt DS, Snyder SH. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci U S A 1991, 88(14): 6368–6371.

    PubMed  CAS  Google Scholar 

  56. Alzheimer A. Ueber eine eigenartige. Erkrankung der Hirnrinde Allg Z Psychiat 1907, 64: 146–148.

    Google Scholar 

  57. Alzheimer A, Stelzmann RA, Schnitzlein HN, Murtagh FR. An English translation of Alzheimer’s 1907 paper, “Uber eine eigenartige Erkankung der Hirnrinde”. Clin Anat 1995, 8(6): 429–431.

    PubMed  CAS  Google Scholar 

  58. Zilka N, Novak M. The tangled story of Alois Alzheimer. Bratisl Lek Listy 2006, 107(9–10): 343–345.

    PubMed  CAS  Google Scholar 

  59. Doherty G. Metabolic influences on neurological disorders: Focus on homocysteine in Alzheimer’s disease. In: Doherty GH (Ed.). Metabolic Influences on Neurological Disorders. Kerala: Transworld Research Network, 2010: 1–12.

    Google Scholar 

  60. Good PF, Werner P, Hsu A, Olanow CW, Perl DP. Evidence of neuronal oxidative damage in Alzheimer’s disease. Am J Pathol 1996, 149(1): 21–28.

    PubMed  CAS  Google Scholar 

  61. Uehara T, Nakamura T, Yao D, Shi ZQ, Gu Z, Ma Y, et al. S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature 2006, 441(7092): 513–517.

    PubMed  CAS  Google Scholar 

  62. Honjo Y, Ito H, Horibe T, Takahashi R, Kawakami K. Protein disulfide isomerase-immunopositive inclusions in patients with Alzheimer disease. Brain Res 2010, 1349: 90–96.

    PubMed  CAS  Google Scholar 

  63. Gu Z, Nakamura T, Lipton SA. Redox reactions induced by nitrosative stress mediate protein misfolding and mitochondrial dysfunction in neurodegenerative diseases. Mol Neurobiol 2010, 41(2–3): 55–72.

    PubMed  CAS  Google Scholar 

  64. Keil U, Bonert A, Marques CA, Scherping I, Weyermann J, Strosznajder JB, et al. Amyloid beta-induced changes in nitric oxide production and mitochondrial activity lead to apoptosis. J Biol Chem 2004, 279(48): 50310–50320.

    PubMed  CAS  Google Scholar 

  65. Sparrow JR. Inducible nitric oxide synthase in the central nervous system. J Mol Neurosci 1994–1995, 5(4): 219–229.

    PubMed  CAS  Google Scholar 

  66. Combs CK, Karlo JC, Kao SC, Landreth GE. beta-Amyloid stimulation of microglia and monocytes results in TNF alpha-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J Neurosci 2001, 21(4): 1179–1188.

    PubMed  CAS  Google Scholar 

  67. Yan SD, Stern D, Kane MD, Kuo YM, Lampert HC, Roher AE. RAGE-Abeta interactions in the pathophysiology of Alzheimer’s disease. Restor Neurol Neurosci 1998, 12(2–3): 167–173.

    PubMed  CAS  Google Scholar 

  68. Jana M, Palencia CA, Pahan K. Fibrillar amyloid-beta peptides activate microglia via TLR2: implications for Alzheimer’s disease. J Immunol 2008, 181(10): 7254–7262.

    PubMed  CAS  Google Scholar 

  69. Doherty GH. Developmental switch in the effects of TNF alpha on ventral midbrain dopaminergic neurons. Neurosci Res 2007, 57(2): 296–305.

    PubMed  CAS  Google Scholar 

  70. Bongiorno MR, Pistone G, Doukaki S, Aricò M. Adalimumab for treatment of moderate to severe psoriasis and psoriatic arthritis. Dermatol Ther 2008, 21(Suppl 2): S15–20.

    Google Scholar 

  71. Tobinick E, Gross H, Weinberger A, Cohen H. TNF-alpha modulation for treatment of Alzheimer’s disease: a 6-month pilot study. Med Gen Med 2006, 8: 25.

    Google Scholar 

  72. Mrak RE, Griffin WST. Interleukin-1, neuroinflammation, and Alzheimer’s disease. Neurobiol Aging 2001, 22: 903–908.

    PubMed  CAS  Google Scholar 

  73. Rogers JT, Leiter LM, McPhee J, Cahill CM, Zhan S, Potter H, et al. Translation of the Alzheimer amyloid precursor protein mRNA is up-regulated by interleukin-1 through 5′-untranslated region sequences. J Biol Chem 1999, 274(10): 6421–6431.

    PubMed  CAS  Google Scholar 

  74. Sheng JG, Jones RA, Zhou XQ, McGinness JM, Van Eldik LJ, Mrak RE, et al. Interleukin-1 promotion of MAPK-p38 overexpression in experimental animals and in Alzheimer’s disease: potential significance for tau protein phosphorylation. Neurochem Inter 2001, 39: 341–348.

    CAS  Google Scholar 

  75. Griffin WST, Mrak RE. Interleukin-1 in the genesis and progression of and risk for development of neuronal degeneration in Alzheimer’s disease. J Leukocyte Biol 2002, 72: 233–238.

    PubMed  CAS  Google Scholar 

  76. Lio D, Licastro F, Scola L, Chiappelli M, Grimaldi LM, Crivello A, et al. Interleukin-10 promoter polymorphism in sporadic Alzheimer’s disease. Genes Immun 2003, 4: 234–238.

    PubMed  CAS  Google Scholar 

  77. Ogawa O, Umegaki H, Sumi D, Hayashi T, Nakamura A, Thakur NK, et al. Inhibition of inducible nitric oxide synthase gene expression by indomethacin or ibuprofen in beta-amyloid proteinstimulated J774 cells. Eur J Pharmacol 2000, 408(2): 137–141.

    PubMed  CAS  Google Scholar 

  78. Asanuma M, Nishibayashi-Asanuma S, Miyazaki I, Kohno M, Ogawa N. Neuroprotective effects of non-steroidal anti-inflammatory drugs by direct scavenging of nitric oxide radicals. J Neurochem 2001, 76(6): 1895–1904.

    PubMed  CAS  Google Scholar 

  79. Thomas B, Beal MF. Parkinson’s disease. Hum Mol Genet 2007, 16: R183–194.

    PubMed  CAS  Google Scholar 

  80. Betarbet R, Sherer TB, Greenamyre JT. Animal models of Parkinson’s disease. Bioessays 2002, 24(4): 308–318.

    PubMed  CAS  Google Scholar 

  81. Doherty GH, Oldreive C, Harvey J. Neuroprotective actions of leptin on central and peripheral neurons in vitro. Neuroscience 2008, 154(4): 1297–1307.

    PubMed  CAS  Google Scholar 

  82. Mandir AS, Przedborski S, Jackson-Lewis V, Wang ZQ, Simbulan-Rosenthal CM, Smulson ME, et al. Poly(ADP-ribose) polymerase activation mediates 1-methyl-4-phenyl-1, 2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism. Proc Natl Acad Sci U S A 1999, 96(10): 5774–5779.

    PubMed  CAS  Google Scholar 

  83. Liberatore GT, Jackson-Lewis V, Vukosavic S, Mandir AS, Vila M, McAuliffe WG, et al. Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med 1999, 5(12): 1403–1409.

    PubMed  CAS  Google Scholar 

  84. Di Matteo V, Pierucci M, Benigno A, Crescimanno G, Esposito E, Di Giovanni G. Involvement of nitric oxide in nigrostriatal dopaminergic system degeneration: a neurochemical study. Ann N Y Acad Sci 2009, 1155: 309–315.

    PubMed  Google Scholar 

  85. Chung KK, Thomas B, Li X, Pletnikova O, Troncoso JC, Marsh L, et al. S-nitrosylation of parkin regulates ubiquitination and compromises parkin’s protective function. Science 2004, 304(5675): 1328–13

    PubMed  CAS  Google Scholar 

  86. Wang C, Ko HS, Thomas B, Tsang F, Chew KC, Tay SP, et al. Stress-induced alterations in parkin solubility promote parkin aggregation and compromise parkin’s protective function. Hum Mol Genet 2005, 14(24): 3885–3897.

    PubMed  CAS  Google Scholar 

  87. Fang J, Nakamura T, Cho DH, Gu Z, Lipton SA. S-nitrosylation of peroxiredoxin 2 promotes oxidative stress-induced neuronal cell death in Parkinson’s disease. Proc Natl Acad Sci U S A 2007, 104(47): 18742–18747.

    PubMed  CAS  Google Scholar 

  88. Tsang AH, Lee YI, Ko HS, Savitt JM, Pletnikova O, Troncoso JC, et al. S-nitrosylation of XIAP compromises neuronal survival in Parkinson’s disease. Proc Natl Acad Sci U S A 2009, 106(12): 4900–4905.

    PubMed  CAS  Google Scholar 

  89. Lee SJ, Kim DC, Choi BH, Ha H, Kim KT. Regulation of p53 by activated protein kinase C-delta during nitric oxide-induced dopaminergic cell death. J Biol Chem 2006, 281(4): 2215–2224.

    PubMed  CAS  Google Scholar 

  90. McGeer PL, Itagaki S, Boyes BE, McGeer EG. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 1988, 38(8): 1285–1291.

    PubMed  CAS  Google Scholar 

  91. Zhou Y, Wang Y, Kovacs M, Jin J, Zhang J. Microglial activation induced by neurodegeneration: a proteomic analysis. Mol Cell Proteomics 2005, 4(10): 1471–1479.

    PubMed  CAS  Google Scholar 

  92. Wu DC, Jackson-Lewis V, Vila M, Tieu K, Teismann P, Vadseth C, et al. Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci 2002, 22(5): 1763–1771.

    PubMed  CAS  Google Scholar 

  93. Ferger B, Leng A, Mura A, Hengerer B, Feldon J. Genetic ablation of tumor necrosis factor-alpha (TNF-alpha) and pharmacological inhibition of TNF-synthesis attenuates MPTP toxicity in mouse striatum. J Neurochem 2004, 89(4): 822–833.

    PubMed  CAS  Google Scholar 

  94. Shen S, Yu S, Binek J, Chalimoniuk M, Zhang X, Lo SC, et al. Distinct signaling pathways for induction of type II NOS by IFN gamma and LPS in BV-2 microglial cells. Neurochem Int 2005, 47(4): 298–307.

    PubMed  CAS  Google Scholar 

  95. Miller RL, James-Kracke M, Sun GY, Sun AY. Oxidative and inflammatory pathways in Parkinson’s disease. Neurochem Res 2009, 34(1): 55–65.

    PubMed  CAS  Google Scholar 

  96. Martín-Moreno AM, Reigada D, Ramírez BG, Mechoulam R, Innamorato N, Cuadrado A, et al. Cannabidiol and other cannabinoids reduce microglial activation in vitro and in vivo: relevance to Alzheimer’s disease. Mol Pharmacol 2011, 79(6): 964–973.

    PubMed  Google Scholar 

  97. Hoozemans JJ, Rozemuller AJ, Janssen I, De Groot CJ, Veerhuis R, Eikelenboom P. Cyclooxygenase expression in microglia and neurons in Alzheimer’s disease and control brain. Acta Neuropathol 2001, 101(1): 2–8.

    PubMed  CAS  Google Scholar 

  98. Yasojima K, Schwab C, McGeer EG, McGeer PL. Distribution of cyclooxygenase-1 and cyclooxygenase-2 mRNAs and proteins in human brain and peripheral organs. Brain Res 1999, 830(2): 226–236.

    PubMed  CAS  Google Scholar 

  99. Andreasson KI, Savonenko A, Vidensky S, Goellner JJ, Zhang Y, Shaffer A, et al. Age-dependent cognitive deficits and neuronal apoptosis in cyclooxygenase-2 transgenic mice. J Neurosci 2001, 21(20): 8198–8209.

    PubMed  CAS  Google Scholar 

  100. Lehmann JM, Lenhard JM, Oliver BB, Ringold GM, Kliewer SA. Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J Biol Chem 1997, 272(6): 3406–3410.

    PubMed  CAS  Google Scholar 

  101. Jiang C, Ting AT, Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 1998, 391(6662): 82–86.

    PubMed  CAS  Google Scholar 

  102. Kitamura Y, Kakimura J, Matsuoka Y, Nomura Y, Gebicke-Haerter PJ, Taniguchi T. Activators of peroxisome proliferator-activated receptor-gamma (PPAR gamma) inhibit inducible nitric oxide synthase expression but increase heme oxygenase-1 expression in rat glial cells. Neurosci Lett 1999, 262(2): 129–132.

    PubMed  CAS  Google Scholar 

  103. Tortosa E, Avila J, Pérez M. Acetylsalicylic acid decreases tau phosphorylation at serine 422. Neurosci Lett 2006, 396(1): 77–80.

    PubMed  CAS  Google Scholar 

  104. Zhou Y, Su Y, Li B, Liu F, Ryder JW, Wu X, et al. Nonsteroidal anti-inflammatory drugs can lower amyloidogenic Abeta42 by inhibiting Rho. Science 2003, 302(5648): 1215–1217.

    PubMed  CAS  Google Scholar 

  105. Bourne KZ, Ferrari DC, Lange-Dohna C, Rossner S, Wood TG, Perez-Polo JR. Differential regulation of BACE1 promoter activity by nuclear factor-kappaB in neurons and glia upon exposure to beta-amyloid peptides. J Neurosci Res 2007, 85(6): 1194–1204.

    PubMed  CAS  Google Scholar 

  106. Lleó A, Berezovska O, Herl L, Raju S, Deng A, Bacskai BJ, et al. Nonsteroidal anti-inflammatory drugs lower Abeta42 and change presenilin 1 conformation. Nat Med 2004, 10(10): 1065–1066.

    PubMed  Google Scholar 

  107. In’t Veld BA, Ruitenberg A, Hofman A, Launer LJ, van Duijn CM, Stijnen T, et al. Do non-steroidal anti-inflammatory drugs reduce the risk of Alzheimer’s Disease? New Eng J Med 2001, 345(21): 1515–1521.

    Google Scholar 

  108. Stewart WF, Kawas C, Corrada M, Metter EJ. Risk of Alzheimer’s disease and duration of NSAID use. Neurology 1997, 48(3): 626–632.

    PubMed  CAS  Google Scholar 

  109. Rogers J, Kirby LC, Hempelman SR, Berry DL, McGeer PL, Kaszniak AW, et al. Clinical trial of indomethacin in Alzheimer’s disease. Neurology 1993, 43(8): 1609–1611.

    PubMed  CAS  Google Scholar 

  110. ADAPT Research Group, Lyketsos CG, Breitner JC, Green RC, Martin BK, Meinert C, et al. Naproxen and celecoxib do not prevent AD in early results from a randomized controlled trial. Neurology 2007, 68(21): 1800–1808.

    PubMed  CAS  Google Scholar 

  111. ADAPT Research Group, Martin BK, Szekely C, Brandt J, Piantadosi S, Breitner JC, et al. Cognitive function over time in the Alzheimer’s Disease Anti-inflammatory Prevention Trial (ADAPT): results of a randomized, controlled trial of naproxen and celecoxib. Arch Neurol 2008, 65(7): 896–905.

    PubMed  Google Scholar 

  112. Gagne JJ, Power MC. Anti-inflammatory drugs and risk of Parkinson disease: a meta-analysis. Neurology 2010, 74(12): 995–1002.

    PubMed  CAS  Google Scholar 

  113. Kumar P, Kumar A. Effect of lycopene and epigallocatechin-3-gallate against 3-nitropropionic acid induced cognitive dysfunction and glutathione depletion in rat: a novel nitric oxide mechanism. Food Chem Toxicol 2009, 47(10): 2522–2530.

    PubMed  CAS  Google Scholar 

  114. Kumar P, Kumar A. Protective effect of hesperidin and naringin against 3-nitropropionic acid induced Huntington’s like symptoms in rats: possible role of nitric oxide. Behav Brain Res 2010, 206(1): 38–46.

    PubMed  CAS  Google Scholar 

  115. Basso M, Samengo G, Nardo G, Massignan T, D’Alessandro G, Tartari S, et al. Characterization of detergent-insoluble proteins in ALS indicates a causal link between nitrative stress and aggregation in pathogenesis. PLoS One 2009, 4(12): e8130.

    PubMed  Google Scholar 

  116. Doherty GH. How can we prevent neuronal apoptosis? In: Schmid CJ, Wolfe JL (Eds.). Neuronal Cell Apoptosis. Nova Science Publishers Inc., 2011.

  117. Bennet JP. Biochemical pathology and pharmacology of Parkinson’s disease. In: Stern MB, Hurtig HI (Eds.). The Comprehensive Management of Parkinson’s Disease. New York: PMA Publishing, 1988: 63–76.

    Google Scholar 

  118. Shaftel SS, Griffin WS, O’Banion MK. The role of interleukin-1 in neuroinflammation and Alzheimer disease: an evolving perspective. J Neuroinflammation 2008, 5: 7.

    PubMed  Google Scholar 

  119. Lukiw WJ, Bazan NG. Cyclooxygenase 2 RNA message abundance, stability, and hypervariability in sporadic Alzheimer neocortex. J Neurosci Res 1997, 50(6): 937–945.

    PubMed  CAS  Google Scholar 

  120. Yermakova AV, O’Banion MK. Downregulation of neuronal cyclooxygenase-2 expression in end stage Alzheimer’s disease. Neurobiol Aging 2001, 22(6): 823–836.

    PubMed  CAS  Google Scholar 

  121. Combrinck M, Williams J, De Berardinis MA, Warden D, Puopolo M, Smith AD, et al. Levels of CSF prostaglandin E2, cognitive decline, and survival in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2006, 77(1): 85–88.

    PubMed  CAS  Google Scholar 

  122. Montine TJ, Sidell KR, Crews BC, Markesbery WR, Marnett LJ, Roberts LJ 2nd, et al. Elevated CSF prostaglandin E2 levels in patients with probable AD. Neurology 1999, 53(7): 1495–1498.

    PubMed  CAS  Google Scholar 

  123. Wang F, Zhai H, Huang L, Li H, Xu Y, Qiao X, et al. Aspirin protects dopaminergic neurons against lipopolysaccharide-induced neurotoxicity in primary midbrain cultures. J Mol Neurosci 2011. [Epub ahead of print]

  124. Moghaddam HF, Hemmati A, Nazari Z, Mehrab H, Abid KM, Ardestani MS. Effects of aspirin and celecoxib on rigidity in a rat model of Parkinson’s disease. Pak J Biol Sci 2007, 10(21): 3853–3858.

    PubMed  CAS  Google Scholar 

  125. Maharaj DS, Saravanan KS, Maharaj H, Mohanakumar KP, Daya S. Acetaminophen and aspirin inhibit superoxide anion generation and lipid peroxidation, and protect against 1-methyl-4-phenyl pyridinium-induced dopaminergic neurotoxicity in rats. Neurochem Int 2004, 44(5): 355–360.

    PubMed  CAS  Google Scholar 

  126. Beeri MS, Schmeidler J, Lesser GT, Maroukian M, West R, Leung S, et al. Corticosteroids, but not NSAIDs, are associated with less Alzheimer neuropathology. Neurobiol Aging 2011. [Epub ahead of print]

  127. Sonnen JA, Larson EB, Walker RL, Haneuse S, Crane PK, Gray SL, et al. Nonsteroidal anti-inflammatory drugs are associated with increased neuritic plaques. Neurology 2010, 75(13): 1203–1210.

    PubMed  CAS  Google Scholar 

  128. Li Z, Wang Y, Xie Y, Yang Z, Zhang T. Protective effects of exogenous hydrogen sulfide on neurons of hippocampus in a rat model of brain ischemia. Neurochem Res 2011. [Epub ahead of print]

  129. Hu LF, Lu M, Tiong CX, Dawe GS, Hu G, Bian JS. Neuroprotective effects of hydrogen sulfide on Parkinson’s disease rat models. Aging Cell 2010, 9(2): 135–146.

    PubMed  CAS  Google Scholar 

  130. Gong QH, Wang Q, Pan LL, Liu XH, Huang H, Zhu YZ. Hydrogen sulfide attenuates lipopolysaccharide-induced cognitive impairment: a pro-inflammatory pathway in rats. Pharmacol Biochem Behav 2010, 96(1): 52–58.

    PubMed  CAS  Google Scholar 

  131. Lee M, Sparatore A, Del Soldato P, McGeer E, McGeer PL. Hydrogen sulfide-releasing NSAIDs attenuate neuroinflammation induced by microglial and astrocytic activation. Glia 2010, 58(1): 103–113.

    PubMed  Google Scholar 

  132. Endoh M, Maiese K, Wagner J. Expression of the inducible form of nitric oxide synthase by reactive astrocytes after transient global ischemia. Brain Res 1994, 651(1–2): 92–100.

    PubMed  CAS  Google Scholar 

  133. CzŁonkowska A, Kohutnicka M, Kurkowska-Jastrzebska I, CzŁonkowski A. Microglial reaction in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) induced Parkinson’s disease mice model. Neurodegeneration 1996, 5(2): 137–143.

    PubMed  Google Scholar 

  134. Cicchetti F, Brownell AL, Williams K, Chen YI, Livni E, Isacson O. Neuroinflammation of the nigrostriatal pathway during progressive 6-OHDA dopamine degeneration in rats monitored by immunohistochemistry and PET imaging. Eur J Neurosci 2002, 15(6): 991–998.

    PubMed  CAS  Google Scholar 

  135. Sherer TB, Betarbet R, Kim JH, Greenamyre JT. Selective microglial activation in the rat rotenone model of Parkinson’s disease. Neurosci Lett 2003, 341(2): 87–90.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gayle Helane Doherty.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Doherty, G.H. Nitric oxide in neurodegeneration: potential benefits of non-steroidal anti-inflammatories. Neurosci. Bull. 27, 366–382 (2011). https://doi.org/10.1007/s12264-011-1530-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-011-1530-6

Keywords

  • Alzheimer’s disease
  • neurodegenerative disease
  • nitric oxide
  • neuroinflammation
  • Parkinson’s disease

关键词

  • 阿尔茨海默病
  • 神经退行性疾病
  • 一氧化氮
  • 神经炎症
  • 帕金森氏病