Skip to main content

Advertisement

Log in

Regulation of β cleavage of amyloid precursor protein

淀粉样前体蛋白β切割的调控

  • Minireview
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Alzheimer’s disease ranks the first cause for senile dementia. The amyloid cascade is proposed to contribute to the pathogenesis of this disease. In this cascade, amyloid β peptide (Aβ) is produced through a sequential cleavage of amyloid precursor protein (APP) by β and γ secretases, while its cleavage by α secretase precludes Aβ production and generates neurotrophic sAPPα. Thus, enhancing αsecretase activity or suppressing βand γcleavage may reduce A βformation and ameliorate the pathological process of the disease. Several regulatory mechanisms of APP cleavage have been established. The present review mainly summarizes the signaling pathways pertinent to the regulation of APP β cleavage.

摘要

阿尔茨海默病是造成老年人痴呆的首要因素。 淀粉样蛋白级联假说认为淀粉样蛋白是阿尔茨海默病的致病因子, 其在大脑中的含量高低对疾病的发生有重要意义。 β淀粉样蛋白由淀粉样前体蛋白相继经 β 和γ分泌酶切割产生, 而α分泌酶的切割既排除了β淀粉样蛋白的形成, 又能产生具有神经保护作用的片段。 因此, 抑制β或γ切割, 或者增强α切割, 都可以减少β淀粉样蛋白的积累, 改善阿尔茨海默病的病理表现。 淀粉样前体蛋白切割的调控机理, 目前已被广泛研究。 本文就淀粉样前体蛋白β切割的调控机理作一综述。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 2007, 3:186–191.

    Article  PubMed  Google Scholar 

  2. Selkoe DJ. Alzheimer disease: mechanistic understanding predicts novel therapies. Ann Intern Med 2004, 140:627–638.

    PubMed  CAS  Google Scholar 

  3. Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, et al. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991, 30:572–580.

    Article  PubMed  CAS  Google Scholar 

  4. Selkoe DJ. Alzheimer’s disease is a synaptic failure. Science 2002, 298:789–791.

    Article  PubMed  CAS  Google Scholar 

  5. Mudher A, Lovestone S. Alzheimer’s disease-do tauists and baptists finally shake hands? Trends Neurosci 2002, 25: 22–26.

    Article  PubMed  CAS  Google Scholar 

  6. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002, 297:353–356.

    Article  PubMed  CAS  Google Scholar 

  7. Hardy J. Has the amyloid cascade hypothesis for Alzheimer’s disease been proved? Curr Alzheimer Res 2006, 3: 71–73.

    Article  PubMed  CAS  Google Scholar 

  8. Lesne S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, et al. A specific amyloid-β protein assembly in the brain impairs memory. Nature 2006, 440:352–357.

    Article  PubMed  CAS  Google Scholar 

  9. Dahlgren KN, Manelli AM, Stine WB Jr, Baker LK, Krafft GA, LaDu MJ. Oligomeric and fibrillar species of amyloid-β peptides differentially affect neuronal viability. J Biol Chem 2002, 277:32046–32053.

    Article  PubMed  CAS  Google Scholar 

  10. Leissring MA, Farris W, Chang AY, Walsh DM, Wu X, Sun X, et al. Enhanced proteolysis of β-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron 2003, 40:1087–1093.

    Article  PubMed  CAS  Google Scholar 

  11. Ohno M, Cole SL, Yasvoina M, Zhao J, Citron M, Berry R, et al. BACE1 gene deletion prevents neuron loss and memory deficits in 5XFAD APP/PS1 transgenic mice. Neurobiol Dis 2007, 26:134–145.

    Article  PubMed  CAS  Google Scholar 

  12. Gandy S. The role of cerebral amyloid beta accumulation in common forms of Alzheimer disease. J Clin Invest 2005, 115:1121–1129.

    PubMed  CAS  Google Scholar 

  13. Roychaudhuri R, Yang M, Hoshi MM, Teplow DB. Amyloid β-protein assembly and Alzheimer disease. J Biol Chem 2009, 284:4749–4753.

    Article  PubMed  CAS  Google Scholar 

  14. Thinakaran G, Koo EH. Amyloid precursor protein trafficking, processing, and function. J Biol Chem 2008, 283:29615–29619.

    Article  PubMed  CAS  Google Scholar 

  15. Mills J, Reiner PB. Regulation of amyloid precursor protein cleavage. J Neurochem 1999, 72:443–460.

    Article  PubMed  CAS  Google Scholar 

  16. Lee MS, Kao SC, Lemere CA, Xia W, Tseng HC, Zhou Y, et al. APP processing is regulated by cytoplasmic phosphorylation. J Cell Biol 2003, 163:83–95.

    Article  PubMed  CAS  Google Scholar 

  17. Oishi M, Nairn AC, Czernik AJ, Lim GS, Isohara T, Gandy SE, et al. The cytoplasmic domain of Alzheimer’s amyloid precursor protein is phosphorylated at Thr654, Ser655, and Thr668 in adult rat brain and cultured cells. Mol Med 1997, 3:111–123.

    PubMed  CAS  Google Scholar 

  18. da Cruz e Silva EF, da Cruz e Silva OA. Protein phosphorylation and APP metabolism. Neurochem Res 2003, 28:1553–1561.

    Article  PubMed  CAS  Google Scholar 

  19. Adlard PA, Cherny RA, Finkelstein DI, Gautier E, Robb E, Cortes M, et al. Rapid restoration of cognition in Alzheimer’s transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Aβ. Neuron 2008, 59:43–55.

    Article  PubMed  CAS  Google Scholar 

  20. Suzuki T, Nakaya T. Regulation of amyloid beta-protein precursor by phosphorylation and protein interactions. J Biol Chem 2008, 283:29633–29637.

    Article  PubMed  CAS  Google Scholar 

  21. Ando K, Iijima KL, Elliott JI, Kirino Y, Suzuki T. Phosphorylation-dependent regulation of the interaction of amyloid precursor protein with Fe65 affects the production of β-amyloid. J Biol Chem 2001, 276:40353–40361.

    Article  PubMed  CAS  Google Scholar 

  22. Sabo SL, Lanier LM, Ikin AF, Khorkova O, Sahasrabudhe S, Greengard P, et al. Regulation of β-amyloid secretion by FE65, an amyloid protein precursor-binding protein. J Biol Chem 1999, 274:7952–7957.

    Article  PubMed  CAS  Google Scholar 

  23. Santiard-Baron D, Langui D, Delehedde M, Delatour B, Schombert B, Touchet N, et al. Expression of human FE65 in amyloid precursor protein transgenic mice is associated with a reduction in β-amyloid load. J Neurochem 2005, 93:330–338.

    Article  PubMed  CAS  Google Scholar 

  24. Pietrzik CU, Yoon IS, Jaeger S, Busse T, Weggen S, Koo EH. FE65 constitutes the functional link between the low-density lipoprotein receptor-related protein and the amyloid precursor protein. J Neurosci 2004, 24:4259–4265.

    Article  PubMed  CAS  Google Scholar 

  25. Miller CC, McLoughlin DM, Lau KF, Tennant ME, Rogelj B. The X11 proteins, Abeta production and Alzheimer’s disease. Trends Neurosci 2006, 29:280–285.

    Article  PubMed  CAS  Google Scholar 

  26. Sastre M, Turner RS, Levy E. X11 interaction with beta-amyloid precursor protein modulates its cellular stabilization and reduces amyloid β-protein secretion. J Biol Chem 1998, 273:22351–22357.

    Article  PubMed  CAS  Google Scholar 

  27. Lee JH, Lau KF, Perkinton MS, Standen CL, Shemilt SJ, Mercken L, et al. The neuronal adaptor protein X11α reduces Aβ levels in the brains of Alzheimer’s APPswe Tg2576 transgenic mice. J Biol Chem 2003, 278:47025–47029.

    Article  PubMed  CAS  Google Scholar 

  28. Lee JH, Lau KF, Perkinton MS, Standen CL, Rogelj B, Falinska A, et al. The neuronal adaptor protein X11α reduces amyloid β-protein levels and amyloid plaque formation in the brains of transgenic mice. J Biol Chem 2004, 279:49099–49104.

    Article  PubMed  CAS  Google Scholar 

  29. Parisiadou L, Efthimiopoulos S. Expression of mDab1 promotes the stability and processing of amyloid precursor protein and this effect is counteracted by X11alpha. Neurobiol Aging 2007, 28:377–388.

    Article  PubMed  CAS  Google Scholar 

  30. Lau KF, McLoughlin DM, Standen CL, Irving NG, Miller CC. Fe65 and X11β co-localize with and compete for binding to the amyloid precursor protein. Neuroreport 2000, 11:3607–3610.

    Article  PubMed  CAS  Google Scholar 

  31. Kwon OY, Hwang, K, Kim, JA, Kim, K, Kwon, IC, Song, HK, et al. Dab1 binds to Fe65 and diminishes the effect of Fe65 or LRP1 on APP processing. J Cell Biochem 2010. [Epub ahead of print].

  32. Lee JH, Barral S, Reitz C. The neuronal sortilin-related receptor gene SORL1 and late-onset Alzheimer’s disease. Curr Neurol Neurosci Rep 2008, 8:384–391.

    Article  PubMed  CAS  Google Scholar 

  33. Small SA, Gandy S. Sorting through the cell biology of Alzheimer’s disease: intracellular pathways to pathogenesis. Neuron 2006, 52:15–31.

    Article  PubMed  CAS  Google Scholar 

  34. Spoelgen R, von Arnim CA, Thomas AV, Peltan ID, Koker M, Deng A, et al. Interaction of the cytosolic domains of sorLA/LR11 with the amyloid precursor protein (APP) and β-secretase β-site APP-cleaving enzyme. J Neurosci 2006, 26:418–428.

    Article  PubMed  CAS  Google Scholar 

  35. Andersen OM, Reiche J, Schmidt V, Gotthardt M, Spoelgen R, Behlke J, et al. Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. Proc Natl Acad Sci U S A 2005, 102:13461–13466.

    Article  PubMed  CAS  Google Scholar 

  36. Rogaeva E, Meng Y, Lee JH, Gu Y, Kawarai T, Zou F, et al. The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat Genet 2007, 39:168–177.

    Article  PubMed  CAS  Google Scholar 

  37. Rohe, M, Synowitz, M, Glass, R, Paul, SM, Nykjaer, A & Willnow, TE Brain-derived neurotrophic factor reduces amyloidogenic processing through control of SORLA gene expression. J Neurosci 2009, 29:15472–15478

    Article  PubMed  CAS  Google Scholar 

  38. Buckner RL, Snyder AZ, Shannon BJ, LaRossa G, Sachs R, Fotenos AF, et al. Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci 2005, 25:7709–7717.

    Article  PubMed  CAS  Google Scholar 

  39. Mackenzie IR, Miller LA. Senile plaques in temporal lobe epilepsy. Acta Neuropathol 1994, 87:504–510.

    Article  PubMed  CAS  Google Scholar 

  40. Jankowsky JL, Xu G, Fromholt D, Gonzales V, Borchelt DR. Environmental enrichment exacerbates amyloid plaque formation in a transgenic mouse model of Alzheimer disease. J Neuropathol Exp Neurol 2003, 62:1220–1227.

    PubMed  CAS  Google Scholar 

  41. Kamenetz F, Tomita T, Hsieh H, Seabrook G, Borchelt D, Iwatsubo T, et al. APP processing and synaptic function. Neuron 2003, 37:925–937.

    Article  PubMed  CAS  Google Scholar 

  42. Cirrito JR, Kang JE, Lee J, Stewart FR, Verges DK, Silverio LM, et al. Endocytosis is required for synaptic activity-dependent release of amyloid-beta in vivo. Neuron 2008, 58:42–51.

    Article  PubMed  CAS  Google Scholar 

  43. Bush AI. Drug development based on the metals hypothesis of Alzheimer’s disease. J Alzheimers Dis 2008, 15:223–240.

    PubMed  CAS  Google Scholar 

  44. Lannfelt L, Blennow K, Zetterberg H, Batsman S, Ames D, Harrison J, et al. Safety, efficacy, and biomarker findings of PBT2 in targeting Aβ as a modifying therapy for Alzheimer’s disease: a phase IIa, double-blind, randomised, placebo-controlled trial. Lancet Neurol 2008, 7:779–786.

    Article  PubMed  CAS  Google Scholar 

  45. Relkin NR. Testing the mettle of PBT2 for Alzheimer’s disease. Lancet Neurol 2008, 7:762–763.

    Article  PubMed  Google Scholar 

  46. Yu J, Sun M, Chen Z, Lu J, Liu Y, Zhou L, et al. Magnesium modulates amyloid-β protein precursor trafficking and processing. J Alzheimers Dis 2010, 20:1091–1106.

    PubMed  CAS  Google Scholar 

  47. Sinha S, Anderson JP, Barbour R, Basi GS, Caccavello R, Davis D, et al. Purification and cloning of amyloid precursor protein β-secretase from human brain. Nature 1999, 402:537–540.

    Article  PubMed  CAS  Google Scholar 

  48. Hussain I, Powell D, Howlett DR, Tew DG, Meek TD, Chapman C, et al. Identification of a novel aspartic protease (Asp 2) as β-secretase. Mol Cell Neurosci 1999, 14:419–427.

    Article  PubMed  CAS  Google Scholar 

  49. Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, et al. β-Secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 1999, 286:735–741.

    Article  PubMed  CAS  Google Scholar 

  50. Yan R, Bienkowski MJ, Shuck ME, Miao H, Tory MC, Pauley AM, et al. Membrane-anchored aspartyl protease with Alzheimer’s disease β-secretase activity. Nature 1999, 402:533–537.

    Article  PubMed  CAS  Google Scholar 

  51. Lin X, Koelsch G, Wu S, Downs D, Dashti A, Tang J. Human aspartic protease memapsin 2 cleaves the β-secretase site of β- amyloid precursor protein. Proc Natl Acad Sci U S A 2000, 97:1456–1460.

    Article  PubMed  CAS  Google Scholar 

  52. Cai H, Wang Y, McCarthy D, Wen H, Borchelt DR, Price DL, et al. BACE1 is the major β-secretase for generation of Aβ peptides by neurons. Nat Neurosci 2001, 4:233–234.

    Article  PubMed  CAS  Google Scholar 

  53. Yan R, Munzner JB, Shuck ME, Bienkowski MJ. BACE2 functions as an alternative β-secretase in cells. J Biol Chem 2001, 276:34019–34027.

    Article  PubMed  CAS  Google Scholar 

  54. Luo Y, Bolon B, Kahn S, Bennett BD, Babu-Khan S, Denis P, et al. Mice deficient in BACE1, the Alzheimer’s beta-secretase, have normal phenotype and abolished β-amyloid generation. Nat Neurosci 2001, 4:231–232.

    Article  PubMed  CAS  Google Scholar 

  55. Roberds SL, Anderson J, Basi G, Bienkowski MJ, Branstetter DG, Chen KS, et al. BACE knockout mice are healthy despite lacking the primary β-secretase activity in brain: implications for Alzheimer’s disease therapeutics. Hum Mol Genet 2001, 10:1317–1324.

    Article  PubMed  CAS  Google Scholar 

  56. Fukumoto H, Rosene DL, Moss MB, Raju S, Hyman BT, Irizarry MC. β-Secretase activity increases with aging in human, monkey, and mouse brain. Am J Pathol 2004, 164:719–725.

    PubMed  CAS  Google Scholar 

  57. Yang LB, Lindholm K, Yan R, Citron M, Xia W, Yang XL, et al. Elevated β-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nat Med 2003, 9:3–4.

    Article  PubMed  CAS  Google Scholar 

  58. Cole SL, Vassar R. The Alzheimer’s disease β-secretase enzyme, BACE1. Mol Neurodegener 2007, 2:22.

    Article  PubMed  CAS  Google Scholar 

  59. Zhang X, Zhou K, Wang R, Cui J, Lipton SA, Liao FF, et al. Hypoxia-inducible factor 1alpha (HIF-1α)-mediated hypoxia increases BACE1 expression and β-amyloid generation. J Biol Chem 2007, 282:10873–10880.

    Article  PubMed  CAS  Google Scholar 

  60. Tamagno E, Guglielmotto M, Aragno M, Borghi R, Autelli R, Giliberto L, et al. Oxidative stress activates a positive feedback between the gamma- and β-secretase cleavages of the β-amyloid precursor protein. J Neurochem 2008, 104:683–695.

    PubMed  CAS  Google Scholar 

  61. Shen C, Chen Y, Liu H, Zhang K, Zhang T, Lin A, et al. Hydrogen peroxide promotes Aβ production through JNK-dependent activation of gamma-secretase. J Biol Chem 2008, 283:17721–17730.

    Article  PubMed  CAS  Google Scholar 

  62. Cho HJ, Jin SM, Youn HD, Huh K, Mook-Jung I. Disrupted intracellular calcium regulates BACE1 gene expression via nuclear factor of activated T cells 1 (NFAT 1) signaling. Aging Cell 2008, 7:137–147.

    Article  PubMed  CAS  Google Scholar 

  63. Buggia-Prevot V, Sevalle J, Rossner S, Checler F. NFκB-dependent control of BACE1 promoter transactivation by Aβ42. J Biol Chem 2008, 283:10037–10047.

    Article  PubMed  CAS  Google Scholar 

  64. O’Connor T, Sadleir KR, Maus E, Velliquette RA, Zhao J, Cole SL, et al. Phosphorylation of the translation initiation factor eIF2α increases BACE1 levels and promotes amyloidogenesis. Neuron 2008, 60:988–1009.

    Article  PubMed  CAS  Google Scholar 

  65. Velliquette RA, O’Connor T, Vassar R. Energy inhibition elevates β-secretase levels and activity and is potentially amyloidogenic in APP transgenic mice: possible early events in Alzheimer’s disease pathogenesis. J Neurosci 2005, 25:10874–10883.

    Article  PubMed  CAS  Google Scholar 

  66. Guo Q, Fu W, Xie J, Luo H, Sells SF, Geddes JW, et al. Par-4 is a mediator of neuronal degeneration associated with the pathogenesis of Alzheimer disease. Nat Med 1998, 4:957–962.

    Article  PubMed  CAS  Google Scholar 

  67. Xie J, Guo Q. PAR-4 is involved in regulation of β-secretase cleavage of the Alzheimer amyloid precursor protein. J Biol Chem 2005, 280:13824–13832.

    Article  PubMed  CAS  Google Scholar 

  68. He W, Lu Y, Qahwash I, Hu XY, Chang A, Yan R. Reticulon family members modulate BACE1 activity and amyloid-β peptide generation. Nat Med 2004, 10:959–965.

    Article  PubMed  CAS  Google Scholar 

  69. Murayama KS, Kametani F, Saito S, Kume H, Akiyama H, Araki W. Reticulons RTN3 and RTN4-B/C interact with BACE1 and inhibit its ability to produce amyloid β-protein. Eur J Neurosci 2006, 24:1237–1244.

    Article  PubMed  Google Scholar 

  70. Scholefield Z, Yates EA, Wayne G, Amour A, McDowell W, Turnbull JE. Heparan sulfate regulates amyloid precursor protein processing by BACE1, the Alzheimer’s β-secretase. J Cell Biol 2003, 163:97–107.

    Article  PubMed  CAS  Google Scholar 

  71. He X, Li F, Chang WP, Tang J. GGA proteins mediate the recycling pathway of memapsin 2 (BACE). J Biol Chem 2005, 280:11696–11703.

    Article  PubMed  CAS  Google Scholar 

  72. Tesco G, Koh YH, Kang EL, Cameron AN, Das S, Sena-Esteves M, et al. Depletion of GGA3 stabilizes BACE and enhances β-secretase activity. Neuron 2007, 54:721–737.

    Article  PubMed  CAS  Google Scholar 

  73. Okada H, Zhang W, Peterhoff C, Hwang JC, Nixon RA, Ryu SH, et al. Proteomic identification of sorting nexin 6 as a negative regulator of BACE1-mediated APP processing. FASEB J 2010, 24(8):2783–2794.

    Article  PubMed  CAS  Google Scholar 

  74. Teng L, Zhao J, Wang F, Ma L, Pei G. A GPCR/secretase complex regulates β- and γ-secretase specificity for Aβ production and contributes to AD pathogenesis. Cell Res 2010, 20:138–153.

    Article  PubMed  CAS  Google Scholar 

  75. Ehehalt R, Keller P, Haass C, Thiele C, Simons K. Amyloidogenic processing of the Alzheimer β-amyloid precursor protein depends on lipid rafts. J Cell Biol 2003, 160:113–123.

    Article  PubMed  CAS  Google Scholar 

  76. Sparks DL, Scheff SW, Hunsaker JC 3rd, Liu H, Landers T, Gross DR. Induction of Alzheimer-like β-amyloid immunoreactivity in the brains of rabbits with dietary cholesterol. Exp Neurol 1994, 126:88–94.

    Article  PubMed  CAS  Google Scholar 

  77. Fassbender K, Simons M, Bergmann C, Stroick M, Lutjohann D, Keller P, et al. Simvastatin strongly reduces levels of Alzheimer’s disease β-amyloid peptides Aβ 42 and Aβ 40 in vitro and in vivo. Proc Natl Acad Sci U S A 2001, 98:5856–5861.

    Article  PubMed  CAS  Google Scholar 

  78. Yankner BA, Dawes LR, Fisher S, Villa-Komaroff L, Oster-Granite ML, Neve RL. Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer’s disease. Science 1989, 245:417–420.

    Article  PubMed  CAS  Google Scholar 

  79. Nalivaeva NN, Fisk LR, Belyaev ND, Turner AJ. Amyloid-degrading enzymes as therapeutic targets in Alzheimer’s disease. Curr Alzheimer Res 2008, 5:212–224.

    Article  PubMed  CAS  Google Scholar 

  80. Risner ME, Saunders AM, Altman JF, Ormandy GC, Craft S, Foley IM, et al. Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer’s disease. Pharmacogenomics J 2006, 6:246–254.

    PubMed  CAS  Google Scholar 

  81. Holmes C, Boche D, Wilkinson D, Yadegarfar G, Hopkins V, Bayer A, et al. Long-term effects of Aβ42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 2008, 372:216–223.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Zheng Wang  (王以政).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, JF., Lu, R. & Wang, YZ. Regulation of β cleavage of amyloid precursor protein. Neurosci. Bull. 26, 417–427 (2010). https://doi.org/10.1007/s12264-010-0515-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-010-0515-1

Keywords

关键词

Navigation