Skip to main content

Advertisement

Log in

Intracellular and current source density analysis of pretectal input to the optic tectum of the frog

青蛙前视盖与视顶盖间神经传导的细胞内记录和电流源密度分析

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Objective

Electrophysiological examination of the ipsilateral pretectotectal projection has proved that pretectal cells elicit strong suppressive responses to the ipsilateral tectum. However, the neural mechanisms underlying the contralateral pretectotectal prejection are still obscure. The present study aimed to examine the synaptic nature of pretectal nuclei and contralateral tectal cells, and to demonstrate the spatiotemporal pattern of neuronal activity in the 2 main brain structures.

Methods

Intracellular recording and current source density (CSD) analysis were used to test the complexity of neuronal mechanism of pretectotectal information transfer.

Results

The pretectal stimulation elicited only one type of response on the contralateral tectum, the inhibitory postsynaptic potential (IPSP). The majority of contra-induced IPSPs were assumed to be polysynaptically driven. In the CSD analysis, only one sink with short latency was observed in each profile. The ipsilateral projection produced a prominent monosynaptic sink in layer 8 of tectum. Recipient neurons were located in layers 6 and 7 of tectum. The result confirmed former findings from ipsilateral intracellular recordings.

Conclusion

These results suggest the following neuronal circuit: afferents from the pretectal nuclei broadly inhibit both tectal neuron, and since no second sink occurs in tectal layers, the pretectotectal excitatory afferents probably do not extend over the whole tectum, but are within limited state. The results of intracellular recording and CSD analysis further provide evidence of how pretectal afferent activity flows within the tectal laminae.

摘要

目的

电生理研究已经证实青蛙前视盖对同侧视顶盖细胞有强烈的抑制作用, 但其与对侧视顶盖间神经活动的特性目前尚不清楚。 本研究旨在探讨青蛙前视盖与视顶盖之间复杂的神经活动机理, 并对这种神经活动的时空方式进行分析。

方法

用细胞内记录方法, 通过电刺激前视盖的神经细胞核来记录对侧视顶盖细胞的神经活动。 通过电流源密度分析方法解析细胞外记录的视顶盖细胞的神经活动。

结果

前视盖的电刺激只引起了对侧视顶盖的一种应答, 即抑制性突触后电位(inhibitory postsynaptic potential, IPSP), 且大多数的IPSPs 是通过多突触方式进行神 经信息传递的。 此外, 电流源密度分析结果显示, 前视盖刺激在同侧视顶盖上唤起了非常微弱的兴奋性神经活动, 这与以前的细胞内研究结果相一致。

结论

前视盖的神经细胞能强烈抑制双侧视顶盖细胞的神经活动。 细胞内记录 和电流源密度分析结果有助于进一步揭示前视盖传入在视顶盖层的传导情况。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antal M, Matsumoto N, Szekely G. Tectal neurons of the frog: intracellular recording and labeling with cobalt electrodes. J Comp Neurol 1986, 246: 238–253.

    Article  CAS  PubMed  Google Scholar 

  2. Arbib MA, Cobas A. Prey-catching and predator avoidance. In: Arbib MA, Ewert JP (eds.), Visual Structures and Integrated Functions. Berlin, Heidelberg: Springer Verlag, 1991: 139–166.

    Google Scholar 

  3. Ewert JP. Tectal mechanisms that underlie prey-catching and avoidance behaviors in toads. In: Vanegas H. (ed.), Comparative Neurology of the Optic Tectum. New York: Plenum Press, 1984, 247–416.

    Google Scholar 

  4. Ewert JP, Matsumoto N, Schwippert WW. Morphological identification of prey-selective neurons in the grass frog’s optic tectum. Naturwissenschaften 1985, 72: 661–662.

    Article  CAS  PubMed  Google Scholar 

  5. Ewert JP, Buxbaum-Conradi H, Dreisvogt F, Glagow M, Merkel-Harff C, Rottgen A, et al. Neural modulation of visuomotor functions underlying prey-catching behavior. In anurans: perception, attention, motor performance, learning. Comp Biochem Physiol (A) 2001, 128(3): 417–461.

    CAS  Google Scholar 

  6. Grüsser OJ, Grüsser-Cornehls U. Neurophysiology of the anuran visual system. In: Llinas R, Precht W (eds.), Frog neurobiology. Berlin Heidelberg New York: Springer-Verlag, 1976: 298–385.

    Google Scholar 

  7. King JR, Comer CM. Visually elicited turning behavior in Rana pipiens: Comparative organization and neural control of escape and prey capture. J Comp Physiol (A) 1996, 178: 293–305.

    Article  Google Scholar 

  8. Matsumoto N, Bando T. Excitatory synaptic potentials and morphological classification of tectal neurons of the frog. Brain Res 1980, 192: 39–48.

    Article  CAS  PubMed  Google Scholar 

  9. Matsumoto N, Schiwippert WW, Ewert JP. Intracellular activity of morphological identified neurons of the grass frog’s optic tectum in response to moving configurational visual stimuli. J Comp Physiol 1986, 159: 721–739.

    Article  Google Scholar 

  10. Székely G, Lázár G. Cellular and synaptic architecture of the optic tectum. In: Llinas R, Precht W (eds.), Frog neurobiology. Berlin Heidelberg New York: Springer-Verlag, 1976: 407–437.

    Google Scholar 

  11. Lázár G. Structure and connections of the optic tectum. In: Vanegas HH (ed.), Comparative Neurology of the Optic Tectum. New York: Plenum Press, 1984.

    Google Scholar 

  12. Lázár G. Cellular architecture and connectivity of the frog’s optic tectum and pretectum. In: Ewert JP, Arbib MA (eds.), Visuomotor Coordination. New York: Plenum Press, 1989.

    Google Scholar 

  13. Matsumoto N. Morphological and physiological studies of tectal and pretectal neurons in the frog. In: Ewert JP, Arbib MA (eds.), Visuomotor coordination: amphibians, comparisons, models, and robots. New York: Plenum Press, 1989, 201–222.

    Google Scholar 

  14. Buxbaum-Conradi H, Ewert JP. Pretecto-tectal influences I. What the toad’s pretectum tells its tectum: an antidromic stimulation/recording study. J Comp Physiol 1995, 176: 169–180.

    Article  Google Scholar 

  15. Lázár G, Pal E. Neuronal connections through the posterior commissure in the frog Rana esculenta. Brain Res 1999, 39(3): 369–374.

    Google Scholar 

  16. Ingle D. Disinhibition of tectal neurons by pretectal lesions in the frog. Science 1973, 180: 422–424.

    Article  CAS  PubMed  Google Scholar 

  17. Kondrashev SL, Dimentman AM. Role of dorsal thalamus in the organization of visually-mediated behavior in amphibians. In: OY Orlov (ed.), Mechanisms of vision of animals. Moscow: Nauka, 1978.

    Google Scholar 

  18. Kang HJ, Li XH. An intracellular study of pretectal influence on the optic tectum of the frog, Rana catesbeiana. Neurosci Bull 2007, 23(2): 113–118.

    Article  PubMed  Google Scholar 

  19. Haberly LB, Shepherd GM. Current-density analysis of summed evoked potentials in opossum prepyriform cortex. Neurophysiology 1973, 36: 789–802.

    CAS  PubMed  Google Scholar 

  20. Mitzdorf U, Singer W. Prominent excitatory pathways in the cat visual cortex (A17 and A18): A current source density analysis of electrically evoked potentials. Exp Brain Res 1978, 33: 371–394.

    Article  CAS  PubMed  Google Scholar 

  21. Mitzdorf U, Singer W. Excitatory synaptic ensemble properties in the visual cortex of the macaque monkey: A current source density analysis of electrically evoked potentials. J Comp Neurol 1979, 187: 71–84.

    Article  CAS  PubMed  Google Scholar 

  22. Mitzdorf U, Singer W. Monocular activation of visual cortex in normal and monocularly deprived cats: An analysis of evoked potentials. Physiology 1980, 304: 203–220.

    CAS  Google Scholar 

  23. Freeman B, Singer W. Direct and indirect visual inputs to superficial layers of cat superior colliculus: A current source-density analysis of electrically evoked potentials. Neurophysiology 1983, 49: 1075–1091.

    CAS  PubMed  Google Scholar 

  24. Mitzdorf U. Current source-density method and application in cat cerebral cortex: Investigation of evoked potentials and EEG phenomena. Physiol Rev 1985, 65: 37–100.

    CAS  PubMed  Google Scholar 

  25. Luhmann HJ, Greuel JM, Singer W. Horizontal interactions in cat striate cortex: II. A current source-density analysis. Eur J Neurosci 1990, 2: 358–368.

    Article  PubMed  Google Scholar 

  26. Kenan-Vaknin G, Teyler TJ. Laminar pattern of synaptic activity in rat primary visual cortex: Comparison of in vivo and in vitro studies employing the current source density analysis. Brain Res 1994, 636: 37–48.

    Article  Google Scholar 

  27. Stone JJ, Freeman JA. Synaptic organization of the pigeon’s optic tectum: A golgi and current source-density analysis. Brain Res 1971, 27: 203–221.

    Article  CAS  PubMed  Google Scholar 

  28. Vanegas H, Williams B, Freeman JA. Responses to stimulation of marginal fibers in the teleostean optic tectum. Exp Brain Res 1979, 34: 335–349.

    Article  CAS  PubMed  Google Scholar 

  29. Freeman JA, Schmidt JT, Oswald RE. Effects of α-bungarotoxin on retinotectal synaptic transmission in the goldfish and the toad. Neuroscience 1980, 5: 929–942.

    Article  CAS  PubMed  Google Scholar 

  30. Chung SH, Bliss TVP, Keating MJ. The synaptic organization of optic afferents in the amphibian tectum. London: Proceedings of the Royal Society (B) 1974, 187: 421–447.

    Google Scholar 

  31. Freeman JA. Possible regulatory function of acetylcholine receptor in maintenance of retinotectal synapses. Nature 1977, 269: 218–222.

    Article  CAS  PubMed  Google Scholar 

  32. Nakagawa H, Miyazaki H, Matsumoto N. Principal neuronal organization in the frog optic tectum revealed by a current source density analysis. Vis Neurosci 1997, 14: 263–275.

    Article  CAS  PubMed  Google Scholar 

  33. Mitzdorf U. The physiological causes of VEP: current source density analysis of electrically and visually evoked potentials. In: R.Q. Cracco, I. Bodis-Wolliner (eds.), Evoked potentials. New York: Alan R. Liss, 1986.

    Google Scholar 

  34. Nicholson C. Theretical analysis of field potentials in anisotropic ensembles of neuronal elements. IEEE Trans Biomed Eng 1973, 20: 278–288.

    Article  CAS  PubMed  Google Scholar 

  35. Guedes RC, Tsurudome K, Matsumoto N. Spreading depression in vivo potentiates electrically-driven responses in frog optic tectum, Brain Res 2005, 1036: 109–114.

    Article  CAS  PubMed  Google Scholar 

  36. Kozicz T, Lázár G. The origin of tectal NPY immunopositive fibers in the frog. Brain Res 1994, 635: 345–348.

    Article  CAS  PubMed  Google Scholar 

  37. Ewert JP, Schürg-Pfeiffer E, Schwippert WW. Influence of pretectal lesions on tectal responses to visual stimulation in anurans: field potential, single neuron and behavior analyses. Acta Biol Hung 1996, 47(1–4): 89–111.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Hong Li  (李晓红).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, XH., Kang, HJ., Xu, ML. et al. Intracellular and current source density analysis of pretectal input to the optic tectum of the frog. Neurosci. Bull. 26, 371–380 (2010). https://doi.org/10.1007/s12264-010-0520-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-010-0520-4

Keywords

关键词

Navigation