Skip to main content

Advertisement

Log in

Induced pluripotent stem cells and neurodegenerative diseases

诱导多能干细胞与神经退行性疾病

  • Minireview
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Neurodegenerative diseases, including Parkinson’s disease, Alzheimer’s disease and Amyotrophic Lateral Sclerosis, are characterized by idiopathic neuron loss in different regions of the central nervous system, which contributes to the relevant dysfunctions in the patients. The application of cell replacement therapy using human embryonic stem (hES) cells, though having attracted much attention, has been hampered by the intrinsic ethical problems. It has been demonstrated that adult somatic cells can be reprogrammed into the embryonic state, called induced pluripotent stem (iPS) cells. It is soon realized that iPS cells may be an alternative source for cell replacement therapy, because it raises no ethical problems and using patient-specific iPS cells for autologous transplantation will not lead to immunological rejection. What’s more, certain types of neurons derived from patient-specific iPS cells may display disease-relevant phenotypes. Thus, patientspecific iPS cells can provide a unique opportunity to directly investigate the pathological properties of relevant neural cells in individual patient, and to study the vulnerability of neural cells to pathogenic factors in vitro, which may help reveal the pathogenesis of many neurodegenerative diseases. In this review, the recent development in cellular treatment of neurodegenerative diseases using iPS cells was summarized, and the potential value of iPS cells in the modeling of neurodegenerative disease was discussed.

摘要

神经退行性疾病, 包括帕金森病、 阿尔茨海默病和肌萎缩侧索硬化症等的共同特征是在中枢神经系统的不同部位发生特发性神经元丢失。 这些神经元的丢失给病人造成了一系列相应的功能障碍。 应用人类胚胎干细胞进行细胞替代治疗曾引起人们很大的兴趣, 但是一些伦理学问题阻碍了该研究的发展。 通过导入特定的转录因子, 体细胞能够被诱导为具有胚胎干细胞特性的细胞, 即诱导多能干细胞 (induced pluripotent stem cells, iPS cells)。 获取人类iPS细胞并不涉及明显的伦理问题, 并且运用病人特异性的iPS细胞能使自体移植成为可能。 因此, iPS细胞有可能成为细胞替代治疗中可靠的细胞来源。 此外, 利用iPS细胞, 人们还能在体外直接研究病变神经细胞的表型以及神经细胞在特定致病因子作用下的疾病易感性, 有助于揭示神经退行性疾病的内在机制。 本文综述了iPS细胞用于神经退行性疾病细胞治疗的最新进展, 并探讨了其在建立疾病的细胞模型中的潜在价值。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Inoue H. Neurodegenerative disease-specific induced pluripotent stem cell research. Exp Cell Res 2010, 316: 2560–2564.

    Article  CAS  PubMed  Google Scholar 

  2. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998, 282: 1145–1147.

    Article  CAS  PubMed  Google Scholar 

  3. Hanley J, Rastegarlari G, Nathwani AC. An introduction to induced pluripotent stem cells. Br J Haematol 2010, 151: 16–24.

    Article  CAS  PubMed  Google Scholar 

  4. Chiba S, Lee YM, Zhou W, Freed CR. Noggin enhances dopamine neuron production from human embryonic stem cells and improves behavioral outcome after transplantation into Parkinsonian rats. Stem Cells 2008, 26: 2810–2820.

    Article  CAS  PubMed  Google Scholar 

  5. Ko JY, Park CH, Koh HC, Cho YH, Kyhm JH, Kim YS, et al. Human embryonic stem cell-derived neural precursor as a continuous, stable, and on-demand source for human dopamine neurons. J Neurochem 2007, 103: 1417–1429.

    Article  CAS  PubMed  Google Scholar 

  6. Newman MB, Bakay RA. Therapeutic potential of human embryonic stem cells in Parkinson’s disease. Neurotherapeutics 2008, 5: 237–251.

    Article  CAS  PubMed  Google Scholar 

  7. Erceg S, Ronaghi M, Oria M, Roselló MG, Aragó MA, Lopez MG, et al. Transplanted oligodendrocytes and motoneuron progenitors generated from human embryonic stem cells promote locomotor recovery after spinal cord transection. Stem Cells 2010, 28: 1541–1549.

    Article  PubMed  Google Scholar 

  8. Kerr CL, Letzen BS, Hill CM, Agrawal G, Thakor NV, Sterneckert JL, et al. Efficient differentiation of human embryonic stem cells into oligodendrocyte progenitors for application in a rat contusion model of spinal cord injury. Int J Neurosci 2010, 120: 305–313.

    Article  CAS  PubMed  Google Scholar 

  9. Hicks AU, Lappalainen RS, Narkilahti S, Suuronen R, Corbett D, Sivenius J, et al. Transplantation of human embryonic stem cell-derived neural precursor cells and enriched environment after cortical stroke in rat: cell survival and functional recovery. Eur J Neurosci 2009, 29: 562–574.

    Article  PubMed  Google Scholar 

  10. Daadi MM, Maag Al, Steinberg GK. Adherent self-renewable human embryonic stem cell-derived neural stem cell line: functional engraftment in experimental stroke model. PLoS One 2008, 20: e1644.

    Article  Google Scholar 

  11. Song J, Lee ST, Kang W, Park JE, Chu K, Lee SE, et al. Human embryonic stem cell-derived neural precursor transplants attenuate apomorphine-induced rotational behavior in rats with unilateral quinolinic acid lesions. Neurosci Lett 2007, 423: 58–61.

    Article  CAS  PubMed  Google Scholar 

  12. Lengner CJ. iPS cell technology in regenerative medicine. Ann N Y Acad Sci 2010, 1192: 38–44.

    Article  CAS  PubMed  Google Scholar 

  13. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126: 663–676.

    Article  CAS  PubMed  Google Scholar 

  14. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131: 861–872.

    Article  CAS  PubMed  Google Scholar 

  15. Wernig M, Zhao JP, Pruszak J, Hedlund E, Fu D, Soldner F, et al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci U S A 2008, 105: 5856–5861.

    Article  CAS  PubMed  Google Scholar 

  16. Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 2008, 321: 1218–1221.

    Article  CAS  PubMed  Google Scholar 

  17. Xie CQ, Huang H, Wei S, Song LS, Zhang J, Ritchie RP, et al. A comparison of murine smooth cells generated from embryonic versus induced pluripotent stem cells. Stem Cells Dev 2009, 18: 741–748.

    Article  CAS  PubMed  Google Scholar 

  18. Moretti A, Bellin M, Welling A, Jung CB, Lam JT, Bott-Flügel L, et al. Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med 2010, 363: 1397–1409.

    Article  CAS  PubMed  Google Scholar 

  19. Tashiro K, Inamura M, Kawabata K, Sakurai F, Yamanishi K, Hayakawa T, et al. Efficient adipocyte and osteoblast differentiation from mouse induced pluripotent stem cells by adenoviral transduction. Stem Cells 2009, 27: 1802–1811.

    Article  CAS  PubMed  Google Scholar 

  20. Grigoriadis AE, Kennedy M, Bozec A, Brunton F, Stenbeck G, Park IH, et al. Directed differentiation of hematopoietic precursors and functional osteoclasts from human ES and iPS cells. Blood 2010, 115: 2769–2776.

    Article  CAS  PubMed  Google Scholar 

  21. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature 2007. 448: 313–317.

    Article  CAS  PubMed  Google Scholar 

  22. Kang L, Wang J, Zhang Y, Kou Z, Gao S. iPS cells can support fullterm development of tetraploid blastocyst-complemented embryos. Cell Stem Cell 2009, 5: 135–138.

    Article  CAS  PubMed  Google Scholar 

  23. Zhao XY, Li W, Lv Z, Liu L, Tong M, Hai T, et al. iPS cells produce viable mice through tetraploid complementation. Nature 2009, 461: 86–90.

    Article  CAS  PubMed  Google Scholar 

  24. Kang L, Kou L, Zhang Y, Gao S. Induced pluripotent stem cells (iPSCs)-a new era of reprogramming. J Genet Genomics 2010, 37: 415–421.

    Article  CAS  PubMed  Google Scholar 

  25. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007, 318: 1917–1920.

    Article  CAS  PubMed  Google Scholar 

  26. Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 2008, 451: 141–146.

    Article  CAS  PubMed  Google Scholar 

  27. Arenas E. Towards stem cell replacement therapies for Parkinson’s disease. Biochem Biophys Res Commun 2010, 396: 152–156.

    Article  CAS  PubMed  Google Scholar 

  28. Sawle GV, Bloomfield PM, Björklund A, Brooks DJ, Brundin P, Leedners KL, et al. Transplantation of fetal dopamine neurons in Parkinson’s disease: PET [18F]6-L-fluorodopa studies in two patients with putaminal implants. Ann Neurol 1992, 31: 166–173.

    Article  CAS  PubMed  Google Scholar 

  29. Wenning GK, Odin P, Morrish P, Rehncrona S, Wider H, Brundin P, et al. Short- and long-term survival and function of unilateral intrasriatal dopaminergic grafts in Parkinson’s disease. Ann Neurol 1997, 42: 95–107.

    Article  CAS  PubMed  Google Scholar 

  30. Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R, et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 2001, 344: 710–719.

    Article  CAS  PubMed  Google Scholar 

  31. Geeta R, Ramnath RL, Rao HS, Chandra V. One year survival and significant reversal of motor deficits in Parkinsonian rats transplanted with hESC derived dopaminergic neurons. Biochem Biophys Res Commun 2008, 373: 258–264.

    Article  CAS  PubMed  Google Scholar 

  32. Cai J, Yang M, Poremsky E, Kidd S, Schneider JS, Iacovitti L. Dopaminergic neurons derived from human induced pluripotent stem cells survive and integrate into 6-OHDA-lesioned rats. Stem Cells Dev 2010, 19: 1017–1023.

    Article  CAS  PubMed  Google Scholar 

  33. Swistowski A, Peng J, Liu Q, Mali P, Rao MS, Cheng L, et al. Efficient generation of functional dopaminergic neurons from human induced pluripotent stem cells under defined conditions. Stem Cells 2010, 28: 1893–1904.

    Article  CAS  PubMed  Google Scholar 

  34. Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, et al. Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 2009, 136: 964–977.

    Article  CAS  PubMed  Google Scholar 

  35. Hargus G, Cooper O, Deleidi M, Levy A, Lee K, Marlow E, et al. Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc Natl Acad Sci U S A 2010, 107: 15921–15926.

    Article  CAS  PubMed  Google Scholar 

  36. Li JY, Englund E, Holton JL, Soulet D, Hagell P, Lees AJ, et al. Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 2008, 14: 501–503.

    Article  CAS  PubMed  Google Scholar 

  37. Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 2008, 14: 504–506.

    Article  CAS  PubMed  Google Scholar 

  38. Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, et al. Global prevalence of dementia: a Delphi consensus study. Lancet 2005, 366: 2112–2117.

    Article  PubMed  Google Scholar 

  39. Minati L, Edginton T, Bruzzone MG, Giaccone G. Current concepts in Alzheimer’s disease: a multidisciplinary review. Am J Alzheimers Dis Other Demen 2009, 24: 95–121.

    Article  PubMed  Google Scholar 

  40. Wijesekera LC, Leigh PN. Amyotrophic lateral sclerosis. Orphanet J Rare Dis 2009, 4: 3.

    Article  PubMed  Google Scholar 

  41. Papadeas ST, Maragakis NJ. Advances in stem cell research for amyotrophic lateral sclerosis. Curr Opin Biotechnol 2009, 20: 545–551.

    Article  CAS  PubMed  Google Scholar 

  42. He TT, Zhang JM, Shen L, Yao SL, Tian JH. Positron emission tomography imaging of cell transplantation in a rat model of Alzheimer’s disease. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2010, 32: 210–214.

    PubMed  Google Scholar 

  43. Wu S, Sasaki A, Yoshimoto R, Kawahara Y, Manabe T, Kataoka K, et al. Neural stem cells improve learning and memory in rats with Alzheimer’s disease. Pathobiology 2008, 75: 186–194.

    Article  PubMed  Google Scholar 

  44. Kwak YD, Brannen CL, Qu T, Kim HM, Dong X, Soba P, et al. Amyloid precursor protein regulates differentiation of human neural stem cells. Stem Cells Dev 2006, 15: 381–389.

    Article  CAS  PubMed  Google Scholar 

  45. Blurton-Jones M, Kitazawa M, Martinez-Coria H, Castello NA, Müller FJ, Loring JF, et al. Neural stem cells improve cognitive via BDNF in a transgenic model of Alzheimer disease. Proc Natl Acad Sci U S A 2009, 106: 13594–13595.

    Article  CAS  PubMed  Google Scholar 

  46. Robbins RD, Prasain N, Maier BF, Yoder MC, Mirmira RG. Inducible pluripotent stem cells: not quite ready for prime time? Curr Opin Organ Transplant 2010, 15: 61–67.

    Article  PubMed  Google Scholar 

  47. Skaper SD, Giusti P. Transgenic mouse models of Parkinson’s disease and Huntington’s disease. CNS Neurol Disord Drug Targets 2010, 9: 455–470.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Fu Xiao  (肖世富).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C., Xiao, SF. Induced pluripotent stem cells and neurodegenerative diseases. Neurosci. Bull. 27, 107–114 (2011). https://doi.org/10.1007/s12264-011-1147-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-011-1147-9

Keywords

关键词

Navigation