Skip to main content
Log in

Role of muscle spindle in weightlessness-induced amyotrophia and muscle pain

肌梭在失重性肌萎缩与肌肉痛中的作用

  • Minireview
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

To date, the medium and long-term space flight is urgent in need and has become a major task of our manned space flight program. There is no doubt that medium and long-term space flight has serious damaging impact upon human physiological systems. For instance, atrophy of the lower limb anti-gravity muscle can be induced during the space flight. Muscle atrophy significantly affects the flight of astronauts in space. Most importantly, it influences the precise manipulation of the astronauts and their response capacity to emergencies on returning to the atmosphere from space. Muscle atrophy caused by weightlessness may also seriously disrupt the normal life and work of the astronauts during the re-adaptation period. Here we summarize the corresponding research concentrating on weightlessness-induced changes of muscular structure and function. By combining research on muscle pain, which is a common clinical pain disease, we further provide a hypothesis concerning a dynamic feedback model of “weightlessness condition ⇒ muscular atrophy ⇔ muscle pain”. This may be useful to explore the neural mechanisms underlying the occurrence and development of muscular atrophy and muscle pain, through the key study of muscle spindle, and furthermore provide more effective therapy for clinical treatment.

摘要

目前, 中、 长期航天飞行会对航天员的器官系统造成损害, 如离心性下肢抗重力肌发生明显萎缩, 直接影响宇航员的太空飞行及返回大气层着陆时的准确操纵与应急离舱能力。 肌肉萎缩还会严重影响宇航员返回地面后的正常工作和生活。 本文将对失重或模拟失重环境下的肌肉结构及功能变化的相关研究给予一定的文献回顾。 结合相关肌肉痛研究, 我们提出“肌萎缩(肌梭变化为核心)-肌肉痛”这一动态双向可塑反应模式假设。 通过以肌梭为研究核心的肌萎缩/肌肉痛研究, 可能会更好地阐明肌肉萎缩及肌肉痛发生过程中的神经机理, 并为临床提供更好的治疗方案。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lackner JR, DiZio P. Artificial gravity as a countermeasure in long-duration space flight. J Neurosci Res 2000, 62: 169–176.

    Article  PubMed  CAS  Google Scholar 

  2. West JB. Physiology in microgravity. J Appl Physiol 2000, 89: 379–384.

    PubMed  CAS  Google Scholar 

  3. Fitts RH, Riley DR, Widrick JJ. Functional and structural adaptations of skeletal muscle to microgravity. J Exp Biol 2001, 204: 3201–3208.

    PubMed  CAS  Google Scholar 

  4. Attaix D, Taillandier D, Temparis S. Regulation of ATP-ubiquitindependent proteolysis in muscle wasting. Reprod Nutr Dev 1994, 34: 583–597.

    Article  PubMed  CAS  Google Scholar 

  5. Nagaoka R, Mizuno M, Yamashita S. Changes of intracellular electrolyte contents in rat skeletal muscle during body suspension. Comp Biochem Physiol A Physiol 1995, 110: 341–346.

    Article  PubMed  CAS  Google Scholar 

  6. Lalani R, Bhasin S, Byhower F. Myostatin and insulin-like growth factor-I and -II expression in the muscle of rats exposed to the microgravity environment of the NeuroLab space shuttle flight. J Endocrinol 2000, 167: 417–428.

    Article  PubMed  CAS  Google Scholar 

  7. Eyzaguirre C, Fidone SJ. Physiology of the nervous system. New York Medical Publishers. 2rd ed. 1977.

    Google Scholar 

  8. Tang B, Fan XL, Wu SD. Effects of tail suspension on electrophysiological characteristics of muscle spindles in isolated rat soleus muscle. Space Med Med Eng (Beijing) 2004, 17: 1–6.

    Google Scholar 

  9. Tang B, Fan XL, Wu SD. Effects of simulated weightlessness on myosin heavy chain expression of soleus intrafusal muscle fibers in rats. Space Med Med Eng (Beijing) 2003, 16: 235–238.

    Google Scholar 

  10. Tang B, Fan XL, Wu SD, Li M. Influence of simulated weightlessness on the morphology of nerve endings of muscle spindle in rat soleus muscle. Space Med Med Eng (Beijing) 2003, 16: 162–164.

    Google Scholar 

  11. Zhu YJ, Fan XL, Li XH, Wu SD, Zhang HM, Yu L. Effect of hindlimb unloading on resting intracellular calcium in intrafusal fibers and ramp-and-hold stretches evoked responsiveness of soleus muscle spindles in conscious rats. Neurosci Lett 2008, 442, 169–173.

    Article  PubMed  CAS  Google Scholar 

  12. Yang W, Fan XL, Wu SD. Effects of high frequency vibration on expression of myosin heavy chain (MHC) in intrafusal and extrafusal fibers in soleus muscles of tail-suspended rats. Space Med Med Eng (Beijing) 2005, 18: 259–261.

    Google Scholar 

  13. Gao YF, Fan XL, He ZX, Wu SD, Song XA. Effects of ligustrazine and radix astragali on activities of myosin adenosine triphosphatase of soleus muscle and muscle atrophy in tail-suspended rats. Space Med Med Eng (Beijing) 2005, 18: 262–266.

    CAS  Google Scholar 

  14. Uva BM, Masini MA, Sturla M. Clinorotation-induced weightlessness influences the cytoskeleton of glial cells in culture. Brain Res 2002, 934: 132–139.

    Article  PubMed  CAS  Google Scholar 

  15. Newberg AB, Alavi A. Changes in central nervous system during long-duration space flight: implications for neuron-imaging. Adv Space Res 1998, 22: 185–196.

    Article  PubMed  CAS  Google Scholar 

  16. Roberts DR, Ricci R, Funke FW, Ramsey P, Kelley W, Carroll JS, et al. Lower limb immobilization is associated with increased corticospinal excitability. Exp Brain Res 2007, 181: 213–220.

    Article  PubMed  Google Scholar 

  17. Bosco G, Poppele RE. Proprioception from a spinocerebellar perspective. Physiol Rev 2001, 81: 539–568.

    PubMed  CAS  Google Scholar 

  18. Graven-Nielsen T. Fundamentals of muscle pain, referred pain, and deep tissue hyperalgesia. Scand J Rheumatol 2006, 122: S1–43.

    Article  Google Scholar 

  19. Ro JY, Capra NF. Modulation of jaw muscle spindle afferent activity following intramuscular injections with hypertonic saline. Pain 2001, 92: 117–127.

    Article  PubMed  CAS  Google Scholar 

  20. Capra NF, Hisley CK, Masri RM. The influence of pain on masseter spindle afferent discharge. Arch Oral Biol 2007, 52: 387–390.

    Article  PubMed  Google Scholar 

  21. Lei J, You HJ, Andersen OK, Graven-Nielsen T, Arendt-Nielsen L. Homotopic and heterotopic variation in skin blood flow and temperature following experimental muscle pain in humans. Brain Res 2008, 1232: 85–93.

    Article  PubMed  CAS  Google Scholar 

  22. Wu SD, Fan XL, Wang CY, Tang Bin. The role of brainstem descending inhibitory system in the antinociceptive effect elicited by muscle spindle afferents. J Xi’an Med Univ 2001, 13: 152–155.

    Google Scholar 

  23. Tang B, Fan XL, Wu SD. The role of red nucleus in the modulation of spinal nociceptive transmission and in nonciception elicited by muscle spindle afferents. Acad J Xi’an Jiaotong Uni 2003b, 15: 30–33.

    Google Scholar 

  24. Tang B, Fan XL, Wang CY, Li Q. Role of red nucleus in inhibiting nociceptive responses of rat spindle afferent. Acta Physiologica Sinica 1999, 51: 386–390.

    PubMed  CAS  Google Scholar 

  25. Yang JC, Fan XL, Song XA, Li Q. The role of different glutamate receptors in the mediation of glutamate-evoked excitation of red nucleus neurons after simulated microgravity in rat. Neurosci Lett 2008, 448: 255–259.

    Article  PubMed  CAS  Google Scholar 

  26. Yang W, Fan XL, Zhang H, Wu SD, Song XA. Effects of hindlimb unloading and reloading on C-fos expression of spinal cord evoked by vibration of rat achille tendon. Neurosci Lett 2008, 439: 1–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao-Jun You  (尤浩军).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, U., Fan, XL. & You, HJ. Role of muscle spindle in weightlessness-induced amyotrophia and muscle pain. Neurosci. Bull. 25, 283–288 (2009). https://doi.org/10.1007/s12264-009-0914-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-009-0914-3

Keywords

CLC number

关键词

Navigation