Skip to main content
Log in

The functional roles of feedback projections in the visual system

视觉系统中反馈投射的功能作用

  • Minireview
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Neurons in the nervous system make connections with ascending feedforward projections and descending feedback projections, as well as projections from neural structures at the identical hierarchical level. These neurons form extremely complicated neural networks and pathways. Compared with the role of the feedforward projection, much less is known concerning the functional roles of the feedback projection. Visual cortex is a good model for studying functional roles of cortical feedback projections which involve many high functions, such as attention, searching and cognition. The present review mainly focused on the functional roles of feedback projections in the visual system.

摘要

在神经系统中, 神经元既接受下级结构神经元的投射输入, 又接受上级和同级神经结构神经元的输入, 形成了极其复杂的神经网络和通路。 目前, 对于神经系统向前的投射通路的功能作用已有相当深入的了解, 但对脑内反馈的投射通路的功能知之甚少。 视觉皮层是研究反馈投射通路的较好模型, 其下行反馈的投射涉及注意、 搜索和认知等高级功能。 本文主要对有关视觉系统中反馈投射的功能作用做一综述。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Livingstone MS, Hubel DH. Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J Neurosci 1987, 7: 3416–3468.

    PubMed  CAS  Google Scholar 

  2. Zeki S. The visual image in mind and brain. Sci Am 1992, 267: 69–76.

    Article  Google Scholar 

  3. Ungerleider LG, Pasternak T. Ventral and dorsal cortical processing streams, in: Visual Neuroscience. Cambridge, MA: MIT Press, 2004: 541–562.

    Google Scholar 

  4. Shou T. Brain Mechanisms of Visual Information Processing. Shanghai: Shanghai Scientific & Technological Education Publishing House, 1997.

    Google Scholar 

  5. Casagrande VA, Ding Y, Boyd JD. The morphology of LGN axons from different K layers in V1 of macaque monkey. Soc Neurosci Abstr 1997, 23: 2361.

    Google Scholar 

  6. Ding Y, Casagrande VA. The distribution and morphology of LGN K pathway axons within the layers and CO blobs of owl monkey V1. Vis Neurosci 1997, 14: 691–704.

    Article  PubMed  CAS  Google Scholar 

  7. Ungerleider LG, Mishkin M. Two cortical visual systems, in: Goodale MA and Mansfield RJW (eds.), Analysis of Visual Behavior. Cambridge: MIT Press, 1982: 549–586.

    Google Scholar 

  8. DeYoe EA, Van Essen DC. Concurrent processing streams in monkey visual cortex. Trends Neurosci 1988, 11: 219–226.

    Article  PubMed  CAS  Google Scholar 

  9. Merigan WH, Maunsell JH. How parallel are the primary visual pathways? Annu Rev Neurosci 1993, 16: 369–402.

    Article  PubMed  CAS  Google Scholar 

  10. Van Essen DC, Felleman DJ, DeYoe EA, Olavarria J, Knierin J. Modular and hierarchical organization of extrastriate visual cortex in the macaque monkey. Cold Spring Harb Symp Quant Biol 1990, 55: 679–696.

    PubMed  Google Scholar 

  11. Burke W, Dreher B, Wang C. Selective block of conduction in Y optic nerve fiberes: significance for the concept of parallel processing. Eur J Neurosci 1998, 10: 8–19.

    Article  PubMed  CAS  Google Scholar 

  12. Meyer G, Albus K. Spiny stellates as cells of origin of association fibres from area 17 to area 18 in the cat’s neocortex. Brain Res 1981, 210: 335–341.

    Article  PubMed  CAS  Google Scholar 

  13. Lund JS, Wu CQ. Local circuit neurons of macaque monkey striate cortex: IV. Neurons of laminae 1–3A. J Comp Neurol 1998, 384: 109–126.

    Article  Google Scholar 

  14. Johnson RR, Burkhalten A. Microcircuitry of forward and feedback connections within rat visual cortex. J Comp Neurol 1996, 368: 383–398.

    Article  PubMed  CAS  Google Scholar 

  15. Bullier J. Communications between cortical areas of the visual system. In: The Visual Neurosciences, 2004, 1: 522–540.

    Google Scholar 

  16. Montero VM. A quantitative study of synaptic contacts on internnections and relay cells of the cat lateral geniculate nucleus. Exp Brain Res 1991, 86: 257–270.

    Article  PubMed  CAS  Google Scholar 

  17. Weber A, Kalil RE, Behan M. Synaptic connections between corticogeniculate axons and interneurons in the dorsal lateral geniculate nucleus of the cat. J Comp Neurol 1989, 289: 156–164.

    Article  PubMed  CAS  Google Scholar 

  18. Domenici L, Harding GW, Burkhalter A. Patterns of synaptic activity in forward and feedback pathways within rat visual cortex. J Neurophysiol 1995, 74: 2649–2664.

    PubMed  CAS  Google Scholar 

  19. Douglas RJ, Martin KA. A functional microcircuit for cat visual cortex. J Physiol 1991, 440: 735–769.

    PubMed  CAS  Google Scholar 

  20. Shao Z, Burkhalter A. Different balance of excitation and inhibition in forward and feedback circuits of rat visual cortex. J Neurosci 1996, 16: 7375–7365.

    Google Scholar 

  21. Salin PA, Bullier J. Corticocortical connections in the visual system: structure and function. Physiol Rev 1995, 75: 107–154.

    PubMed  CAS  Google Scholar 

  22. Burke W, Dreher B, Wang C. Selective block of conduction in Y optic nerve fibers: significance for the concept of parallel processing. Eur J Neurosci 1998, 10: 8–19.

    Article  PubMed  CAS  Google Scholar 

  23. Payne BR, Lomber SG. Quantitative analyses of principal and secondary compound parieto-occipital feedback pathways in cat. Exp Brain Res 2003, 152: 420–433.

    PubMed  Google Scholar 

  24. Lamme VA, Super H, Spekreijse H. Feedforward, Horizontal and feedback processing in the visual cortex. Curr Opin Neurobiol 1998, 8: 529–535.

    Article  PubMed  CAS  Google Scholar 

  25. Sillito AM, Jones HE. Feedback systems in visual processing. In: Visual Neuroscience. Camridge, MA: MIT Press, 2004: 609–624.

    Google Scholar 

  26. Sherman SM. Tonic and burst firing: dual modes of thalamocortical relay. Trends Neurosci 2001, 24: 122–126.

    Article  PubMed  CAS  Google Scholar 

  27. Wang W, Jones HE, Andolina IM, Salt TE, Sillito AM. Functional alignment of feedback effects from visual cortex to thalamus. Nat Neurosci 2006, 9: 1330–1336.

    Article  PubMed  CAS  Google Scholar 

  28. Murphy PC, Sillito AM. Corticofugal feedback influences the generation of length tuning in the visual pathway. Nature 1987, 329: 727–729.

    Article  PubMed  CAS  Google Scholar 

  29. Sillito AM, Cudeiro J, Murphy PC. Orientation sensitive elements in the corticofugal influence on center-surround interactions in the dosal lateral geniculate nucleus. Exp Brain Res 1993, 93: 6–16.

    Article  PubMed  CAS  Google Scholar 

  30. Sillito AM, Andolina IM, Jones HE. The processing by cells in the cat dLGN of the relative phase between center and surround. Invest Ophthalml Vis Sci 1999, 40: 3380.

    Google Scholar 

  31. Sillito AM, Jones HE. Functional organization influencing neurotransmission in the lateral geniculate nucleus. In: Steriade M, Jones EG, McCormick DA (eds). Thalamus, vol 2: experimental and clinical aspects. Amsterdam: Elsevier, 1997: 1–52.

    Google Scholar 

  32. Cudeiro J, Sillito AM. Spatial frequency tuning of orientationdiscrimination-sensitive corticofugal feedback to the cat lateral geniculate nucleus. J Physiol 1996, 481–492.

  33. Andolina IM, Jones HE, Wang W, Sillito AM. Cortico-thalamic Feedback Enhances Stimulus Response Precision in the Visual System. Proc Natl Acad Sci U S A 2007, 104: 1685–1690.

    Article  PubMed  CAS  Google Scholar 

  34. Sillito AM, Jones HE, Gerstein GL, West DC. Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex. Nature 1994, 366: 479–482.

    Article  Google Scholar 

  35. Sipp S, Grant S. Organization of reciprocal connections between area 17 and the lateral suprasylvian area of cat visual cortex. Vis Neurosci 1991, 6: 339–355.

    Article  Google Scholar 

  36. Shipp S, Zeki S. The organization of connections between areas V5 and V1 in macaque monkey visual cortex. Eur J Neurosci 1989, 1: 308–331.

    Google Scholar 

  37. Zeki S, Shipp S. The functional logic of cortical connections. Nature 1988, 335: 311–317.

    Article  PubMed  CAS  Google Scholar 

  38. Sherk H. Location and connections of visual cortical areas in the cat’s suprasylvian sulcus. J Comp Neurol 1986, 247: 1–31.

    Article  PubMed  CAS  Google Scholar 

  39. Symond LL, Rosenquist AC. Corticocortical connections among visual areas in the cat. J Comp Neurol 1984, 229: 1–38.

    Article  Google Scholar 

  40. Dreher B. Thalamocortical and corticocortical interconnections in the cat visual system: relation to the mechanisms of information processing, In: Pettigrew JD, Sanderson KL, Levick RM (eds.), Visual Neuroscience. Cambridge Univ Press, Cambridge, UK, 1986.

    Google Scholar 

  41. Bullier J, McCourt ME, Henry GH. Physiological studies on the feedback connections to the striate cortex from cortical areas 18 and 19 of the cat. Exp Brain Res 1988, 70: 90–98.

    PubMed  CAS  Google Scholar 

  42. Wang C, Waleszczyk WJ, Burke W, Dreher B. Modulatory influence of feedback projections from area 21a on neuronal activities in striate cortex of the cat. Cereb Cortex 2000, 10: 1217–1232.

    Article  PubMed  CAS  Google Scholar 

  43. Martinez-Conde S, Cudeiro J, Kenneth J, Grieve KL, Rodriguez R, Rivadulla C, et al. Effect of feedback projections from area 18 layers 2/3 to area 17 layers 2/3 in the cat visual cortex. J Neurophysiol 1999, 82: 2667–2675.

    PubMed  CAS  Google Scholar 

  44. Murphy PC, Sillito AM. Functional morphology of the feedback pathway from area 17 of the cat visual cortex to the lateral geniculate nucleus. J Neurosci 1996, 16: 1180–1192.

    PubMed  CAS  Google Scholar 

  45. Bullier J, McCount ME, Henry GH. Physiological studies on the feedback connection to the striate cortex from cortical areas 17 and 18 of the cat. Exp Brain Res 1988, 70: 90–98.

    PubMed  CAS  Google Scholar 

  46. Galuske RA, Schmidt KE, Goebel R, Lomber SG, Payne BR. The role of feedback in shaping neuronap representations in cat visual cortex. Proc Natl Acad Sci U S A 2002, 99: 17083–17088.

    Article  PubMed  CAS  Google Scholar 

  47. Huang L, Chen X, Shou T. Spatial frequency-dependent feedback of visual cortical area 21a modulating functional orientation column maps in areas 17 and 18 of the cat. Brain Res 2004, 998: 194–201.

    Article  PubMed  CAS  Google Scholar 

  48. Hupe JM, James AC, Girard P, Lombber SG, Payne BR, Bullier J. Feedback connections act on the early part of the responses in monkey visual cortex. J Neurophysiol 2001, 85: 134–145.

    PubMed  CAS  Google Scholar 

  49. Hupe JM, James AC, Girard P, Lombber SG, Payne BR, Bullier J. Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature 1998, 349: 784–787.

    Google Scholar 

  50. Bullier J, Hupe JM, James A, Girard P. Functional interactions between areas V1 and V2 in the monkey. J Physiol Paris 1996, 90: 217–220.

    Article  PubMed  CAS  Google Scholar 

  51. Alonso JM, Cudeiro J, Perez R, Gonzalez F, Acuna C. Influence of layer V of area 18 of the cat visual cortex on responses of cells in layer V of area 17 to stimuli of high velocity. Exp Brain Res 1993, 93: 363–366.

    Article  PubMed  CAS  Google Scholar 

  52. Alonso JM, Cudeiro J, Perez R, Gonzalez F, Acuna C. Orientational influences of layer v of visual area 18 upon cells in layer V of area 17 in the cat cortex. Exp Brain Res 1993, 96: 212–220.

    Article  PubMed  CAS  Google Scholar 

  53. Nowak LG, James AC, Bullier J. Corticocortical connections between visual areas 17 and 18a of the rat studied in vitro: spatial and temporal organization of functional synaptic responses. Exp Brain Res 1997, 117: 219–241.

    Article  PubMed  CAS  Google Scholar 

  54. Shen W, Liang Z, Chen X, Shou T. Posteromedial lateral suprasylvian motion area modulates direction but not orientation preference in area 17 of cats. Neuroscience 2006, 142: 905–916.

    Article  PubMed  CAS  Google Scholar 

  55. Treue S, Maunsell JHR. Effects of attention on the processing of motion in macaque middle temporal and medial superior temporal visual cortical areas. J Neurosci 1999, 19: 7591–7602.

    PubMed  CAS  Google Scholar 

  56. Reynolds JH, Pasternak T, Desimone R. Attention increases sensitivity of V4 neurons. Neuron 2000, 26: 703–714.

    Article  PubMed  CAS  Google Scholar 

  57. Bullier J, Hupe JM, James, Girard P. The role of feedback connections in shaping the responses of visual cortical neurons. Prog Brain Res 2001, 134: 193–204.

    Article  PubMed  CAS  Google Scholar 

  58. Tomita H, Ohbayashi M, Nakahara K, Hasegawa I, Miyashita Y. Top-down signal from prefront cortex in executive control of memory retrieval. Nature 1999, 401: 600–703.

    Article  Google Scholar 

  59. Gottlieb JP. Smooth eye movements elicited by microstimulation in the primate front eye field. J Physiol 1993, 69: 786–799.

    CAS  Google Scholar 

  60. Wurtz RH, Goldberg ME. Activity of superior colliculus in behaving monkey: III. Cells discharging before eye movements. J Neurophysiol 1972, 35: 575–586.

    PubMed  CAS  Google Scholar 

  61. Scheller PH, True SD, Conway JL. Deficits in eye movements following front eye field and superior colliculus ablations. J Neurophysiol 1980, 44: 1175–1189.

    Google Scholar 

  62. Wardak C, Olivier E, Duhamel JR. Sacadic target selection deficits after intraparietal area inactivation in monkeys. J Neurosci 2002, 22: 9877–9884.

    PubMed  CAS  Google Scholar 

  63. Appelle S. Peception and discrimination as a function of stimulus orientation: the “oblique effect” in man and animals. Psychol Bull 1972, 78: 266–278.

    Article  PubMed  CAS  Google Scholar 

  64. Howard IP. Human Visual Orientation. New York: Wiley Press, 1982.

    Google Scholar 

  65. Bonds AB. An “oblique effect” in the visual evoked potential of the cat. Exp Brain Res 1982, 46: 151–154.

    Article  PubMed  CAS  Google Scholar 

  66. Cambell FW, Kulikowski JJ, Levinson J. The effect of orientation on the visual resolution of gratings. J Physiol 1966, 187: 427–436.

    Google Scholar 

  67. Annis RC, Frost B. Human visual ecology and orientation anisotropies in acuity. Science 1973, 182: 729–731.

    Article  PubMed  CAS  Google Scholar 

  68. Timmney BN, Muir DW. Orientation anisotropy: Incidence and magnitude in Gaucasian and Chinese subjects. Science 1976, 193: 699–701.

    Article  Google Scholar 

  69. Maffei L, Campbell FW. Neurophysiological loction of the vertical and horizontal visual coordinates in man. Science 1970, 167: 386–387

    Article  PubMed  CAS  Google Scholar 

  70. Annis RC, Frost B. Human visual ecology and orientation anisotropies in acuity. Science 1973, 182: 729–731.

    Article  PubMed  CAS  Google Scholar 

  71. Timmney BN, Muir DW. Orientation anisotropy: Incidence and magnitude in Gaucasian and Chinese subjects. Science 1976, 193: 699–701.

    Article  Google Scholar 

  72. Chapman B, Bonhoefer CS, Engel SA. Overrepresentation of horizontal and vertical orientation preference in development ferret are 17. Proc Natl Acad U S A 1998, 95: 2609–2615.

    Article  CAS  Google Scholar 

  73. Coppola DM, White LE, Fitzpatrick D, Purves D. Unequal representation of cardinal and oblique contours in ferret visual cortex. Proc Natl Acd Sci U S A 1998, 95: 2621–2623.

    Article  CAS  Google Scholar 

  74. Coppola DM, Purves HR, McCoy AN, Purves D. The distribution of oriented contours in the real world. Proc Natl Acd Sci U S A 1998, 95: 4002–4006.

    Article  CAS  Google Scholar 

  75. Yu H, Shou T. The oblique effect revealed by optical imaging in primary visual cortex of cats. Acta Physiol Sin 2000, 52: 431–434.

    CAS  Google Scholar 

  76. Furminski CS, Engel SA. The oblique effect in human primary visual cortex. Nat Neurosci 2000, 3: 535–536.

    Article  Google Scholar 

  77. Wang G, Ding S, Yunokuchi K. Difference in the representation of cardinal and oblique contours in cat visual cortex. Neusci Lett 2003, 338: 77–81.

    Article  CAS  Google Scholar 

  78. Huang L, Shou T, Chen X, Sun C, Liang Z. Slab-like functional architecture of higher order cortical area 21a showing oblique effect of orientation preference in the cat. Neuroimage 2006, 32: 1365–1374.

    Article  PubMed  Google Scholar 

  79. Montero VM. Comparative studies on the visual cortex. In: Woolsey N (ed.). Cortical Sensory Organization, vol. 2: Multiple visual areas. Clifton, NJ: Humana Press, 1981: 33–81.

    Google Scholar 

  80. Liang Z, Shen W, Shou T. Enhancement of oblique effect in the cat’s primary visual cortex via orientation preference shifting induced by excitatory feedback from higher-order cortical area 21a. Neuroscience 2007, 145(1): 377–383.

    Article  PubMed  CAS  Google Scholar 

  81. Shen W, Liang Z, Shou T. Weakened feedback abolishes neural oblique effect evoked by pseudo-natural visual stimuli in area 17 of the cat. Neurosci Lett 2008, 437: 65–70.

    Article  PubMed  CAS  Google Scholar 

  82. Rockland KS, Ijima H. Calcarine area V1 as a multimodal convergence area. Soc Neurosci Sbs 2001, 27: 1342.

    Google Scholar 

  83. Falchier A, Clavagier S, Barone P, Kennedy H. Anatomical evidence of multimodal integration in primary striate cortex. J Neurosci 2002, 22: 5749–5760.

    PubMed  CAS  Google Scholar 

  84. Shams L, Kamitani Y, Thompson S, Shimojo S. Sound alters visual evoked potentials in humans. Neuroreport 2001, 12: 3849–3852.

    Article  PubMed  CAS  Google Scholar 

  85. Violentyev A, Shimojo S, Shams L. Touch-induced visual illusion. Neuroreport 2005, 16: 1107–1110.

    Article  PubMed  Google Scholar 

  86. Singer W. Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 1995: 555–586.

  87. Koffka K. Principles of Gestalt Psychology. New York: Harcourt, 1935.

    Google Scholar 

  88. Engel AK, Kreiter AK, Konig P, Singer W. Synchronization of oscillatory neuronal responses between striate and extrastriate visual cortical areas of the cat. Proc Natl Acad Sci U S A 1991, 88: 6048–6052.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-De Shou  (寿天德).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shou, TD. The functional roles of feedback projections in the visual system. Neurosci. Bull. 26, 401–410 (2010). https://doi.org/10.1007/s12264-010-0521-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-010-0521-3

Keywords

关键词

Navigation